[ascl:1601.007]
LIRA: Low-counts Image Reconstruction and Analysis

LIRA (Low-counts Image Reconstruction and Analysis) deconvolves any unknown sky components, provides a fully Poisson 'goodness-of-fit' for any best-fit model, and quantifies uncertainties on the existence and shape of unknown sky. It does this without resorting to χ2 or rebinning, which can lose high-resolution information. It is written in R and requires the FITSio package.

[ascl:1112.009]
LISACode: A scientific simulator of LISA

LISACode is a simulator of the LISA mission. Its ambition is to achieve a new degree of sophistication allowing to map, as closely as possible, the impact of the different subsystems on the measurements. Its also a useful tool for generating realistic data including several kind of sources (Massive Black Hole binaries, EMRIs, cosmic string cusp, stochastic background, etc) and for preparing their analysis. It’s fully integrated to the Mock LISA Data Challenge. LISACode is not a detailed simulator at the engineering level but rather a tool whose purpose is to bridge the gap between the basic principles of LISA and a future, sophisticated end-to-end simulator.

[submitted]
Lizard: an extensible Cyclomatic Complexity Analyzer

Lizard is an extensible Cyclomatic Complexity Analyzer for many imperative programming languages including C/C++.

[ascl:1706.005]
LMC: Logarithmantic Monte Carlo

LMC is a Markov Chain Monte Carlo engine in Python that implements adaptive Metropolis-Hastings and slice sampling, as well as the affine-invariant method of Goodman & Weare, in a flexible framework. It can be used for simple problems, but the main use case is problems where expensive likelihood evaluations are provided by less flexible third-party software, which benefit from parallelization across many nodes at the sampling level. The parallel/adaptive methods use communication through MPI, or alternatively by writing/reading files, and mostly follow the approaches pioneered by CosmoMC (ascl:1106.025).

[ascl:1606.014]
Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python

Newville, Matthew; Stensitzki, Till; Allen, Daniel B; Rawlik, Michal; Ingargiola, Antonino; Nelson, Andrew

Lmfit provides a high-level interface to non-linear optimization and curve fitting problems for Python. Lmfit builds on and extends many of the optimization algorithm of scipy.optimize, especially the Levenberg-Marquardt method from optimize.leastsq. Its enhancements to optimization and data fitting problems include using Parameter objects instead of plain floats as variables, the ability to easily change fitting algorithms, and improved estimation of confidence intervals and curve-fitting with the Model class. Lmfit includes many pre-built models for common lineshapes.

[ascl:1608.018]
LORENE: Spectral methods differential equations solver

LORENE (Langage Objet pour la RElativité NumériquE) solves various problems arising in numerical relativity, and more generally in computational astrophysics. It is a set of C++ classes and provides tools to solve partial differential equations by means of multi-domain spectral methods. LORENE classes implement basic structures such as arrays and matrices, but also abstract mathematical objects, such as tensors, and astrophysical objects, such as stars and black holes.

[ascl:1309.003]
LOSP: Liège Orbital Solution Package

LOSP is a FORTRAN77 numerical package that computes the orbital parameters of spectroscopic binaries. The package deals with SB1 and SB2 systems and is able to adjust either circular or eccentric orbits through a weighted fit.

[ascl:1308.002]
LOSSCONE: Capture rates of stars by a supermassive black hole

LOSSCONE computes the rates of capture of stars by supermassive black holes. It uses a stationary and time-dependent solutions for the Fokker-Planck equation describing the evolution of the distribution function of stars due to two-body relaxation, and works for arbitrary spherical and axisymmetric galactic models that are provided by the user in the form of M(r), the cumulative mass as a function of radius.

[ascl:1010.038]
Low Resolution Spectral Templates For AGNs and Galaxies From 0.03 -- 30 microns

Assef, R. J.; Kochanek, C. S.; Brodwin, M.; Cool, R.; Forman, W.; Gonzalez, A. H.; Hickox, R. C.; Jones, C.; Le Floc'h, E.; Moustakas, J.; Murray, S. S.; Stern, D.

We present a set of low resolution empirical SED templates for AGNs and galaxies in the wavelength range from 0.03 to 30 microns based on the multi-wavelength photometric observations of the NOAO Deep-Wide Field Survey Bootes field and the spectroscopic observations of the AGN and Galaxy Evolution Survey. Our training sample is comprised of 14448 galaxies in the redshift range 0<~z<~1 and 5347 likely AGNs in the range 0<~z<~5.58. We use our templates to determine photometric redshifts for galaxies and AGNs. While they are relatively accurate for galaxies, their accuracies for AGNs are a strong function of the luminosity ratio between the AGN and galaxy components. Somewhat surprisingly, the relative luminosities of the AGN and its host are well determined even when the photometric redshift is significantly in error. We also use our templates to study the mid-IR AGN selection criteria developed by Stern et al.(2005) and Lacy et al.(2004). We find that the Stern et al.(2005) criteria suffers from significant incompleteness when there is a strong host galaxy component and at z =~ 4.5, when the broad Halpha emission line is redshifted into the [3.6] band, but that it is little contaminated by low and intermediate redshift galaxies. The Lacy et al.(2004) criterion is not affected by incompleteness at z =~ 4.5 and is somewhat less affected by strong galaxy host components, but is heavily contaminated by low redshift star forming galaxies. Finally, we use our templates to predict the color-color distribution of sources in the upcoming WISE mission and define a color criterion to select AGNs analogous to those developed for IRAC photometry. We estimate that in between 640,000 and 1,700,000 AGNs will be identified by these criteria, but will have serious completeness problems for z >~ 3.4.

[ascl:1501.007]
LP-VIcode: La Plata Variational Indicators Code

LP-VIcode computes variational chaos indicators (CIs) quickly and easily. The following CIs are included:

- Lyapunov Indicators, also known as Lyapunov Characteristic Exponents, Lyapunov Characteristic Numbers or Finite Time Lyapunov Characteristic Numbers (LIs)

- Mean Exponential Growth factor of Nearby Orbits (MEGNO)

- Slope Estimation of the largest Lyapunov Characteristic Exponent (SElLCE)

- Smaller ALignment Index (SALI)

- Generalized ALignment Index (GALI)

- Fast Lyapunov Indicator (FLI)

- Orthogonal Fast Lyapunov Indicator (OFLI)

- Spectral Distance (SD)

- dynamical Spectra of Stretching Numbers (SSNs)

- Relative Lyapunov Indicator (RLI)

[ascl:1306.012]
LRG DR7 Likelihood Software

This software computes likelihoods for the Luminous Red Galaxies (LRG) data from the Sloan Digital Sky Survey (SDSS). It includes a patch to the existing CAMB software (the February 2009 release) to calculate the theoretical LRG halo power spectrum for various models. The code is written in Fortran 90 and has been tested with the Intel Fortran 90 and GFortran compilers.

[ascl:1602.005]
LRGS: Linear Regression by Gibbs Sampling

LRGS (Linear Regression by Gibbs Sampling) implements a Gibbs sampler to solve the problem of multivariate linear regression with uncertainties in all measured quantities and intrinsic scatter. LRGS extends an algorithm by Kelly (2007) that used Gibbs sampling for performing linear regression in fairly general cases in two ways: generalizing the procedure for multiple response variables, and modeling the prior distribution of covariates using a Dirichlet process.

[ascl:1209.003]
LSD: Large Survey Database framework

The Large Survey Database (LSD) is a Python framework and DBMS for distributed storage, cross-matching and querying of large survey catalogs (>10^9 rows, >1 TB). The primary driver behind its development is the analysis of Pan-STARRS PS1 data. It is specifically optimized for fast queries and parallel sweeps of positionally and temporally indexed datasets. It transparently scales to more than >10^2 nodes, and can be made to function in "shared nothing" architectures.

[ascl:1612.002]
LSDCat: Line Source Detection and Cataloguing Tool

LSDCat is a conceptually simple but robust and efficient detection package for emission lines in wide-field integral-field spectroscopic datacubes. The detection utilizes a 3D matched-filtering approach for compact single emission line objects. Furthermore, the software measures fluxes and extents of detected lines. LSDCat is implemented in Python, with a focus on fast processing of large data-volumes.

