Results 2201-2250 of 3551 (3461 ASCL, 90 submitted)

[ascl:1207.012]
PCA: Principal Component Analysis for spectra modeling

The mid-infrared spectra of ultraluminous infrared galaxies (ULIRGs) contain a variety of spectral features that can be used as diagnostics to characterize the spectra. However, such diagnostics are biased by our prior prejudices on the origin of the features. Moreover, by using only part of the spectrum they do not utilize the full information content of the spectra. Blind statistical techniques such as principal component analysis (PCA) consider the whole spectrum, find correlated features and separate them out into distinct components.

This code, written in IDL, classifies principal components of IRS spectra to define a new classification scheme using 5D Gaussian mixtures modelling. The five PCs and average spectra for the four classifications to classify objects are made available with the code.

[ascl:1705.004]
PCAT: Probabilistic Cataloger

PCAT (Probabilistic Cataloger) samples from the posterior distribution of a metamodel, i.e., union of models with different dimensionality, to compare the models. This is achieved via transdimensional proposals such as births, deaths, splits and merges in addition to the within-model proposals. This method avoids noisy estimates of the Bayesian evidence that may not reliably distinguish models when sampling from the posterior probability distribution of each model.

The code has been applied in two different subfields of astronomy: high energy photometry, where transdimensional elements are gamma-ray point sources; and strong lensing, where light-deflecting dark matter subhalos take the role of transdimensional elements.

[ascl:1809.002]
PCCDPACK: Polarimetry with CCD

PCCDPACK analyzes polarimetry data. The set of routines is written in CL-IRAF (including compiled Fortran codes) and analyzes dozens of point objects simultaneously on the same CCD image. A subpackage, specpol, is included to analyze spectropolarimetry data.

[ascl:2309.011]
PCOSTPD: Periodogram Comparison for Optimizing Small Transiting Planet Detection

The Periodogram Comparison for Optimizing Small Transiting Planet Detection R code compares two periodogram algorithms for detecting transiting exoplanets: the Box-fitting Least Squares (BLS) and the Transit Comb Filter (TCF). It calculates the False Alarm Probability (FAP) based on extreme value theory and signal-to-noise ratio (SNR) metrics to quantify periodogram peak significance. The comparison approach is aimed at optimizing the detection of small transiting planets in future transiting exoplanet surveys. The code can be extended for comparing any set of periodograms.

[ascl:2211.014]
PDFchem: Average abundance of species from Av-PDFs

PDFchem models the cold ISM at moderate and large scales using functions connecting the quantities of the local and the observed visual extinctions and the local number density with probability density functions. For any given observed visual extinction sampled with thousands of clouds, the algorithm instantly computes the average abundances of the most important species and performs radiative transfer calculations to estimate the average emission of the most commonly observed lines.

[ascl:2105.002]
PDM2: Phase Dispersion Minimization

PDM2 (Phase Dispersion Minimization) ddetermines periodic components of data sets with erratic time intervals, poor coverage, non-sine-wave curve shape, and/or large noise components. Essentially a least-squares fitting technique, the fit is relative to the mean curve as defined by the means of each bin; the code simultaneously obtains the best least-squares light curve and the best period. PDM2 allows an arbitrary degree of smoothing and provides improved curve fits, suppressed subharmonics, and beta function statistics.

[ascl:1102.022]
PDRT: Photo Dissociation Region Toolbox

Ultraviolet photons from O and B stars strongly influence the structure and emission spectra of the interstellar medium. The UV photons energetic enough to ionize hydrogen (hν > 13.6 eV) will create the H II region around the star, but lower energy UV photons escape. These far-UV photons (6 eV < hν < 13.6 eV) are still energetic enough to photodissociate molecules and to ionize low ionization-potential atoms such as carbon, silicon, and sulfur. They thus create a photodissociation region (PDR) just outside the H II region. In aggregate, these PDRs dominate the heating and cooling of the neutral interstellar medium.

The PDR Toolbox is a science-enabling Python package for the community, designed to help astronomers determine the physical parameters of photodissociation regions from observations. Typical observations of both Galactic and extragalactic PDRs come from ground- and space-based millimeter, submillimeter, and far-infrared telescopes such as ALMA, SOFIA, JWST, Spitzer, and Herschel. Given a set of observations of spectral line or continuum intensities, PDR Toolbox can compute best-fit FUV incident intensity and cloud density based on our models of PDR emission.

