ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 601-700 of 3437 (3348 ASCL, 89 submitted)

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:1010.035] SLR: Stellar Locus Regression

Stellar Locus Regression (SLR) is a simple way to calibrate colors at the 1-2% level, and magnitudes at the sub-5% level as limited by 2MASS, without the traditional use of standard stars. With SLR, stars in any field are "standards." This is an entirely new way to calibrate photometry. SLR exploits the simple fact that most stars lie along a well defined line in color-color space called the stellar locus. Cross-match point-sources in flattened images taken through different passbands and plot up all color vs color combinations, and you will see the stellar locus with little effort. SLR calibrates colors by fitting these colors to a standard line. Cross-match with 2MASS on top of that, and SLR will deliver calibrated magnitudes as well.

[ascl:9906.001] SLOPES: Least-squares linear regression lines for bivariate datasets

SLOPES computes six least-squares linear regression lines for bivariate datasets of the form (x_i,y_i) with unknown population distributions. Measurement errors, censoring (nondetections) or other complications are not treated. The lines are: the ordinary least-squares regression of y on x, OLS(Y|X); the inverse regression of x on y, OLS(X_Y); the angular bisector of the OLS lines; the orthogonal regression line; the reduced major axis, and the mean-OLS line. The latter four regressions treat the variables symmetrically, while the first two regressions are asymmetrical. Uncertainties for the regression coefficients of each method are estimated via asymptotic formulae, bootstrap resampling, and bivariate normal simulation. These methods, derivation of the regression coefficient uncertainties, and discussions of their use are provided in three papers listed below. The user is encouraged to read and reference these studies.

[ascl:2012.017] SLIT: Sparse Lens Inversion Technique

SLIT (Sparse Lens Inversion Technique) provides a method for inversion of lensed images in the frame of strong gravitational lensing. The code requires the input image along with lens mass profile and a PSF. The user then has to chose a maximum number of iterations after which the algorithm will stop if not converged and a image size ratio to the input image to set the resolution of the reconstructed source. Results are displayed in pyplot windows.

[ascl:1507.005] slimplectic: Discrete non-conservative numerical integrator

slimplectic is a python implementation of a numerical integrator that uses a fixed time-step variational integrator formalism applied to the principle of stationary nonconservative action. It allows nonconservative effects to be included in the numerical evolution while preserving the major benefits of normally conservative symplectic integrators, particularly the accurate long-term evolution of momenta and energy. slimplectic is appropriate for exploring cosmological or celestial N-body dynamics problems where nonconservative interactions, e.g. dynamical friction or dissipative tides, can play an important role.

[ascl:1409.010] Slim: Numerical data compression for scientific data sets

Slim performs lossless compression on binary data files. Written in C++, it operates very rapidly and achieves better compression on noisy physics data than general-purpose tools designed primarily for text.

[ascl:1105.004] SLiM: A Code for the Simulation of Wave Propagation through an Inhomogeneous, Magnetised Solar Atmosphere

The semi-spectral linear MHD (SLiM) code follows the interaction of linear waves through an inhomogeneous three-dimensional solar atmosphere. The background model allows almost arbitrary perturbations of density, temperature, sound speed as well as magnetic and velocity fields. The code is useful in understanding the helioseismic signatures of various solar features, including sunspots.

[ascl:1611.021] SlicerAstro: Astronomy (HI) extension for 3D Slicer

SlicerAstro extends 3D Slicer, a multi-platform package for visualization and medical image processing, to provide a 3-D interactive viewer with 3-D human-machine interaction features, based on traditional 2-D input/output hardware, and analysis capabilities.

[submitted] SLEPLET

Many fields in science and engineering measure data that inherently live on non-Euclidean geometries, such as the sphere. Techniques developed in the Euclidean setting must be extended to other geometries. Due to recent interest in geometric deep learning, analogues of Euclidean techniques must also handle general manifolds or graphs. Often, data are only observed over partial regions of manifolds, and thus standard whole-manifold techniques may not yield accurate predictions. In this thesis, a new wavelet basis is designed for datasets like these.