[ascl:1505.012]
LSSGALPY: Visualization of the large-scale environment around galaxies on the 3D space

LSSGALPY provides visualization tools to compare the 3D positions of a sample (or samples) of isolated systems with respect to the locations of the large-scale structures galaxies in their local and/or large scale environments. The interactive tools use different projections in the 3D space (right ascension, declination, and redshift) to study the relation of the galaxies with the LSS. The tools permit visualization of the locations of the galaxies for different values of redshifts and redshift ranges; the relationship of isolated galaxies, isolated pairs, and isolated triplets to the galaxies in the LSS can be visualized for different values of the declinations and declination ranges.

[ascl:1312.006]
LTL: The Little Template Library

LTL provides dynamic arrays of up to 7-dimensions, subarrays and slicing, support for fixed-size vectors and matrices including basic linear algebra operations, expression templates-based evaluation, and I/O facilities for ascii and FITS format files. Utility classes for command-line processing and configuration-file processing are provided as well.

[ascl:1404.001]
LTS_LINEFIT & LTS_PLANEFIT: LTS fit of lines or planes

LTS_LINEFIT and LTS_PLANEFIT are IDL programs to robustly fit lines and planes to data with intrinsic scatter. The code combines the Least Trimmed Squares (LTS) robust technique, proposed by Rousseeuw (1984) and optimized in Rousseeuw & Driessen (2006), into a least-squares fitting algorithm which allows for intrinsic scatter. This method makes the fit converge to the correct solution even in the presence of a large number of catastrophic outliers, where the much simpler σ-clipping approach can converge to the wrong solution.

[ascl:1201.016]
LumFunc: Luminosity Function Modeling

LumFunc is a numerical code to model the Luminosity Function based on central galaxy luminosity-halo mass and total galaxy luminosity-halo mass relations. The code can handle rest b_J-band (2dFGRS), r'-band (SDSS), and K-band luminosities, and any redshift with redshift dependences specified by the user. It separates the luminosity function (LF) to conditional luminosity functions, LF as a function of halo mass, and also to galaxy types. By specifying a narrow mass range, the code will return the conditional luminosity functions. The code returns luminosity functions for galaxy types as well (broadly divided to early-type and late-type). The code also models the cluster luminosity function, either mass averaged or for individual clusters.

[ascl:1607.018]
LZIFU: IDL emission line fitting pipeline for integral field spectroscopy data

LZIFU (LaZy-IFU) is an emission line fitting pipeline for integral field spectroscopy (IFS) data. Written in IDL, the pipeline turns IFS data to 2D emission line flux and kinematic maps for further analysis. LZIFU has been applied and tested extensively to various IFS data, including the SAMI Galaxy Survey, the Wide-Field Spectrograph (WiFeS), the CALIFA survey, the S7 survey and the MUSE instrument on the VLT.

[ascl:1209.006]
macula: Rotational modulations in the photometry of spotted stars

Photometric rotational modulations due to starspots remain the most common and accessible way to study stellar activity. Modelling rotational modulations allows one to invert the observations into several basic parameters, such as the rotation period, spot coverage, stellar inclination and differential rotation rate. The most widely used analytic model for this inversion comes from Budding (1977) and Dorren (1987), who considered circular, grey starspots for a linearly limb darkened star. That model is extended to be more suitable in the analysis of high precision photometry such as that by Kepler. Macula, a Fortran 90 code, provides several improvements, such as non-linear limb darkening of the star and spot, a single-domain analytic function, partial derivatives for all input parameters, temporal partial derivatives, diluted light compensation, instrumental offset normalisations, differential rotation, starspot evolution and predictions of transit depth variations due to unocculted spots. The inclusion of non-linear limb darkening means macula has a maximum photometric error an order-of-magnitude less than that of Dorren (1987) for Sun-like stars observed in the Kepler-bandpass. The code executes three orders-of-magnitude faster than comparable numerical codes making it well-suited for inference problems.

[ascl:1306.010]
MADCOW: Microwave Anisotropy Dataset Computational softWare

MADCOW is a set of parallelized programs written in ANSI C and Fortran 77 that perform a maximum likelihood analysis of visibility data from interferometers observing the cosmic microwave background (CMB) radiation. This software has been used to produce power spectra of the CMB with the Very Small Array (VSA) telescope.

[ascl:1110.018]
MADmap: Fast Parallel Maximum Likelihood CMB Map Making Code

MADmap is a software application used to produce maximum-likelihood images of the sky from time-ordered data which include correlated noise, such as those gathered by Cosmic Microwave Background (CMB) experiments. It works efficiently on platforms ranging from small workstations to the most massively parallel supercomputers. Map-making is a critical step in the analysis of all CMB data sets, and the maximum-likelihood approach is the most accurate and widely applicable algorithm; however, it is a computationally challenging task. This challenge will only increase with the next generation of ground-based, balloon-borne and satellite CMB polarization experiments. The faintness of the B-mode signal that these experiments seek to measure requires them to gather enormous data sets. MADmap has the ability to address problems typically encountered in the analysis of realistic CMB data sets. The massively parallel and distributed implementation is detailed and scaling complexities are given for the resources required. MADmap is capable of analysing the largest data sets now being collected on computing resources currently available.

[ascl:1010.044]
MAESTRO: An Adaptive Low Mach Number Hydrodynamics Algorithm for Stellar Flows

Many astrophysical phenomena are highly subsonic, requiring specialized numerical methods suitable for long-time integration. In a series of earlier papers we described the development of MAESTRO, a low Mach number stellar hydrodynamics code that can be used to simulate long-time, low-speed flows that would be prohibitively expensive to model using traditional compressible codes. MAESTRO is based on an equation set derived using low Mach number asymptotics; this equation set does not explicitly track acoustic waves and thus allows a significant increase in the time step. MAESTRO is suitable for two- and three-dimensional local atmospheric flows as well as three-dimensional full-star flows. Here, we continue the development of MAESTRO by incorporating adaptive mesh refinement (AMR). The primary difference between MAESTRO and other structured grid AMR approaches for incompressible and low Mach number flows is the presence of the time-dependent base state, whose evolution is coupled to the evolution of the full solution. We also describe how to incorporate the expansion of the base state for full-star flows, which involves a novel mapping technique between the one-dimensional base state and the Cartesian grid, as well as a number of overall improvements to the algorithm. We examine the efficiency and accuracy of our adaptive code, and demonstrate that it is suitable for further study of our initial scientific application, the convective phase of Type Ia supernovae.

[ascl:1709.010]
MagIC: Fluid dynamics in a spherical shell simulator

MagIC simulates fluid dynamics in a spherical shell. It solves for the Navier-Stokes equation including Coriolis force, optionally coupled with an induction equation for Magneto-Hydro Dynamics (MHD), a temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations. MagIC uses either Chebyshev polynomials or finite differences in the radial direction and spherical harmonic decomposition in the azimuthal and latitudinal directions. The time-stepping scheme relies on a semi-implicit Crank-Nicolson for the linear terms of the MHD equations and a Adams-Bashforth scheme for the non-linear terms and the Coriolis force.

[ascl:1604.004]
magicaxis: Pretty scientific plotting with minor-tick and log minor-tick support

The R suite magicaxis makes useful and pretty plots for scientific plotting and includes functions for base plotting, with particular emphasis on pretty axis labelling in a number of circumstances that are often used in scientific plotting. It also includes functions for generating images and contours that reflect the 2D quantile levels of the data designed particularly for output of MCMC posteriors where visualizing the location of the 68% and 95% 2D quantiles for covariant parameters is a necessary part of the post MCMC analysis, can generate low and high error bars, and allows clipping of values, rejection of bad values, and log stretching.

[ascl:1303.009]
MAGIX: Modeling and Analysis Generic Interface for eXternal numerical codes

MAGIX provides an interface between existing codes and an iterating engine that minimizes deviations of the model results from available observational data; it constrains the values of the model parameters and provides corresponding error estimates. Many models (and, in principle, not only astrophysical models) can be plugged into MAGIX to explore their parameter space and find the set of parameter values that best fits observational/experimental data. MAGIX complies with the data structures and reduction tools of Atacama Large Millimeter Array (ALMA), but can be used with other astronomical and with non-astronomical data.