[ascl:2207.026]
pdspy: MCMC tool for continuum and spectral line radiative transfer modeling

pdspy fits Monte Carlo radiative transfer models for protostellar/protoplanetary disks to ALMA continuum and spectral line datasets using Markov Chain Monte Carlo fitting. It contains two tools, one to fit ALMA continuum visibilities and broadband spectral energy distributions (SEDs) with full radiative transfer models, and another to fit ALMA spectral line visibilities with protoplanetary disk models that include a vertically isothermal, power law temperature distribution. No radiative equilibrium calculation is done.

[ascl:1605.008]
PDT: Photometric DeTrending Algorithm Using Machine Learning

PDT removes systematic trends in light curves. It finds clusters of light curves that are highly correlated using machine learning, constructs one master trend per cluster and detrends an individual light curve using the constructed master trends by minimizing residuals while constraining coefficients to be positive.

[ascl:2001.014]
Peasoup: C++/CUDA GPU pulsar searching library

The NVIDIA GPU-based pipeline code peasoup provides a one-step pulsar search, including searching for pulsars with up to moderate accelerations, with only one command. Its features include dedispersion, dereddening in the Fourier domain, resampling, peak detection, and optional time series folding. peasoup's output is the candidate list.

[ascl:1304.001]
PEC: Period Error Calculator

The PEC (Period Error Calculator) algorithm estimates the period error for eclipsing binaries observed by the Kepler Mission. The algorithm is based on propagation of error theory and assumes that observation of every light curve peak/minimum in a long time-series observation can be unambiguously identified. A simple C implementation of the PEC algorithm is available.

[ascl:1108.008]
PÉGASE-HR: Stellar Population Synthesis at High Resolution Spectra

Le Borgne, Damien; Fioc, Michel; Lançon, Ariane; Rocca-Volmerange, Brigitte; Prugniel, Philippe; Soubiran, Caroline

PÉGASE-HR is a code aimed at computing synthetic evolutive optical spectra of galaxies with a very high resolution (R=10 000, or dlambda=0.55) in the range Lambda=[4000, 6800] Angstroms. PÉGASE-HR is the result of combining the code PÉGASE.2 with the high-resolution stellar library ÉLODIE. This code can also be used at low resolution (R=200) over the range covered by the BaSeL library (from far UV to the near IR), and then produces the same results as PÉGASE.2. In PEGASE-HR, the BaSeL library is replaced by a grid of spectra interpolated from the high-resolution ÉLODIE library of stellar spectra. The ÉLODIE library is a stellar database of 1959 spectra for 1503 stars, observed with the echelle spectrograph ÉLODIE on the 193 cm telescope at the Observatoire de Haute Provence.

[ascl:1108.007]
PÉGASE: Metallicity-consistent Spectral Evolution Model of Galaxies

PÉGASE (Projet d'Étude des GAlaxies par Synthèse Évolutive) is a code to compute the spectral evolution of galaxies. The evolution of the stars, gas and metals is followed for a law of star formation and a stellar initial mass function. The stellar evolutionary tracks extend from the main sequence to the white dwarf stage. The emission of the gas in HII regions is also taken into account. The main improvement in version 2 is the use of evolutionary tracks of different metallicities (from 10-4 to 5×solar). The effect of extinction by dust is also modelled using a radiative transfer code. PÉGASE.2 uses the BaSeL library of stellar spectra and can therefore synthesize low-resolution (R~200) ultraviolet to near-infrared spectra of Hubble sequence galaxies as well as of starbursts.

[ascl:1507.003]
Pelican: Pipeline for Extensible, Lightweight Imaging and CAlibratioN

Pelican is an efficient, lightweight C++ library for quasi-real time data processing. The library provides a framework to separate the acquisition and processing of data, allowing the scalability and flexibility to fit a number of scenarios. Though its origin was in radio astronomy, processing data as it arrives from a telescope, the framework is sufficiently generic to be useful to any application that requires the efficient processing of incoming data streams.