Although many definitions of spherical convolutions exist, none fully emulate the Euclidean definition. A novel spherical convolution is developed, designed to tackle the shortcomings of existing methods. The so-called sifting convolution exploits the sifting property of the Dirac delta and follows by the inner product of a function with the translated version of another. This translation operator is analogous to the Euclidean translation in harmonic space and exhibits some useful properties. In particular, the sifting convolution supports directional kernels; has an output that remains on the sphere; and is efficient to compute. The convolution is entirely generic and thus may be used with any set of basis functions. An application of the sifting convolution with a topographic map of the Earth demonstrates that it supports directional kernels to perform anisotropic filtering.

Slepian wavelets are built upon the eigenfunctions of the Slepian concentration problem of the manifold - a set of bandlimited functions which are maximally concentrated within a given region. Wavelets are constructed through a tiling of the Slepian harmonic line by leveraging the existing scale-discretised framework. A straightforward denoising formalism demonstrates a boost in signal-to-noise for both a spherical and general manifold example. Whilst these wavelets were inspired by spherical datasets, like in cosmology, the wavelet construction may be utilised for manifold or graph data.

[ascl:1403.025] SLALIB: A Positional Astronomy Library

SLALIB is a library of routines that make accurate and reliable positional-astronomy applications easier to write. Most SLALIB routines are concerned with astronomical position and time, but a number have wider trigonometrical, numerical or general applications. A Fortran implementation of SLALIB under GPL licensing is available as part of Starlink (ascl:1110.012).

[ascl:1312.014] SL1M: Synthesis through L1 Minimization

SL1M deconvolves radio synthesis images based on direct inversion of the measured visibilities that can deal with the non-coplanar base line effect and can be applied to telescopes with direction dependent gains. The code is more computationally demanding than some existing methods, but is highly parallelizable and scale well to clusters of CPUs and GPUs. The algorithm is also extremely flexible, allowing the solution of the deconvolution problem on arbitrarily placed pixels.

[ascl:1511.003] SkyView Virtual Telescope

The SkyView Virtual telescope provides access to survey datasets ranging from radio through the gamma-ray regimes. Over 100 survey datasets are currently available. The SkyView library referenced here is used as the basis for the SkyView web site (at http://skvyiew.gsfc.nasa.gov) but is designed for individual use by researchers as well.

SkyView's approach to access surveys is distinct from most other toolkits. Rather than providing links to the original data, SkyView attempts to immediately re-render the source data in the user-requested reference frame, projection, scaling, orientation, etc. The library includes a set of geometry transformation and mosaicking tools that may be integrated into other applications independent of SkyView.

[ascl:2109.016] SkyPy: Simulating the astrophysical sky

SkyPy simulates the astrophysical sky. It provides functions that sample realizations of sources and their associated properties from probability distributions. Simulation pipelines are constructed from these models, while task scheduling and data dependencies are handled internally. The package's modular design, containing a library of physical and empirical models across a range of observables and a command line script to run end-to-end simulations, allows users to interface with external software.

[ascl:2104.016] Skyoffset: Sky offset optimization and mosaicing toolkit

Skyoffset makes wide-field mosaics of FITS images. Principal features of Skyoffset are the ability to produce a mosaic with a continuous background level by solving for sky offsets that minimize the intensity differences between overlapping images, and its handling of hierarchies, making it ideal for optimizing backgrounds in large mosaics made with array cameras (such as CFHT’s MegaCam and WIRCam). Skyoffset uses MongoDB in conjunction with Mo’Astro (ascl:2104.012) to store metadata about each mosaic and SWarp (ascl:1010.068) to handle image combination and propagate uncertainty maps. Skyoffset can be integrated into Python pipelines and offers a convenient API and metadata storage in MongoDB. It was developed originally for the Andromeda Optical and Infrared Disk Survey (ANDROIDS).

[ascl:1312.007] SkyNet: Neural network training tool for machine learning in astronomy

SkyNet is an efficient and robust neural network training code for machine learning. It is able to train large and deep feed-forward neural networks, including autoencoders, for use in a wide range of supervised and unsupervised learning applications, such as regression, classification, density estimation, clustering and dimensionality reduction. SkyNet is implemented in C/C++ and fully parallelized using MPI.