[ascl:1010.054]
MagnetiCS.c: Cosmic String Loop Evolution and Magnetogenesis

Large-scale coherent magnetic fields are observed in galaxies and clusters, but their ultimate origin remains a mystery. We reconsider the prospects for primordial magnetogenesis by a cosmic string network. We show that the magnetic flux produced by long strings has been overestimated in the past, and give improved estimates. We also compute the fields created by the loop population, and find that it gives the dominant contribution to the total magnetic field strength on present-day galactic scales. We present numerical results obtained by evolving semi-analytic models of string networks (including both one-scale and velocity-dependent one-scale models) in a Lambda-CDM cosmology, including the forces and torques on loops from Hubble redshifting, dynamical friction, and gravitational wave emission. Our predictions include the magnetic field strength as a function of correlation length, as well as the volume covered by magnetic fields. We conclude that string networks could account for magnetic fields on galactic scales, but only if coupled with an efficient dynamo amplification mechanism.

[ascl:1502.014]
Magnetron: Fitting bursts from magnetars

Magnetron, written in Python, decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. Markov Chain Monte Carlo (MCMC) sampling and reversible jumps between models with different numbers of parameters are used to characterize the posterior distributions of the model parameters and the number of components per burst.

[ascl:1106.010]
MAGPHYS: Multi-wavelength Analysis of Galaxy Physical Properties

MAGPHYS is a self-contained, user-friendly model package to interpret observed spectral energy distributions of galaxies in terms of galaxy-wide physical parameters pertaining to the stars and the interstellar medium. MAGPHYS is optimized to derive statistical constraints of fundamental parameters related to star formation activity and dust content (e.g. star formation rate, stellar mass, dust attenuation, dust temperatures) of large samples of galaxies using a wide range of multi-wavelength observations. A Bayesian approach is used to interpret the SEDs all the way from the ultraviolet/optical to the far-infrared.

[ascl:1307.009]
MAH: Minimum Atmospheric Height

MAH calculates the posterior distribution of the "minimum atmospheric height" (MAH) of an exoplanet by inputting the joint posterior distribution of the mass and radius. The code collapses the two dimensions of mass and radius into a one dimensional term that most directly speaks to whether the planet has an atmosphere or not. The joint mass-radius posteriors derived from a fit of some exoplanet data (likely using MCMC) can be used by MAH to evaluate the posterior distribution of R_MAH, from which the significance of a non-zero R_MAH (i.e. an atmosphere is present) is calculated.

[ascl:1502.021]
MaLTPyNT: Quick look timing analysis for NuSTAR data

MaLTPyNT (Matteo's Libraries and Tools in Python for NuSTAR Timing) provides a quick-look timing analysis of NuSTAR data, properly treating orbital gaps and exploiting the presence of two independent detectors by using the cospectrum as a proxy for the power density spectrum. The output of the analysis is a cospectrum, or a power density spectrum, that can be fitted with XSPEC (ascl:9910.005) or ISIS (ascl:1302.002). The software also calculates time lags. Though written for NuSTAR data, MaLTPyNT can also perform standard spectral analysis on X-ray data from other satellite such as XMM-Newton and RXTE.

[ascl:1202.005]
Mangle: Angular Mask Software

Mangle is a suite of software designed to deal accurately and efficiently with complex angular masks, such as occur typically in galaxy surveys. Mangle performs the following tasks:

- converts masks between many handy formats (including HEALPix),
- rapidly finds the polygons containing a given point on the sphere,
- rapidly decomposes a set of polygons into disjoint parts,
- expands masks in spherical harmonics,
- generates random points with weights given by the mask, and
- implements computations for correlation function analysis.

[ascl:1305.012]
MapCUMBA: Multi-grid map-making algorithm for CMB experiments

The MapCUMBA package applies a multigrid fast iterative Jacobi algorithm for map-making in the context of CMB experiments.

[ascl:1308.003]
MapCurvature: Map Projections

MapCurvature, written in IDL, can create map projections with Goldberg-Gott indicatrices. These indicatrices measure the flexion and skewness of a map, and are useful for determining whether features are faithfully reproduced on a particular projection.

[ascl:1306.008]
MAPPINGS III: Modelling And Prediction in PhotoIonized Nebulae and Gasdynamical Shocks

MAPPINGS III is a general purpose astrophysical plasma modelling code. It is principally intended to predict emission line spectra of medium and low density plasmas subjected to different levels of photoionization and ionization by shockwaves. MAPPINGS III tracks up to 16 atomic species in all stages of ionization, over a useful range of 102 to 108 K. It treats spherical and plane parallel geometries in equilibrium and time-dependent models. MAPPINGS III is useful for computing models of HI and HII regions, planetary nebulae, novae, supernova remnants, Herbig-Haro shocks, active galaxies, the intergalactic medium and the interstellar medium in general. The present version of MAPPINGS III is a large FORTRAN program that runs with a simple TTY interface for historical and portability reasons.

[ascl:1011.004]
MARS: The MAGIC Analysis and Reconstruction Software

Moralejo, R. A.; Gaug, M.; Carmona, E.; Colin, P.; Delgado, C.; Lombardi, S.; Mazin, D.; Scalzotto, V.; Sitarek, J.; Tescaro, D.

With the commissioning of the second MAGIC gamma-ray Cherenkov telescope situated close to MAGIC-I, the standard analysis package of the MAGIC collaboration, MARS, has been upgraded in order to perform the stereoscopic reconstruction of the detected atmospheric showers. MARS is a ROOT-based code written in C++, which includes all the necessary algorithms to transform the raw data recorded by the telescopes into information about the physics parameters of the observed targets. An overview of the methods for extracting the basic shower parameters is presented, together with a description of the tools used in the background discrimination and in the estimation of the gamma-ray source spectra.

[ascl:1302.001]
MARX: Model of AXAF Response to X-rays

MARX (Model of AXAF Response to X-rays) is a suite of programs designed to enable the user to simulate the on-orbit performance of the Chandra satellite. MARX provides a detailed ray-trace simulation of how Chandra responds to a variety of astrophysical sources and can generate standard FITS events files and images as output. It contains models for the HRMA mirror system onboard Chandra as well as the HETG and LETG gratings and all focal plane detectors.

[ascl:1605.001]
MARZ: Redshifting Program

MARZ analyzes objects and produces high quality spectroscopic redshift measurements. Spectra not matched correctly by the automatic algorithm can be redshifted manually by cycling automatic results, manual template comparison, or marking spectral features. The software has an intuitive interface and powerful automatic matching capabilities on spectra, and can be run interactively or from the command line, and runs as a Web application. MARZ can be run on a local server; it is also available for use on a public server.

[ascl:1101.009]
MasQU: Finite Differences on Masked Irregular Stokes Q,U Grids

The detection of B-mode polarization in the CMB is one of the most important outstanding tests of inflationary cosmology. One of the necessary steps for extracting polarization information in the CMB is reducing contamination from so-called "ambiguous modes" on a masked sky, which contain leakage from the larger E-mode signal. This can be achieved by utilising derivative operators on the real-space Stokes Q and U parameters. This paper presents an algorithm and a software package to perform this procedure on the nearly full sky, i.e., with projects such as the Planck Surveyor and future satellites in mind; in particular, the package can perform finite differences on masked, irregular grids and is applied to a semi-regular spherical pixellization, the HEALPix grid. The formalism reduces to the known finite-difference solutions in the case of a regular grid. We quantify full-sky improvements on the possible bounds on the CMB B-mode signal. We find that in the specific case of E and B-mode separation, there exists a "pole problem" in our formalism which produces signal contamination at very low multipoles l. Several solutions to the "pole problem" are presented; one proposed solution facilitates a calculation of a general Gaussian quadrature scheme, which finds application in calculating accurate harmonic coefficients on the HEALPix sphere. Nevertheless, on a masked sphere the software represents a considerable reduction in B-mode noise from limited sky coverage.