[ascl:1010.060]
Pencil: Finite-difference Code for Compressible Hydrodynamic Flows

The Pencil code is a high-order finite-difference code for compressible hydrodynamic flows with magnetic fields. It is highly modular and can easily be adapted to different types of problems. The code runs efficiently under MPI on massively parallel shared- or distributed-memory computers, like e.g. large Beowulf clusters. The Pencil code is primarily designed to deal with weakly compressible turbulent flows. To achieve good parallelization, explicit (as opposed to compact) finite differences are used. Typical scientific targets include driven MHD turbulence in a periodic box, convection in a slab with non-periodic upper and lower boundaries, a convective star embedded in a fully nonperiodic box, accretion disc turbulence in the shearing sheet approximation, self-gravity, non-local radiation transfer, dust particle evolution with feedback on the gas, etc. A range of artificial viscosity and diffusion schemes can be invoked to deal with supersonic flows. For direct simulations regular viscosity and diffusion is being used. The code is written in well-commented Fortran90.

[ascl:1811.019]
PENTACLE: Large-scale particle simulations code for planet formation

PENTACLE calculates gravitational interactions between particles within a cut-off radius and a Barnes-Hut tree method for gravity from particles beyond. It uses FDPS (ascl:1604.011) to parallelize a Barnes-Hut tree algorithm for a memory-distributed supercomputer. The software can handle 1-10 million particles in a high-resolution N-body simulation on CPU clusters for collisional dynamics, including physical collisions in a planetesimal disc.

[ascl:2306.027]
PEP: Planetary Ephemeris Program

Chandler, John F.; Battat, James B. R.; Murphy, Thomas W.; Reardon, Daniel; Reasenberg, Robert D.; Shapiro, Irwin I.; Ash, Michael E.; Smith, William B.

Planetary Ephemeris Program (PEP) computes numerical ephemerides and simultaneously analyzes a heterogeneous collection of astrometric data. Written in Fortran, it is a general-purpose astrometric data-analysis program and models orbital motion in the solar system, determines orbital initial conditions and planetary masses, and has been used to, for example, measure general relativistic effects and test physics theories beyond the standard model. PEP also models pulsar motions and distant radio sources, and can solve for sky coordinates for radio sources, plasma densities, and the second harmonic of the Sun's gravitational field.

[ascl:2306.040]
PEPITA: Prediction of Exoplanet Precisions using Information in Transit Analysis

PEPITA (Prediction of Exoplanet Precisions using Information in Transit Analysis) makes predictions for the precision of exoplanet parameters using transit light-curves. The code uses information analysis techniques to predict the best precision that can be obtained by fitting a light-curve without actually needing to perform the fit, thus allowing more efficient planning of observations or re-observations.

[ascl:2309.016]
PEREGRINE: Gravitational wave parameter inference with neural ration estimation

PEREGRINE performs full parameter estimation on gravitational wave signals. Using an internal Truncated Marginal Neural Ratio Estimation (TMNRE) algorithm and building upon the swyft (ascl:2302.016) code to efficiently access marginal posteriors, PEREGRINE conducts a sequential simulation-based inference approach to support the analysis of both transient and continuous gravitational wave sources. The code can fully reconstruct the posterior distributions for all parameters of spinning, precessing compact binary mergers using waveform approximants.

[ascl:1809.005]
perfectns: "Perfect" dynamic and standard nested sampling for spherically symmetric likelihoods and priors

perfectns performs dynamic nested sampling and standard nested sampling for spherically symmetric likelihoods and priors, and analyses the samples produced. The spherical symmetry allows the nested sampling algorithm to be followed “perfectly” - *i.e.* without implementation-specific errors correlations between samples. It is intended for use in research into the statistical properties of nested sampling, and to provide a benchmark for testing the performance of nested sampling software packages used for practical problems - which rely on numerical techniques to produce approximately uncorrelated samples.

[ascl:1406.005]
PERIOD: Time-series analysis package

PERIOD searches for periodicities in data. It is distributed within the Starlink software collection (ascl:1110.012).

[ascl:1407.009]
Period04: Statistical analysis of large astronomical time series

Period04 statistically analyzes large astronomical time series containing gaps. It calculates formal uncertainties, can extract the individual frequencies from the multiperiodic content of time series, and provides a flexible interface to perform multiple-frequency fits with a combination of least-squares fitting and the discrete Fourier transform algorithm. Period04, written in Java/C++, supports the SAMP communication protocol to provide interoperability with other applications of the Virtual Observatory. It is a reworked and extended version of Period98 (Sperl 1998) and PERIOD/PERDET (Breger 1990).