[ascl:1710.005] SkyNet: Modular nuclear reaction network library

The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.

[ascl:2107.007] Skymapper: Mapping astronomical survey data on the sky

Skymapper maps astronomical survey data from the celestial sphere onto 2D using a collection of matplotlib instructions. It facilitates interactive work as well as the creation of publication-quality plots with a python-based workflow many astronomers are accustomed to. The primary motivation is a truthful representation of samples and fields from the curved sky in planar figures, which becomes relevant when sizable portions of the sky are observed.

[ascl:1010.066] SkyMaker: Astronomical Image Simulations Made Easy

SkyMaker simulates astronomical images. It accepts object lists in ASCII generated by the Stuff program (ascl:1010.067) to produce realistic astronomical fields. SkyMaker is part of the EFIGI development project.

[ascl:2402.009] SkyLine: Generate mock line-intensity maps

SkyLine generates mock line-intensity maps (both in 3D and 2D) in a lightcone from a halo catalog, accounting for the evolution of clustering and astrophysical properties, and observational effects such as spectral and angular resolutions, line-interlopers, and galactic foregrounds. Using a given astrophysical model for the luminosity of each line, the code paints the signal for each emitter and generates the map, adding coherently all contributions of interest. In addition, SkyLine can generate maps with the distribution of Luminous Red Galaxies and Emitting Line Galaxies.

[ascl:2107.014] Skylens++: Simulation package for optical astronomical observations

Skylens++ implements a Layer-based raytracing framework particularly well-suited for realistic simulations of weak and strong gravitational lensing. Source galaxies can be drawn from analytic models or deep space-based imaging. Lens planes can be populated with arbitrary deflectors, typically either from N-body simulations or analytic lens models. Both sources and lenses can be placed at freely configurable positions into the light cone, in effect allowing for multiple source and lens planes.

[ascl:1907.024] Skyfield: High precision research-grade positions for planets and Earth satellites generator

Skyfield computes positions for the stars, planets, and satellites in orbit around the Earth. Its results should agree with the positions generated by the United States Naval Observatory and their Astronomical Almanac to within 0.0005 arcseconds (which equals half a “mas” or milliarcsecond). It computes geocentric coordinates or topocentric coordinates specific to your location on the Earth’s surface. Skyfield accepts AstroPy (ascl:1304.002) time objects as input and can return results in native AstroPy units but is not dependend on AstroPy nor its compiled libraries.

[ascl:2012.011] Skye: Excess clustering of transit times detection

Skye detects a statistically significant excess clustering of transit times, indicating that there are likely systematics at specific times that cause many false positive detections, for the Kepler DR25 planet candidate catalog. The technique could be used for any survey looking to statistically cull false alarms.

[ascl:2104.026] Skye: Equation of state for fully ionized matter

The Skye framework develops and prototypes new EOS physics; it is not tied to a specific set of physics choices and can be extended for new effects by writing new terms in the free energy. It takes into account the effects of positrons, relativity, electron degeneracy, and non-linear mixing effects and more, and determines the point of Coulomb crystallization in a self-consistent manner. It is available in the MESA (ascl:1010.083) EOS module and as a standalone package.

[ascl:1408.007] Skycorr: Sky emission subtraction for observations without plain sky information

Skycorr is an instrument-independent sky subtraction code that uses physically motivated line group scaling in the reference sky spectrum by a fitting approach for an improved sky line removal in the object spectrum. Possible wavelength shifts between both spectra are corrected by fitting Chebyshev polynomials and advanced rebinning without resolution decrease. For the correction, the optimized sky line spectrum and the automatically separated sky continuum (without scaling) is subtracted from the input object spectrum. Tests show that Skycorr performs well (per cent level residuals) for data in different wavelength regimes and of different resolution, even in the cases of relatively long time lags between the object and the reference sky spectrum. Lower quality results are mainly restricted to wavelengths not dominated by airglow lines or pseudo continua by unresolved strong emission bands.