[ascl:1104.004]
MASSCLEAN: MASSive CLuster Evolution and ANalysis Package

MASSCLEAN is a sophisticated and robust stellar cluster image and photometry simulation package. This package is able to create color-magnitude diagrams and standard FITS images in any of the traditional optical and near-infrared bands based on cluster characteristics input by the user, including but not limited to distance, age, mass, radius and extinction. At the limit of very distant, unresolved clusters, we have checked the integrated colors created in MASSCLEAN against those from other simple stellar population (SSP) models with consistent results. Because the algorithm populates the cluster with a discrete number of tenable stars, it can be used as part of a Monte Carlo Method to derive the probabilistic range of characteristics (integrated colors, for example) consistent with a given cluster mass and age.

[ascl:1401.008]
massconvert: Halo Mass Conversion

massconvert, written in Fortran, provides driver and fitting routines for converting halo mass definitions from one spherical overdensity to another assuming an NFW density profile. In surveys that probe ever lower cluster masses and temperatures, sample variance is generally comparable to or greater than shot noise and thus cannot be neglected in deriving precision cosmological constraints; massconvert offers an accurate fitting formula for the conversion between different definitions of halo mass.

[ascl:1406.010]
MATCH: A program for matching star lists

MATCH matches up items in two different lists, which can have two different systems of coordinates. The program allows the two sets of coordinates to be related by a linear, quadratic, or cubic transformation. MATCH was designed and written to work on lists of stars and other astronomical objects but can be applied to other types of data. In order to match two lists of N points, the main algorithm calls for O(N^6) operations; though not the most efficient choice, it does allow for arbitrary translation, rotation, and scaling.

[ascl:1407.005]
MATLAB package for astronomy and astrophysics

The MATLAB package for astronomy and astrophysics is a collection of software tools and modular functions for astronomy and astrophysics, written in the MATLAB environment. It includes over 700 MATLAB functions and a few tens of data files and astronomical catalogs. The scripts cover a wide range of subjects including: astronomical image processing, ds9 control, astronomical spectra, optics and diffraction phenomena, catalog retrieval and searches, celestial maps and projections, Solar System ephemerides, planar and spherical geometry, time and coordinates conversion and manipulation, cosmology, gravitational lensing, function fitting, general utilities, plotting utilities, statistics, and time series analysis.

[ascl:1601.018]
MATPHOT: Stellar photometry and astrometry with discrete point spread functions

A discrete Point Spread Function (PSF) is a sampled version of a continuous two-dimensional PSF. The shape information about the photon scattering pattern of a discrete PSF is typically encoded using a numerical table (matrix) or a FITS image file. MATPHOT shifts discrete PSFs within an observational model using a 21-pixel- wide damped sinc function and position partial derivatives are computed using a five-point numerical differentiation formula. MATPHOT achieves accurate and precise stellar photometry and astrometry of undersampled CCD observations by using supersampled discrete PSFs that are sampled two, three, or more times more finely than the observational data.

[ascl:1205.008]
Mayavi2: 3D Scientific Data Visualization and Plotting

Mayavi is an open-source, general-purpose, 3D scientific visualization package. It seeks to provide easy and interactive tools for data visualization that fit with the scientific user's workflow. Mayavi provides several entry points: a full-blown interactive application; a Python library with both a MATLAB-like interface focused on easy scripting and a feature-rich object hierarchy; widgets associated with these objects for assembling in a domain-specific application, and plugins that work with a general purpose application-building framework.

[ascl:1602.020]
mbb_emcee: Modified Blackbody MCMC

Mbb_emcee fits modified blackbodies to photometry data using an affine invariant MCMC. It has large number of options which, for example, allow computation of the IR luminosity or dustmass as part of the fit. Carrying out a fit produces a HDF5 output file containing the results, which can either be read directly, or read back into a mbb_results object for analysis. Upper and lower limits can be imposed as well as Gaussian priors on the model parameters. These additions are useful for analyzing poorly constrained data. In addition to standard Python packages scipy, numpy, and cython, mbb_emcee requires emcee (ascl:1303.002), Astropy (ascl:1304.002), h5py, and for unit tests, nose.

[ascl:1705.008]
MBProj2: Multi-Band x-ray surface brightness PROJector 2

MBProj2 obtains thermodynamic profiles of galaxy clusters. It forward-models cluster X-ray surface brightness profiles in multiple bands, optionally assuming hydrostatic equilibrium. The code is a set of Python classes the user can use or extend. When modelling a cluster assuming hydrostatic equilibrium, the user chooses a form for the density profile (e.g. binning or a beta model), the metallicity profile, and the dark matter profile (e.g. NFW). If hydrostatic equilibrium is not assumed, a temperature profile model is used instead of the dark matter profile. The code uses the emcee Markov Chain Monte Carlo code (ascl:1303.002) to sample the model parameters, using these to produce chains of thermodynamic profiles.

[ascl:1703.014]
MC-SPAM: Monte-Carlo Synthetic-Photometry/Atmosphere-Model

MC-SPAM (Monte-Carlo Synthetic-Photometry/Atmosphere-Model) generates limb-darkening coefficients from models that are comparable to transit photometry; it extends the original SPAM algorithm by Howarth (2011) by taking in consideration the uncertainty on the stellar and transit parameters of the system under analysis.

[ascl:1610.013]
MC^{3}: Multi-core Markov-chain Monte Carlo code

Cubillos, Patricio; Harrington, Joseph; Lust, Nate; Foster, AJ; Stemm, Madison; Loredo, Tom; Stevenson, Kevin; Campo, Chris; Hardin, Matt; Hardy, Ryan

MC^{3} (Multi-core Markov-chain Monte Carlo) is a Bayesian statistics tool that can be executed from the shell prompt or interactively through the Python interpreter with single- or multiple-CPU parallel computing. It offers Markov-chain Monte Carlo (MCMC) posterior-distribution sampling for several algorithms, Levenberg-Marquardt least-squares optimization, and uniform non-informative, Jeffreys non-informative, or Gaussian-informative priors. MC^{3} can share the same value among multiple parameters and fix the value of parameters to constant values, and offers Gelman-Rubin convergence testing and correlated-noise estimation with time-averaging or wavelet-based likelihood estimation methods.

[ascl:1204.005]
MC3D: Monte-Carlo 3D Radiative Transfer Code

MC3D is a 3D continuum radiative transfer code; it is based on the Monte-Carlo method and solves the radiative transfer problem self-consistently. It is designed for the simulation of dust temperatures in arbitrary geometric configurations and the resulting observables: spectral energy distributions, wavelength-dependent images, and polarization maps. The main objective is the investigation of "dust-dominated" astrophysical systems such as young stellar objects surrounded by an optically thick circumstellar disk and an optically thin(ner) envelope, debris disks around more evolved stars, asymptotic giant branch stars, the dust component of the interstellar medium, and active galactic nuclei.

[ascl:1511.008]
MCAL: M dwarf metallicity and temperature calculator

MCAL calculates high precision metallicities and effective temperatures for M dwarfs; the method behaves properly down to R = 40 000 and S/N = 25, and results were validated against a sample of stars in common with SOPHIE high resolution spectra.

[ascl:1107.015]
McLuster: A Tool to Make a Star Cluster

The tool McLuster is an open source code that can be used to either set up initial conditions for N-body computations or, alternatively, to generate artificial star clusters for direct investigation. There are two different versions of the code, one basic version for generating all kinds of unevolved clusters (in the following called mcluster) and one for setting up evolved stellar populations at a given age. The former is completely contained in the C file main.c. The latter (dubbed mcluster_sse) is more complex and requires additional FORTRAN routines, namely the Single-Star Evolution (SSE) routines by Hurley, Pols & Tout (ascl:1303.015) that are provided with the McLuster code.

[ascl:1407.004]
MCMAC: Monte Carlo Merger Analysis Code

Monte Carlo Merger Analysis Code (MCMAC) aids in the study of merging clusters. It takes observed priors on each subcluster's mass, radial velocity, and projected separation, draws randomly from those priors, and uses them in a analytic model to get posterior PDF's for merger dynamic properties of interest (e.g. collision velocity, time since collision).