[ascl:2007.005]
PeTar: ParticlE Tree & particle-particle & Algorithmic Regularization code for simulating massive star clusters

The N-body code PETAR (ParticlE Tree & particle-particle & Algorithmic Regularization) combines the methods of Barnes-Hut tree, Hermite integrator and slow-down algorithmic regularization (SDAR). It accurately handles an arbitrary fraction of multiple systems (*e.g.* binaries, triples) while keeping a high performance by using the hybrid parallelization methods with MPI, OpenMP, SIMD instructions and GPU. PETAR has very good agreement with NBODY6++GPU results on the long-term evolution of the global structure, binary orbits and escapers and is significantly faster when used on a highly configured GPU desktop computer. PETAR scales well when the number of cores increase on the Cray XC50 supercomputer, allowing a solution to the ten million-body problem which covers the region of ultra compact dwarfs and nuclear star clusters.

[ascl:2207.014]
petitRADTRANS: Exoplanet spectra calculator

petitRADTRANS (pRT) calculates transmission and emission spectra of exoplanets for clear and cloudy planets. It also incorporates an easy subpackage for running retrievals with nested sampling. It allows the calculation of emission or transmission spectra, at low or high resolution, clear or cloudy, and includes a retrieval module to fit a petitRADTRANS model to spectral data. pRT has two different opacity treatment modes. The low resolution mode runs calculations at λ/Δλ ≤ 1000 using the so-called correlated-k treatment for opacities. The high resolution mode runs calculations at λ/Δλ ≤ 10^{6}, using a line-by-line opacity treatment.

[ascl:2203.013]
PetroFit: Petrosian properties calculator and galaxy light profiles fitter

Geda, Robel; Crawford, Steven; Hunt, Lucas R.; Bershady, Matthew A.; Tollerud, Erik J.; Randriamampandry, Solohery M.

PetroFit calculates Petrosian properties, such as radii and concentration indices; it also fits galaxy light profiles. The package, built on Photutils (ascl:1609.011), includes tools for performing accurate photometry, segmentations, Petrosian properties, and fitting.

[ascl:2210.016]
PETSc: Portable, Extensible Toolkit for Scientific Computation

Balay, Satish; Abhyankar, Shrirang; Adams, Mark F.; Benson, Steven; Brown, Jed; Brune, Peter; Buschelman, Kris; Constantinescu, Emil; Dalcin, Lisandro; Dener, Alp; Eijkhout, Victor; Faibussowitsch, Jacob; Gropp, William D.; Hapla, Vaclav; Isaac, Tobin; Jolivet, Pierre; Karpeev, Dmitry; Kaushik, Dinesh; Knepley, Matthew G.; Kong, Fande; Kruger, Scott; May, Dave A.; McInnes, Lois Curfman; Mills, Richard Tran; Mitchell, Lawrence; Munson, Todd; Roman, Jose E.; Rupp, Karl; Sanan, Patrick; Sarich, Jason; Smith, Barry F.; Zampini, Stefano; Zhang, Hong; Zhang, Junchao

PETSc (Portable, Extensible Toolkit for Scientific Computation) provides a suite of data structures and routines for the scalable (parallel) solution of scientific applications modeled by partial differential equations, and is intended for use in large-scale application projects. The toolkit includes a large suite of parallel linear, nonlinear equation solvers and ODE integrators that are easily used in application codes written in C, C++, Fortran and Python. PETSc provides many of the mechanisms needed within parallel application codes, such as simple parallel matrix and vector assembly routines that allow the overlap of communication and computation. In addition, PETSc (pronounced PET-see) includes support for managing parallel PDE discretizations.

[ascl:1910.010]
PEXO: Precise EXOplanetology

Feng, Fabo; Lisogorskyi, Maksym; Jones, Hugh R. A.; Kopeikin, Sergei M.; Butler, R. Paul; Anglada-Escude, Guillem; Boss, Alan P.

PEXO provides a global modeling framework for ns timing, μas astrometry, and μm/s radial velocities. It can account for binary motion and stellar reflex motions induced by planetary companions and also treat various relativistic effects both in the Solar System and in the target system (Roemer, Shapiro, and Einstein delays). PEXO is able to model timing to a precision of 1 ns, astrometry to a precision of 1 μas, and radial velocity to a precision of 1 μm/s.

[ascl:1812.003]
PFANT: Stellar spectral synthesis code

PFANT computes a synthetic spectrum assuming local thermodynamic equilibrium from a given stellar model atmosphere and lists of atomic and molecular lines; it provides large wavelength coverage and line lists from ultraviolet through the visible and near-infrared. PFANT has been optimized for speed, offers error reporting, and command-line configuration options.