[ascl:1109.019] SkyCat: Visualization and Catalog and Data Access Tool

SkyCat is a tool that combines visualization of images and access to catalogs and archive data for astronomy. The tool, developed in Tcl/Tk, was originally conceived as a demo of the capabilities of the class library that was developed for the VLT. The Skycat sources currently consist of five packages:

• Tclutil - Generic Tcl and C++ utilities
• Astrotcl - Astronomical Tcl and C++ utilities
• RTD - Real-time Display classes and widgets
• Catlib - Catalog library and widgets
• Skycat - Skycat application and library package

All of the required packages are always included in the tarfile.

[ascl:2109.007] SkyCalc_ipy: SkyCalc wrapper for interactive Python

SkyCalc-iPy (SkyCalc for interactive Python) accesses atmospheric emission and transmission data generated by ESO’s SkyCalc tool interactively with Python. This package is based on the command line tool by ESO for accessing spectra on the ESO SkyCalc server.

[ascl:1609.014] Sky3D: Time-dependent Hartree-Fock equation solver

Written in Fortran 90, Sky3D solves the static or dynamic equations on a three-dimensional Cartesian mesh with isolated or periodic boundary conditions and no further symmetry assumptions. Pairing can be included in the BCS approximation for the static case. The code can be easily modified to include additional physics or special analysis of the results and requires LAPACK and FFTW3.

[ascl:1109.003] SKIRT: Stellar Kinematics Including Radiative Transfer

SKIRT is a radiative transfer code based on the Monte Carlo technique. The name SKIRT, acronym for Stellar Kinematics Including Radiative Transfer, reflects the original motivation for its creation: it has been developed to study the effects of dust absorption and scattering on the observed kinematics of dusty galaxies. In a second stage, the SKIRT code was extended with a module to self-consistently calculate the dust emission spectrum under the assumption of local thermal equilibrium. This LTE version of SKIRT has been used to model the dust extinction and emission of various types of galaxies, as well as circumstellar discs and clumpy tori around active galactic nuclei. A new, extended version of SKIRT code can perform efficient 3D radiative transfer calculations including a self-consistent calculation of the dust temperature distribution and the associated FIR/submm emission with a full incorporation of the emission of transiently heated grains and PAH molecules.

[ascl:1102.020] SKID: Finding Gravitationally Bound Groups in N-body Simulations

SKID finds gravitationally bound groups in N-body simulations. The SKID program will group different types of particles depending on the type of input binary file. This could be either dark matter particles, gas particles, star particles or gas and star particles depending on what is in the input tipsy binary file. Once groups with at least a certain minimum number of members have been determined, SKID will remove particles which are not bound to the group. SKID must use the original positions of all the particles to determine whether or not particles are bound. This procedure which we call unbinding, is again dependent on the type of grouping we are dealing with. There are two cases, one for dark matter only or star particles only (case 1 unbinding), the other for inputs including gas (also stars in a dark matter environment this is case 2 unbinding).

Skid version 1.3 is a much improved version of the old denmax-1.1 version. The new name was given to avoid confusion with the DENMAX program of Gelb & Bertschinger, and although it is based on the same idea it represents a substantial evolution in the method.

[ascl:1903.002] SIXTE: Simulation of X-ray Telescopes

SIXTE simulates X-Ray telescope observation; the software performs instrument performance analyses and produces simulated event files for mission and analysis studies. SIXTE strives to find a compromise between exactness of the simulation and speed. Using calibration files such as the PSF, RMF and ARF makes efficient simulations possible at comparably high speed, even though they include nonlinear effects such as pileup. Setups for some current and future missions, such as XMM-Newton and Athena, are included in the package; others can be added by the user with relatively little effort through specifying the main instrument characteristics in a flexible, human-readable XML-based format. Properties of X-ray sources to be simulated are described in a detector-independent format, i.e., the same input can be used for simulating observations with all available instruments, and the same input can also be used for simulations with the SIMX simulator. The input files are easily generated from standard data such as XSPEC (ascl:9910.005) spectral models or FITS images with tools provided with the SIXTE distribution. The input data scale well from single point sources up to very complicated setups.