[ascl:1210.017]
McPHAC: McGill Planar Hydrogen Atmosphere Code

The McGill Planar Hydrogen Atmosphere Code (McPHAC) v1.1 calculates the hydrostatic equilibrium structure and emergent spectrum of an unmagnetized hydrogen atmosphere in the plane-parallel approximation at surface gravities appropriate for neutron stars. McPHAC incorporates several improvements over previous codes for which tabulated model spectra are available: (1) Thomson scattering is treated anisotropically, which is shown to result in a 0.2%-3% correction in the emergent spectral flux across the 0.1-5 keV passband; (2) the McPHAC source code is made available to the community, allowing it to be scrutinized and modified by other researchers wishing to study or extend its capabilities; and (3) the numerical uncertainty resulting from the discrete and iterative solution is studied as a function of photon energy, indicating that McPHAC is capable of producing spectra with numerical uncertainties <0.01%. The accuracy of the spectra may at present be limited to ~1%, but McPHAC enables researchers to study the impact of uncertain inputs and additional physical effects, thereby supporting future efforts to reduce those inaccuracies. Comparison of McPHAC results with spectra from one of the previous model atmosphere codes (NSA) shows agreement to lsim1% near the peaks of the emergent spectra. However, in the Wien tail a significant deficit of flux in the spectra of the previous model is revealed, determined to be due to the previous work not considering large enough optical depths at the highest photon frequencies. The deficit is most significant for spectra with T eff < 105.6 K, though even there it may not be of much practical importance for most observations.

[ascl:1201.001]
McScatter: Three-Body Scattering with Stellar Evolution

McScatter illustrates a method of combining stellar dynamics with stellar evolution. The method is intended for elaborate applications, especially the dynamical evolution of rich star clusters. The dynamics is based on binary scattering in a multi-mass field of stars with uniform density and velocity dispersion, using the scattering cross section of Giersz (MNRAS, 2001, 324, 218-30).

[ascl:1504.008]
MCSpearman: Monte Carlo error analyses of Spearman's rank test

Spearman’s rank correlation test is commonly used in astronomy to discern whether a set of two variables are correlated or not. Unlike most other quantities quoted in astronomical literature, the Spearman’s rank correlation coefficient is generally quoted with no attempt to estimate the errors on its value. This code implements a number of Monte Carlo based methods to estimate the uncertainty on the Spearman’s rank correlation coefficient.

[ascl:1302.012]
ME(SSY)**2: Monte Carlo Code for Star Cluster Simulations

ME(SSY)**2 stands for “Monte-carlo Experiments with Spherically SYmmetric Stellar SYstems." This code simulates the long term evolution of spherical clusters of stars; it was devised specifically to treat dense galactic nuclei. It is based on the pioneering Monte Carlo scheme proposed by Hénon in the 70's and includes all relevant physical ingredients (2-body relaxation, stellar mass spectrum, collisions, tidal disruption, ldots). It is basically a Monte Carlo resolution of the Fokker-Planck equation. It can cope with any stellar mass spectrum or velocity distribution. Being a particle-based method, it also allows one to take stellar collisions into account in a very realistic way. This unique code, featuring most important physical processes, allows million particle simulations, spanning a Hubble time, in a few CPU days on standard personal computers and provides a wealth of data only rivalized by N-body simulations. The current version of the software requires the use of routines from the "Numerical Recipes in Fortran 77" (http://www.nrbook.com/a/bookfpdf.php).

[ascl:1205.001]
Mechanic: Numerical MPI framework for dynamical astronomy

The Mechanic package is a numerical framework for dynamical astronomy, designed to help in massive numerical simulations by efficient task management and unified data storage. The code is built on top of the Message Passing Interface (MPI) and Hierarchical Data Format (HDF5) standards and uses the Task Farm approach to manage numerical tasks. It relies on the core-module approach. The numerical problem implemented in the user-supplied module is separated from the host code (core). The core is designed to handle basic setup, data storage and communication between nodes in a computing pool. It has been tested on large CPU-clusters, as well as desktop computers. The Mechanic may be used in computing dynamical maps, data optimization or numerical integration.

[ascl:1106.006]
MECI: A Method for Eclipsing Component Identification

We describe an automated method for assigning the most probable physical parameters to the components of an eclipsing binary, using only its photometric light curve and combined colors. With traditional methods, one attempts to optimize a multi-parameter model over many iterations, so as to minimize the chi-squared value. We suggest an alternative method, where one selects pairs of coeval stars from a set of theoretical stellar models, and compares their simulated light curves and combined colors with the observations. This approach greatly reduces the parameter space over which one needs to search, and allows one to estimate the components' masses, radii and absolute magnitudes, without spectroscopic data. We have implemented this method in an automated program using published theoretical isochrones and limb-darkening coefficients. Since it is easy to automate, this method lends itself to systematic analyses of datasets consisting of photometric time series of large numbers of stars, such as those produced by OGLE, MACHO, TrES, HAT, and many others surveys.

[ascl:1203.008]
MegaLUT: Correcting ellipticity measurements of galaxies

MegaLUT is a simple and fast method to correct ellipticity measurements of galaxies from the distortion by the instrumental and atmospheric point spread function (PSF), in view of weak lensing shear measurements. The method performs a classification of galaxies and associated PSFs according to measured shape parameters, and builds a lookup table of ellipticity corrections by supervised learning. This new method has been applied to the GREAT10 image analysis challenge, and demonstrates a refined solution that obtains the highly competitive quality factor of Q = 142, without any power spectrum denoising or training. Of particular interest is the efficiency of the method, with a processing time below 3 ms per galaxy on an ordinary CPU.

[ascl:1410.002]
MEPSA: Multiple Excess Peak Search Algorithm

MEPSA (Multiple Excess Peak Search Algorithm) identifies peaks within a uniformly sampled time series affected by uncorrelated Gaussian noise. MEPSA scans the time series at different timescales by comparing a given peak candidate with a variable number of adjacent bins. While this has originally been conceived for the analysis of gamma-ray burst light (GRB) curves, its usage can be readily extended to other astrophysical transient phenomena whose activity is recorded through different surveys. MEPSA's high flexibility permits the mask of excess patterns it uses to be tailored and optimized without modifying the code.

[ascl:1209.010]
MeqTrees: Software package for implementing Measurement Equations

MeqTrees is a software package for implementing Measurement Equations. This makes it uniquely suited for simulation and calibration of radioastronomical data, especially that involving new radiotelescopes and observational regimes. MeqTrees is implemented as a Python-based front-end called the meqbrowser, and an efficient (C++-based) computational back-end called the meqserver. Numerical models are defined on the front-end via a Python-based Tree Definition Language (TDL), then rapidly executed on the back-end. The use of TDL facilitates an extremely short turn-around time for experimentation with new ideas. This is also helped by unprecedented visualization capabilities for all final and intermediate results. A flexible data model and a number of important optimizations in the back-end ensures that the numerical performance is comparable to that of hand-written code.

MeqTrees includes a highly capable FITS viewer and sky model manager called Tigger, which can also work as a standalone tool.

[ascl:1511.020]
Mercury-T: Tidally evolving multi-planet systems code

Mercury-T calculates the evolution of semi-major axis, eccentricity, inclination, rotation period and obliquity of the planets as well as the rotation period evolution of the host body; it is based on the N-body code Mercury (Chambers 1999, ascl:1201.008). It is flexible, allowing computation of the tidal evolution of systems orbiting any non-evolving object (if its mass, radius, dissipation factor and rotation period are known), but also evolving brown dwarfs (BDs) of mass between 0.01 and 0.08 M⊙, an evolving M-dwarf of 0.1 M⊙, an evolving Sun-like star, and an evolving Jupiter.

[ascl:1201.008]
Mercury: A software package for orbital dynamics

Mercury is a new general-purpose software package for carrying out orbital integrations for problems in solar-system dynamics. Suitable applications include studying the long-term stability of the planetary system, investigating the orbital evolution of comets, asteroids or meteoroids, and simulating planetary accretion. Mercury is designed to be versatile and easy to use, accepting initial conditions in either Cartesian coordinates or Keplerian elements in "cometary" or "asteroidal" format, with different epochs of osculation for different objects. Output from an integration consists of osculating elements, written in a machine-independent compressed format, which allows the results of a calculation performed on one platform to be transferred (e.g. via FTP) and decoded on another.