[ascl:2407.014]
PFFT: Parallel fast Fourier transforms

PFFT computes massively parallel, fast Fourier transformations on distributed memory architectures. PFFT can be understood as a generalization of FFTW-MPI (ascl:1201.015) to multidimensional data decomposition; in fact, using PFFT is very similar to FFTW. The library is written in C and MPI; a Fortran interface is also available.

[ascl:2104.013]
pfits: PSRFITS-format data file processor

pfits reads, manipulates and processes PSRFITS format search- and fold-mode pulsar astronomy data files. It summerizes the header information in a PSRFITS file, reproduces some of fv's (ascl:1205.005) functionality, and allows the user to obtain detailed information about the file. It can determine whether the data is search mode or fold mode and plot the profile, color scale image, frequency time, sum in frequency, and 4-pol data, as appropriate. pfits can also read in a search mode file, dedisperses, and frequency-sums (if requested), and offers an option to output multiple dispersed data files, among other tasks.

[ascl:2105.022]
PFITS: Spectra data reduction

PFITS performs data reduction of spectra, including dark removal and flat fielding; this software was a standard 1983 Reticon reduction package available at the University of Texas. It was based on the plotting program PCOSY by Gary Ferland, and in 1985 was updated by Andrew McWilliam.

[ascl:2210.026]
PGOPHER: Rotational, vibrational, and electronic spectra simulator

PGOPHER simulates and fits rotational, vibrational, and electronic spectra. It handles linear molecules and symmetric and asymmetric tops, including effects due to unpaired electrons and nuclear spin, with a separate mode for vibrational structure. The code performs many sorts of transitions, including Raman, multiphoton, and forbidden transitions. It can simulate multiple species and states simultaneously, including special effects such as perturbations and state dependent predissociation. Fitting can be to line positions, intensities, or band contours. PGOPHER uses a standard graphical user interface and makes comparison with, and fitting to, spectra from various sources easy. In addition to overlaying numerical spectra, it is also possible to overlay pictures from pdf files and even plate spectra to assist in checking that published constants are being used correctly.

[ascl:1103.002]
PGPLOT: Device-independent Graphics Package for Simple Scientific Graphs

The PGPLOT Graphics Subroutine Library is a Fortran- or C-callable, device-independent graphics package for making simple scientific graphs. It is intended for making graphical images of publication quality with minimum effort on the part of the user. For most applications, the program can be device-independent, and the output can be directed to the appropriate device at run time.

The PGPLOT library consists of two major parts: a device-independent part and a set of device-dependent "device handler" subroutines for output on various terminals, image displays, dot-matrix printers, laser printers, and pen plotters. Common file formats supported include PostScript and GIF.

PGPLOT itself is written mostly in standard Fortran-77, with a few non-standard, system-dependent subroutines. PGPLOT subroutines can be called directly from a Fortran-77 or Fortran-90 program. A C binding library (cpgplot) and header file (cpgplot.h) are provided that allow PGPLOT to be called from a C or C++ program; the binding library handles conversion between C and Fortran argument-passing conventions.

[ascl:1209.008]
Phantom-GRAPE: SIMD accelerated numerical library for N-body simulations

Phantom-GRAPE is a numerical software library to accelerate collisionless $N$-body simulation with SIMD instruction set on x86 architecture. The Newton's forces and also central forces with an arbitrary shape f(r), which have a finite cutoff radius r_cut (i.e. f(r)=0 at r>r_cut), can be quickly computed.

[ascl:1709.002]
PHANTOM: Smoothed particle hydrodynamics and magnetohydrodynamics code

Price, Daniel J.; Wurster, James; Nixon, Chris; Tricco, Terrence S.; Toupin, Stéven; Pettitt, Alex; Chan, Conrad; Laibe, Guillaume; Glover, Simon; Dobbs, Clare; Nealon, Rebecca; Liptai, David; Worpel, Hauke; Bonnerot, Clément; Dipierro, Giovanni; Ragusa, Enrico; Federrath, Christoph; Iaconi, Roberto; Reichardt, Thomas; Forgan, Duncan; Hutchison, Mark; Constantino, Thomas; Ayliffe, Ben; Mentiplay, Daniel; Hirsh, Kieran; Lodato, Giuseppe

Phantom is a smoothed particle hydrodynamics and magnetohydrodynamics code focused on stellar, galactic, planetary, and high energy astrophysics. It is modular, and handles sink particles, self-gravity, two fluid and one fluid dust, ISM chemistry and cooling, physical viscosity, non-ideal MHD, and more. Its modular structure makes it easy to add new physics to the code.