[ascl:1111.008] SITools2: A Framework for Archival Systems

SITools2 is a CNES generic tool performed by a joint effort between CNES and scientific laboratories. SITools provides a self-manageable data access layer deployed on already existing scientific laboratory databases. This new version of SITools is a JAVA-based framework, under open source license, that provides a portable archive system, highly configurable, easy to use by laboratories, with a plugin mechanism so developers can add their own applications.

[ascl:2203.001] SISTER: Starshade Imaging Simulation Toolkit for Exoplanet Reconnaissance

SISTER (Starshade Imaging Simulations Toolkit for Exoplanet Reconnaissance) predicts how an exoplanet system would look in an instrument that utilizes an Starshade to block the light from the host star. The tool allows for controlling a set of parameters of the whole instrument for: (1) the Starshade design, (2) the exoplanetary system, (3) the telescope and (4) the camera. SISTER includes plotting software, and can also store simulations on disk for plotting with other software.

[ascl:2105.013] SISPO: Imaging simulator for small solar system body missions

SISPO (Space Imaging Simulator for Proximity Operations) simulates trajectories, light parameters, and camera intrinsic parameters for small solar system body fly-by and terrestrial planet surface missions. The software provides realistic surface rendering and realistic dust- and gas-environment optical models for comets and active asteroids and also simulates common image aberrations such as simple geometric distortions and tangential astigmatism. SISPO uses Blender and its Cycles rendering engine, which provides physically based rendering capabilities and procedural micropolygon displacement texture generation.

[ascl:2307.013] SIRENA: Energy reconstruction of X-ray photons for Athena X-IFU

SIRENA (Software Ifca for Reconstruction of EveNts for Athena X-IFU) reconstructs the energy of incoming X-ray photons after their detection in the X-IFU TES detector. It is integrated in the SIXTE (ascl:1903.002) end-to-end simulations environment where it currently runs over SIXTE simulated data. This is done by means of a tool called tesreconstruction, which is mainly a wrapper to pass a data file to the SIRENA tasks.

[ascl:1212.008] SIR: Stokes Inversion based on Response functions

SIR is a general-purpose code capable of dealing with gradients of the physical quantities with height. It admits one and two-component model atmospheres. It allows the recovery of the stratification of the temperature, the magnetic field vector, and the line of sight velocity through the atmosphere, and the micro- and macroturbulence velocities - which are assumed to be constant with depth. It is based on the response functions, which enter a Marquardt nonlinear least-squares algorithm in a natural way. Response functions are calculated at the same time as the full radiative transfer equation for polarized light is integrated, which determines values of many free parameters in a reasonable computation time. SIR demonstrates high stability, accuracy, and uniqueness of results, even when simulated observations present signal-to-noise ratios of the order of the lowest acceptable values in real observations.

[ascl:1609.018] SIP: Systematics-Insensitive Periodograms

SIP (Systematics-Insensitive Periodograms) extends the generative model used to create traditional sine-fitting periodograms for finding the frequency of a sinusoid by including systematic trends based on a set of eigen light curves in the generative model in addition to using a sum of sine and cosine functions over a grid of frequencies, producing periodograms with vastly reduced systematic features. Acoustic oscillations in giant stars and measurement of stellar rotation periods can be recovered from the SIP periodograms without detrending. The code can also be applied to detection other periodic phenomena, including eclipsing binaries and short-period exoplanet candidates.

[ascl:1010.026] SingLe: A F90-package devoted to Softened Gravity in gaseous discs

SofteningLength: Because Newton's law of Gravitation diverges as the relative separations |r'-r| tends to zero, it is common to add a positive constant λ also known as the "softening length", i.e. :

|r'-r|² ← |r'-r|² + λ².

SingLe determines the appropriate value of this Softening Length λ for a given disc local structure (thickness 2h and vertical stratification ρ), in the axially symmetric, flat disc limit, preserving at best the Newtonian character of the gravitational potential and associated forces. Mass density ρ(z) is assumed to be locally expandable in the z-direction according to:

ρ(z)= ρ0[1 + a1(z/h)2+...+aq (z/h)2q+...+aN (z/h)2 N].