During an integration, Mercury monitors and records details of close encounters, sungrazing events, ejections and collisions between objects. The effects of non-gravitational forces on comets can also be modeled. The package supports integrations using a mixed-variable symplectic routine, the Bulirsch-Stoer method, and a hybrid code for planetary accretion calculations.

[ascl:1305.015]
Merger Trees: Formation history of dark matter haloes

Merger Trees uses a Monte Carlo algorithm to generate merger trees describing the formation history of dark matter haloes; the algorithm is implemented in Fortran. The algorithm is a modification of the algorithm of Cole et al. used in the GALFORM semi-analytic galaxy formation model (ascl:1510.005) based on the Extended Press–Schechter theory. It should be applicable to hierarchical models with a wide range of power spectra and cosmological models. It is tuned to be in accurate agreement with the conditional mass functions found in the analysis of merger trees extracted from the Λ cold dark matter Millennium N-body simulation. The code should be a useful tool for semi-analytic models of galaxy formation and for modelling hierarchical structure formation in general.

[ascl:1010.083]
MESA: Modules for Experiments in Stellar Astrophysics

Stellar physics and evolution calculations enable a broad range of research in astrophysics. Modules for Experiments in Stellar Astrophysics (MESA) is a suite of open source libraries for a wide range of applications in computational stellar astrophysics. A newly designed 1-D stellar evolution module, MESA star, combines many of the numerical and physics modules for simulations of a wide range of stellar evolution scenarios ranging from very-low mass to massive stars, including advanced evolutionary phases. MESA star solves the fully coupled structure and composition equations simultaneously. It uses adaptive mesh refinement and sophisticated timestep controls, and supports shared memory parallelism based on OpenMP. Independently usable modules provide equation of state, opacity, nuclear reaction rates, and atmosphere boundary conditions. Each module is constructed as a separate Fortran 95 library with its own public interface. Examples include comparisons to other codes and show evolutionary tracks of very low mass stars, brown dwarfs, and gas giant planets; the complete evolution of a 1 Msun star from the pre-main sequence to a cooling white dwarf; the Solar sound speed profile; the evolution of intermediate mass stars through the thermal pulses on the He-shell burning AGB phase; the interior structure of slowly pulsating B Stars and Beta Cepheids; evolutionary tracks of massive stars from the pre-main sequence to the onset of core collapse; stars undergoing Roche lobe overflow; and accretion onto a neutron star.

[ascl:1709.003]
MeshLab: 3D triangular meshes processing and editing

MeshLab processes and edits 3D triangular meshes. It includes tools for editing, cleaning, healing, inspecting, rendering, texturing and converting meshes, and offers features for processing raw data produced by 3D digitization tools and devices and for preparing models for 3D printing.

[ascl:1612.012]
Meso-NH: Non-hydrostatic mesoscale atmospheric model

Meso-NH is the non-hydrostatic mesoscale atmospheric model of the French research community jointly developed by the Laboratoire d'Aérologie (UMR 5560 UPS/CNRS) and by CNRM (UMR 3589 CNRS/Météo-France). Meso-NH incorporates a non-hydrostatic system of equations for dealing with scales ranging from large (synoptic) to small (large eddy) scales while calculating budgets and has a complete set of physical parameterizations for the representation of clouds and precipitation. It is coupled to the surface model SURFEX for representation of surface atmosphere interactions by considering different surface types (vegetation, city, ocean, lake) and allows a multi-scale approach through a grid-nesting technique. Meso-NH is versatile, vectorized, parallelized, and operates in 1D, 2D or 3D; it is coupled with a chemistry module (including gas-phase, aerosol, and aqua-phase components) and a lightning module, and has observation operators that compare model output directly with satellite observations, radar, lidar and GPS.

[ascl:1111.009]
MESS: Multi-purpose Exoplanet Simulation System

Bonavita, M.; Chauvin, G.; Desidera, S.; Gratton, R.; Janson, M.; Beuzit, J. L.; Kasper, M.; Mordasini, C.

MESS is a Monte Carlo simulation IDL code which uses either the results of the statistical analysis of the properties of discovered planets, or the results of the planet formation theories, to build synthetic planet populations fully described in terms of frequency, orbital elements and physical properties. They can then be used to either test the consistency of their properties with the observed population of planets given different detection techniques or to actually predict the expected number of planets for future surveys. It can be used to probe the physical and orbital properties of a putative companion within the circumstellar disk of a given star and to test constrain the orbital distribution properties of a potential planet population around the members of the TW Hydrae association. Finally, using in its predictive mode, the synergy of future space and ground-based telescopes instrumentation has been investigated to identify the mass-period parameter space that will be probed in future surveys for giant and rocky planets.

[ascl:1205.010]
Meudon PDR: Atomic & molecular structure of interstellar clouds

The Meudon PDR code computes the atomic and molecular structure of interstellar clouds. It can be used to study the physics and chemistry of diffuse clouds, photodissociation regions (PDRs), dark clouds, or circumstellar regions. The model computes the thermal balance of a stationary plane-parallel slab of gas and dust illuminated by a radiation field and takes into account heating processes such as the photoelectric effect on dust, chemistry, cosmic rays, etc. and cooling resulting from infrared and millimeter emission of the abundant species. Chemistry is solved for any number of species and reactions. Once abundances of atoms and molecules and level excitation of the most important species have been computed at each point, line intensities and column densities can be deduced.

[ascl:1106.013]
MGCAMB: Modification of Growth with CAMB

CAMB is a public Fortran 90 code written by Antony Lewis and Anthony Challinor for evaluating cosmological observables. MGCAMB is a modified version of CAMB in which the linearized Einstein equations of General Relativity (GR) are modified. MGCAMB can also be used in CosmoMC to fit different modified-gravity (MG) models to data.

[ascl:1403.017]
MGE_FIT_SECTORS: Multi-Gaussian Expansion fits to galaxy images

MGE_FIT_SECTORS performs Multi-Gaussian Expansion (MGE) fits to galaxy images. The MGE parameterizations are useful in the construction of realistic dynamical models of galaxies, PSF deconvolution of images, the correction and estimation of dust absorption effects, and galaxy photometry. The algorithm is well suited for use with multiple-resolution images (e.g. Hubble Space Telescope (HST) and ground-based images).

[ascl:1010.081]
MGGPOD: A Monte Carlo Suite for Gamma-Ray Astronomy

We have developed MGGPOD, a user-friendly suite of Monte Carlo codes built around the widely used GEANT (Version 3.21) package. The MGGPOD Monte Carlo suite and documentation are publicly available for download. MGGPOD is an ideal tool for supporting the various stages of gamma-ray astronomy missions, ranging from the design, development, and performance prediction through calibration and response generation to data reduction. In particular, MGGPOD is capable of simulating ab initio the physical processes relevant for the production of instrumental backgrounds. These include the build-up and delayed decay of radioactive isotopes as well as the prompt de-excitation of excited nuclei, both of which give rise to a plethora of instrumental gamma-ray background lines in addition to continuum backgrounds.

[ascl:1402.035]
MGHalofit: Modified Gravity extension of Halofit

MGHalofit is a modified gravity extension of the fitting formula for the matter power spectrum of HALOFIT and its improvement by Takahashi et al. MGHalofit is implemented in MGCAMB, which is based on CAMB. MGHalofit calculates the nonlinear matter power spectrum P(k) for the Hu-Sawicki model. Comparing MGHalofit predictions at various redshifts (z<=1) to the f(R) simulations, the accuracy on P(k) is 6% at k<1 h/Mpc and 12% at 1<k<10 h/Mpc respectively.

[ascl:1511.007]
MHF: MLAPM Halo Finder

MHF is a Dark Matter halo finder that is based on the refinement grids of MLAPM. The grid structure of MLAPM adaptively refines around high-density regions with an automated refinement algorithm, thus naturally "surrounding" the Dark Matter halos, as they are simply manifestations of over-densities within (and exterior) to the underlying host halo. Using this grid structure, MHF restructures the hierarchy of nested isolated MLAPM grids into a "grid tree". The densest cell in the end of a tree branch marks center of a prospective Dark Matter halo. All gravitationally bound particles about this center are collected to obtain the final halo catalog. MHF automatically finds halos within halos within halos.