[ascl:1611.019]
phase_space_cosmo_fisher: Fisher matrix 2D contours

phase_space_cosmo_fisher produces Fisher matrix 2D contours from which the constraints on cosmological parameters can be derived. Given a specified redshift array and cosmological case, 2D marginalized contours of cosmological parameters are generated; the code can also plot the derivatives used in the Fisher matrix. In addition, this package can generate 3D plots of qH^2 and other cosmological quantities as a function of redshift and cosmology.

[ascl:2008.002]
PhaseTracer: Cosmological phases mapping

PhaseTracer maps out cosmological phases, and potential transitions between them, for Standard Model extensions with any number of scalar fields. The code traces the minima of effective potential as the temperature changes, and then calculates the critical temperatures at which the minima are degenerate. PhaseTracer can use potentials provided by other packages and can be used to analyze cosmological phase transitions which played an important role in the early evolution of the Universe.

[ascl:1112.006]
PhAst: Display and Analysis of FITS Images

PhAst (Photometry-Astrometry) is an IDL astronomical image viewer based on the existing application ATV which displays and analyzes FITS images. It can calibrate raw images, provide astrometric solutions, and do circular aperture photometry. PhAst allows the user to load, process, and blink any number of images. Analysis packages include image calibration, photometry, and astrometry (provided through an interface with SExtractor, SCAMP, and missFITS). PhAst has been designed to generate reports for Minor Planet Center reporting.

[ascl:2406.022]
phazap: Low-latency identification of strongly lensed signals

Phazap post-processes gravitational-wave (GW) parameter estimation data to obtain the phases and polarization state of the signal at a given detector and frequency. It is used for low-latency identification of strongly lensed gravitational waves via their phase consistency by measuring their distance in the detector phase space. Phazap builds on top of the IGWN conda enviroment which includes the standard GW packages LALSuite (ascl:2012.021) and bilby (ascl:1901.011), and can be applied beyond lensing to test possible deviations in the phase evolution from modified theories of gravity and constrain GW birefringence.

[ascl:2406.027]
phi-GPU: Parallel Hermite Integration on GPU

Berczik, Peter; Nitadori, Keigo; Zhong, Shiyan; Spurzem, Rainer; Hamada, Tsuyoshi; Wang, Xiaowei; Berentzen, Ingo; Veles, Alexander; Ge, Wei

The phi-GPU (Parallel Hermite Integration on GPU) high-order N-body parallel dynamic code uses the fourth-order Hermite integration scheme with hierarchical individual block time-steps and incorporates external gravity. The software works directly with GPU, using only NVIDIA GPU and CUDA code. It creates numerical simulations and can be used to study galaxy and star cluster evolution.

[ascl:2107.029]
PHL: Persistent_Homology_LSS

Persistent_Homology_LSS analyzes halo catalogs using persistent homology to constrain cosmological parameters. It implements persistent homology on a point cloud composed of halos positions in a cubic box from N-body simulations of the universe at large scales. The output of the code are persistence diagrams and images that are used to constrain cosmological parameters from the halo catalog.

[ascl:1106.002]
PHOEBE: PHysics Of Eclipsing BinariEs

PHOEBE (PHysics Of Eclipsing BinariEs) is a modeling package for eclipsing binary stars, built on top of the widely used WD program (Wilson & Devinney 1971). This introductory paper overviews most important scientific extensions (incorporating observational spectra of eclipsing binaries into the solution-seeking process, extracting individual temperatures from observed color indices, main-sequence constraining and proper treatment of the reddening), numerical innovations (suggested improvements to WD's Differential Corrections method, the new Nelder & Mead's downhill Simplex method) and technical aspects (back-end scripter structure, graphical user interface). While PHOEBE retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by encompassing even more physics and solution reliability.

[ascl:1010.056]
PHOENIX: A General-purpose State-of-the-art Stellar and Planetary Atmosphere Code

PHOENIX is a general-purpose state-of-the-art stellar and planetary atmosphere code. It can calculate atmospheres and spectra of stars all across the HR-diagram including main sequence stars, giants, white dwarfs, stars with winds, TTauri stars, novae, supernovae, brown dwarfs and extrasolar giant planets.