[ascl:1205.003]
MIA+EWS: MIDI data reduction tool

MIA+EWS is a package of two data reduction tools for MIDI data which uses power-spectrum analysis or the information contained in the spectrally-dispersed fringe measurements in order to estimate the correlated flux and the visibility as function of wavelength in the N-band. MIA, which stands for MIDI Interactive Analysis, uses a Fast Fourier Transformation to calculate the Fourier amplitudes of the fringe packets to calculate the correlated flux and visibility. EWS stands for Expert Work-Station, which is a collection of IDL tools to apply coherent visibility analysis to reduce MIDI data. The EWS package allows the user to control and examine almost every aspect of MIDI data and its reduction. The usual data products are the correlated fluxes, total fluxes and differential phase.

[ascl:1303.007]
micrOMEGAs: Calculation of dark matter properties

micrOMEGAs calculates the properties of cold dark matter in a generic model of particle physics. First developed to compute the relic density of dark matter, the code also computes the rates for dark matter direct and indirect detection. The code provides the mass spectrum, cross-sections, relic density and exotic fluxes of gamma rays, positrons and antiprotons. The propagation of charged particles in the Galactic halo is handled with a module that allows to easily modify the propagation parameters. The cross-sections for both spin dependent and spin independent interactions of WIMPS on protons are computed automatically as well as the rates for WIMP scattering on nuclei in a large detector. Annihilation cross-sections of the dark matter candidate at zero velocity, relevant for indirect detection of dark matter, are computed automatically, and the propagation of charged particles in the Galactic halo is also handled.

[ascl:1010.008]
midIR_sensitivity: Mid-infrared astronomy with METIS

Kendrew, Sarah; Jolissaint, Laurent; Brandl, Bernhard; Lenzen, Rainer; Pantin, Eric; Glasse, Alistair; Blommaert, Joris; Venema, Lars; Siebenmorgen, Ralf; Molster, Frank

midIR_sensitivity is IDL code that calculates the sensitivity of a ground-based mid-infrared instrument for astronomy. The code was written for the Phase A study of the instrument METIS (http://www.strw.leidenuniv.nl/metis), the Mid-Infrared E-ELT Imager and Spectrograph, for the 42-m European Extremely Large Telescope. The model uses a detailed set of input parameters for site characteristics and atmospheric profiles, optical design, and thermal background. The code and all input parameters are highly tailored for the particular design parameters of the E-ELT and METIS, however, the program is structured in such a way that the parameters can easily be adjusted for a different system, or alternative input files used.

[ascl:1511.012]
milkywayproject_triggering: Correlation functions for two catalog datasets

This triggering code calculates the correlation function between two astrophysical data catalogs using the Landy-Szalay approximator generalized for heterogeneous datasets (Landy & Szalay, 1993; Bradshaw et al, 2011) or the auto-correlation function of one dataset. It assumes that one catalog has positional information as well as an object size (effective radius), and the other only positional information.

[submitted]
millennium-tap-query: A Python Tool to Query the Millennium Simulation UWS/TAP client

millennium-tap-query is a simple wrapper for the Python package requests to deal with connections to the Millennium TAP Web Client. With this tool you can perform basic or advanced queries to the Millennium Simulation database and download the data products. millennium-tap-query is similar to the TAP query tool in the German Astrophysical Virtual Observatory (GAVO) VOtables package.

[ascl:0101.001]
MILLISEARCH: A Search for Millilensing in BATSE GRB Data

The millisearch.for code was used to generate a new search for the gravitational lens effects of a significant cosmological density of supermassive compact objects (SCOs) on gamma-ray bursts. No signal attributable to millilensing was found. We inspected the timing data of 774 BATSE-triggered GRBs for evidence of millilensing: repeated peaks similar in light-curve shape and spectra. Our null detection leads us to conclude that, in all candidate universes simulated, Omega_{SCO} < 0.1 is favored for 10^{5} < M_{SCO}/M_{odot} < 10^{9}, while in some universes and mass ranges the density limits are as much as 10 times lower. Therefore, a cosmologically significant population of SCOs near globular cluster mass neither came out of the primordial universe, nor condensed at recombination.

[ascl:1302.006]
Minerva: Cylindrical coordinate extension for Athena

Minerva is a cylindrical coordinate extension of the Athena astrophysical MHD code of Stone, Gardiner, Teuben, and Hawley. The extension follows the approach of Athena's original developers and has been designed to alter the existing Cartesian-coordinates code as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport (CT), a central feature of the Athena algorithm, while making use of previously implemented code modules such as the Riemann solvers. Angular momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully.

[ascl:1106.007]
MIRIAD: Multi-channel Image Reconstruction, Image Analysis, and Display

MIRIAD is a radio interferometry data-reduction package, designed for taking raw visibility data through calibration to the image analysis stage. It has been designed to handle any interferometric array, with working examples for BIMA, CARMA, SMA, WSRT, and ATCA. A separate version for ATCA is available, which differs in a few minor ways from the CARMA version.

[ascl:1110.025]
MIS: A Miriad Interferometry Singledish Toolkit

MIS is a pipeline toolkit using the package MIRIAD to combine Interferometric and Single Dish data. This was prompted by our observations made with the Combined Array For Research in Millimeter-wave Astronomy (CARMA) interferometer of the star-forming region NGC 1333, a large survey highlighting the new 23-element and singledish observing modes. The project consists of 20 CARMA datasets each containing interferometric as well as simultaneously obtained single dish data, for 3 molecular spectral lines and continuum, in 527 different pointings, covering an area of about 8 by 11 arcminutes. A small group of collaborators then shared this toolkit and their parameters via CVS, and scripts were developed to ensure uniform data reduction across the group. The pipeline was run end-to-end each night that new observations were obtained, producing maps that contained all the data to date. This approach could serve as a model for repeated calibration and mapping of large mixed-mode correlation datasets from ALMA.

[ascl:1010.062]
MissFITS: Basic Maintenance and Packaging Tasks on FITS Files

MissFITS is a program that performs basic maintenance and packaging tasks on FITS files using an optimized FITS library. MissFITS can:

- add, edit, and remove FITS header keywords;
- split and join Multi-Extension-FITS (MEF) files;
- unpile and pile FITS data-cubes; and,
- create, check, and update FITS checksums, using R. Seaman’s protocol.

[ascl:1505.011]
missForest: Nonparametric missing value imputation using random forest

missForest imputes missing values particularly in the case of mixed-type data. It uses a random forest trained on the observed values of a data matrix to predict the missing values. It can be used to impute continuous and/or categorical data including complex interactions and non-linear relations. It yields an out-of-bag (OOB) imputation error estimate without the need of a test set or elaborate cross-validation and can be run in parallel to save computation time. missForest has been used to, among other things, impute variable star colors in an All-Sky Automated Survey (ASAS) dataset of variable stars with no NOMAD match.

[ascl:1409.001]
mixT: single-temperature fit for a multi-component thermal plasma

mixT accurately predicts T derived from a single-temperature fit for a multi-component thermal plasma. It can be applied in the deprojection analysis of objects with the temperature and metallicity gradients, for correction of the PSF effects, for consistent comparison of numerical simulations of galaxy clusters and groups with the X-ray observations, and for estimating how emission from undetected components can bias the global X-ray spectral analysis.

[ascl:1206.010]
mkj_libs: Helper routines for plane-fitting & analysis tools

mkj_libs provides a set of helper routines (vector operations, astrometry, statistical analysis of spherical data) for the main plane-fitting and analysis tools.