[ascl:1307.011]
PhoSim: Photon Simulator

The Photon Simulator (PhoSim) is a set of fast photon Monte Carlo codes used to calculate the physics of the atmosphere, telescope, and detector by using modern numerical techniques applied to comprehensive physical models. PhoSim generates images by collecting photons into pixels. The code takes the description of what astronomical objects are in the sky at a particular time (the instance catalog) as well as the description of the observing configuration (the operational parameters) and produces a realistic data stream of images that are similar to what a real telescope would produce. PhoSim was developed for large aperture wide field optical telescopes, such as the planned design of LSST. The initial version of the simulator also targeted the LSST telescope and camera design, but the code has since been broadened to include existing telescopes of a related nature. The atmospheric model, in particular, includes physical approximations that are limited to this general context.

[ascl:1704.009]
Photo-z-SQL: Photometric redshift estimation framework

Photo-z-SQL is a flexible template-based photometric redshift estimation framework that can be seamlessly integrated into a SQL database (or DB) server and executed on demand in SQL. The DB integration eliminates the need to move large photometric datasets outside a database for redshift estimation, and uses the computational capabilities of DB hardware. Photo-z-SQL performs both maximum likelihood and Bayesian estimation and handles inputs of variable photometric filter sets and corresponding broad-band magnitudes.

[ascl:2406.021]
photochem: Chemical model of planetary atmospheres

Photochem models the photochemical and climate composition of a planet's atmosphere. It takes inputs such as the stellar UV flux and atmospheric temperature structure to find the steady-state chemical composition of an atmosphere, or evolve atmospheres through time. Photochem also contains 1-D climate models and a chemical equilibrium solver.

[ascl:2312.011]
PhotochemPy: 1-D photochemical model of rocky planet atmospheres

PhotochemPy finds the steady-state chemical composition of an atmosphere or evolves atmospheres through time. Given inputs such as the stellar UV flux and atmospheric temperature structure, the code creates a photochemical model of a planet's atmosphere. PhotochemPy is a distant fork of Atmos (ascl:2106.039). It provides a Python wrapper to Fortran source code but can also be used exclusively in Fortran.

[ascl:1712.013]
photodynam: Photodynamical code for fitting the light curves of multiple body systems

Photodynam facilitates so-called "photometric-dynamical" modeling. This model is quite simple and this is reflected in the code base. A N-body code provides coordinates and the photometric code produces light curves based on coordinates.

[ascl:2302.003]
PHOTOe: Monte Carlo model for simulating the slowing down of photoelectrons

PHOTOe simulates the slowing down of photoelectrons in a gas with arbitrary amounts of H, He and O atoms, and thermal electrons, making PHOTOe useful for investigating the atmospheres of exoplanets. The multi-score scheme used in this code differs from other Monte Carlo approaches in that it efficiently handles rare collisional channels, as in the case of low-abundance excited atoms that undergo superelastic and inelastic collisions. PHOTOe outputs include production and energy yields, steady-state photoelectron flux, and estimates of the 'relaxation' time required by the photoelectrons to slow down from the injection energy to the cutoff energy. The model can also estimate the pathlength travelled by the photoelectrons while relaxing.

[ascl:1405.013]
PHOTOM: Photometry of digitized images

Eaton, Nicholas; Draper, Peter W.; Allan, Alasdair; Naylor, Tim; Mukai, Koji; Currie, Malcolm J.; McCaughrean, Mark

PHOTOM performs photometry of digitized images. It has two basic modes of operation: using an interactive display to specify the positions for the measurements, or obtaining those positions from a file. In both modes of operation PHOTOM performs photometry using either the traditional aperture method or via optimal extraction. When using the traditional aperture extraction method the target aperture can be circular or elliptical and its size and shape can be varied interactively on the display, or by entering values from the keyboard. Both methods allow the background sky level to be either sampled interactively by the manual positioning of an aperture, or automatically from an annulus surrounding the target object. PHOTOM is the photometry backend for the GAIA tool (ascl:1403.024) and is part of the Starlink software collection (ascl:1110.012).

Previous1234567891011121314151617181920212223242526272829303132333435363738394041424344**45**464748495051525354555657585960616263646566676869707172Next

Would you like to view a random code?