[ascl:0104.001]
MLAPM: Simulating Structure Formation from Collisionless Matter

We present a computer code written in C that is designed to simulate structure formation from collisionless matter. The code is purely grid-based and uses a recursively refined Cartesian grid to solve Poisson's equation for the potential, rather than obtaining the potential from a Green's function. Refinements can have arbitrary shapes and in practice closely follow the complex morphology of the density field that evolves. The timestep shortens by a factor two with each successive refinement. It is argued that an appropriate choice of softening length is of great importance and that the softening should be at all points an appropriate multiple of the local inter-particle separation. Unlike tree and P3M codes, multigrid codes automatically satisfy this requirement. We show that at early times and low densities in cosmological simulations, the softening needs to be significantly smaller relative to the inter-particle separation than in virialized regions. Tests of the ability of the code's Poisson solver to recover the gravitational fields of both virialized halos and Zel'dovich waves are presented, as are tests of the code's ability to reproduce analytic solutions for plane-wave evolution. The times required to conduct a LCDM cosmological simulation for various configurations are compared with the times required to complete the same simulation with the ART, AP3M and GADGET codes. The power spectra, halo mass functions and halo-halo correlation functions of simulations conducted with different codes are compared.

[ascl:1403.003]
MLZ: Machine Learning for photo-Z

The parallel Python framework MLZ (Machine Learning and photo-Z) computes fast and robust photometric redshift PDFs using Machine Learning algorithms. It uses a supervised technique with prediction trees and random forest through TPZ that can be used for a regression or a classification problem, or a unsupervised methods with self organizing maps and random atlas called SOMz. These machine learning implementations can be efficiently combined into a more powerful one resulting in robust and accurate probability distributions for photometric redshifts.

[ascl:1412.010]
MMAS: Make Me A Star

Make Me A Star (MMAS) quickly generates stellar collision remnants and can be used in combination with realistic dynamical simulations of star clusters that include stellar collisions. The code approximates the merger process (including shock heating, hydrodynamic mixing, mass ejection, and angular momentum transfer) with simple algorithms based on conservation laws and a basic qualitative understanding of the hydrodynamics. These simple models agree very well with those from SPH (smoothed particle hydrodynamics) calculations of stellar collisions, and the subsequent stellar evolution of these models also matches closely that of the more accurate hydrodynamic models.

[ascl:1110.010]
MOCASSIN: MOnte CArlo SimulationS of Ionized Nebulae

MOCASSIN is a fully 3D or 2D photoionisation and dust radiative transfer code which employs a Monte Carlo approach to the transfer of radiation through media of arbitrary geometry and density distribution. Written in Fortran, it was originally developed for the modelling of photoionised regions like HII regions and planetary nebulae and has since expanded and been applied to a variety of astrophysical problems, including modelling clumpy dusty supernova envelopes, star forming galaxies, protoplanetary disks and inner shell fluorence emission in the photospheres of stars and disk atmospheres. The code can deal with arbitrary Cartesian grids of variable resolution, it has successfully been used to model complex density fields from SPH calculations and can deal with ionising radiation extending from Lyman edge to the X-ray. The dust and gas microphysics is fully coupled both in the radiation transfer and in the thermal balance.

[ascl:1010.009]
ModeCode: Bayesian Parameter Estimation for Inflation

ModeCode is a publicly available code that computes the primordial scalar and tensor power spectra for single field inflationary models. ModeCode solves the inflationary mode equations numerically, avoiding the slow roll approximation. It provides an efficient and robust numerical evaluation of the inflationary perturbation spectrum, and allows the free parameters in the inflationary potential to be estimated within an MCMC computation. ModeCode also allows the estimation of reheating uncertainties once a potential has been specified. It is interfaced with CAMB and CosmoMC to compute cosmic microwave background angular power spectra and perform likelihood analysis and parameter estimation. It can be run as a standalone code as well. Errors in the results from ModeCode contribute negligibly to the error budget for analyses of data from Planck or other next generation experiments.

[ascl:1109.023]
MOKA: A New Tool for Strong Lensing Studies

We present a new algorithm for simulating the gravitational lensing signal from cluster-sized haloes: MOKA. This algorithm implements the most recent results from numerical simulations to create realistic lenses with properties independent of numerical resolution. We perform systematic studies of the strong lensing cross section in dependence of halo structure. We find that the cross sections depend most strongly on the concentration and on the inner slope of the density profile of a halo. However, fixing these properties, further important contributions are due to halo triaxiality and the presence of a bright central galaxy.

[ascl:1501.013]
Molecfit: Telluric absorption correction tool

Smette, A.; Kausch, W; Sana, H; Noll, S.; Horst, H.; Kimeswenger, S.; Barden, M; Szyszka, C.; Jones, A. M.; Gallene, A.; Vinther, J.; Ballester, P.; Kerber, F.

Molecfit corrects astronomical observations for atmospheric absorption features based on fitting synthetic transmission spectra to the astronomical data, which saves a significant amount of valuable telescope time and increases the instrumental efficiency. Molecfit can also estimate molecular abundances, especially the water vapor content of the Earth’s atmosphere. The tool can be run from a command-line or more conveniently through a GUI.

[ascl:1212.004]
MOLIERE-5: Forward and inversion model for sub-mm wavelengths

MOLIERE-5 (Microwave Observation LIne Estimation and REtrieval) is a versatile forward and inversion model for the millimeter and submillimeter wavelengths range and includes an inversion model. The MOLIERE-5 forward model includes modules for the calculation of absorption coefficients, radiative transfer, and instrumental characteristics. The radiative transfer model is supplemented by a sensitivity module for estimating the contribution to the spectrum of each catalog line at its center frequency enabling the model to effectively filter for small spectral lines. The instrument model consists of several independent modules, including the calculation of the convolution of spectra and weighting functions with the spectrometer response functions. The instrument module also provides several options for modeling of frequency-switched observations. The MOLIERE-5 inversion model calculates linear Optimal Estimation, a least-squares retrieval method which uses statistical apriori knowledge on the retrieved parameters for the regularization of ill-posed inversion problems and computes diagnostics such as the measurement and smoothing error covariance matrices along with contribution and averaging kernel functions.

[ascl:1206.004]
MOLSCAT: MOLecular SCATtering

MOLSCAT is a FORTRAN code for quantum mechanical (coupled channel) solution of the nonreactive molecular scattering problem and was developed to obtain collision rates for molecules in the interstellar gas which are needed to understand microwave and infrared astronomical observations. The code is implemented for various types of collision partners. In addition to the essentially exact close coupling method several approximate methods, including the Coupled States and Infinite Order Sudden approximations, are provided.

[ascl:1010.036]
Montage: An Astronomical Image Mosaicking Toolkit

Jacob, Joseph C.; Katz, Daniel S.; Berriman, G. Bruce; Good, John; Laity, Anastasia C.; Deelman, Ewa; Kesselman, Carl; Singh, Gurmeet; Su, Mei-Hui; Prince, Thomas A.; Williams, Roy

Montage is an open source code toolkit for assembling Flexible Image Transport System (FITS) images into custom mosaics. It runs on all common Linux/Unix platforms, on desktops, clusters and computational grids, and supports all World Coordinate System (WCS) projections and common coordinate systems. Montage preserves spatial and calibration fidelity of input images, processes 40 million pixels in up to 32 minutes on 128 nodes on a Linux cluster, and provides independent engines for analyzing the geometry of images on the sky, re-projecting images, rectifying background emission to a common level, and co-adding images. It offers convenient tools for managing and manipulating large image files.

[ascl:1502.006]
Montblanc: GPU accelerated Radio Interferometer Measurement Equations in support of Bayesian Inference for Radio Observations

Montblanc, written in Python, is a GPU implementation of the Radio interferometer measurement equation (RIME) in support of the Bayesian inference for radio observations (BIRO) technique. The parameter space that BIRO explores results in tens of thousands of computationally expensive RIME evaluations before reduction to a single *X ^{2}* value. The RIME is calculated over four dimensions, time, baseline, channel and source and the values in this 4D space can be independently calculated; therefore, the RIME is particularly amenable to a parallel implementation accelerated by Graphics Programming Units (GPUs). Montblanc is implemented for NVIDIA's CUDA architecture and outperforms MeqTrees (ascl:1209.010) and OSKAR.

[ascl:1307.002]
Monte Python: Monte Carlo code for CLASS in Python

Monte Python is a parameter inference code which combines the flexibility of the python language and the robustness of the cosmological code CLASS into a simple and easy to manipulate Monte Carlo Markov Chain code.

Would you like to view a random code?