[ascl:1708.019] SINFONI Pipeline: Data reduction pipeline for the Very Large Telescope SINFONI spectrograph

The SINFONI pipeline reduces data from the Very Large Telescope's SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) instrument. It can evaluate the detector linearity and generate a corresponding non linear pixel map, create a master dark and a hot-pixel map, a master flat and a map of pixels which have intensities greater than a given threshold. It can also compute the optical distortions and slitlets distances, and perform wavelength calibration, PSF, telluric standard and other science data reduction, and can coadd bad pixel maps, collapse a cube to an image over a given wavelength range, perform cube arithmetics, among other useful tasks.

[ascl:1307.013] SIMX: Event simulator

SIMX simulates a photon-counting detector's response to an input source, including a simplified model of any telescope. The code is not a full ray-trace, but a convolution tool that uses standard descriptions of telescope PSF (via either a simple Gaussian parameter, an energy-dependent encircled-energy function, or an image of the PSF) and the detector response (using the OGIP response function) to model how sources will appear. simx uses a predefined set of PSFs, vignetting information, and instrumental responses and outputs to make the simulation. It is designed to be a 'approximation' tool to estimate issues such as source confusion, background effects, pileup, and other similar issues.

[ascl:1904.016] simuTrans: Gravity-darkened exoplanet transit simulator

simuTrans models transit light curves affected by gravity-darkened stars. The code defines a star on a grid by modeling the brightness of each point as blackbody emission, then sets a series of parameters and uses emcee (ascl:1303.002) to explore the posterior probability distribution for the remaining fitted parameters and determine their best-fit values.

[ascl:2205.025] simulateSearch: High-time resolution data sets simulations for radio telescopes

simulateSearch simulates high time-resolution data in radio astronomy. The code is built around producing multiple binary data files that contain information on the radiometer noise and sources that are being simulated. These binary data files subsequently get combined and output PSRFITS
search mode files produced. The PSRFITS files can be processed using standard pulsar software packages such as PRESTO (ascl:1107.017).

[ascl:1903.006] SimSpin: Kinematic analysis of galaxy simulations

The R-package SimSpin measures the kinematics of a galaxy simulation as if it had been observed using an IFU. The functions included in the package can produce a kinematic data cube and measure the "observables" from this data cube, specifically the observable spin parameter λr. This package, once installed, is fully documented and tested.

[ascl:2106.008] simqso: Simulated quasar spectra generator

simqso generates mock quasar spectra and photometry. Simulated quasar spectra are built from a series of components. Common quasar models are built-in, such as a broken power-law continuum model and Gaussian emission line templates; however, the code allows user-defined features to be included. Mock spectra are generated at arbitrary resolution and can be used to produce broadband photometry representative of a number of surveys.

[ascl:1606.010] SimpLens: Interactive gravitational lensing simulator

SimpLens illustrates some of the theoretical ideas important in gravitational lensing in an interactive way. After setting parameters for elliptical mass distribution and external mass, SimpLens displays the mass profile and source position, the lens potential and image locations, and indicate the image magnifications and contours of virtual light-travel time. A lens profile can be made shallower or steeper with little change in the image positions and with only total magnification affected.

[ascl:2307.029] SIMPLE: Intensity map generator

SIMPLE (Simple Intensity Map Producer for Line Emission) generates intensity maps that include observational effects such as noise, anisotropic smoothing, sky subtraction, and masking. Written in Python, it is based on a lognormal simulation of galaxies and random assignment of luminosities to these galaxies and generates mock intensity maps that can be used to study survey systematics and calculate covariance matrices of power spectra. The code is modular, allowing its components to be used independently.

[ascl:2305.017] simple-m2m: Extensions to the standard M2M algorithm for full modeling of observational data

Made-to-measure (M2M) is a standard technique for modeling the dynamics of astrophysical systems in which the system is modeled with a set of N particles with weights that are slowly optimized to fit a set of constraints while integrating these particles forward in the gravitational potential. Simple-m2m extends this standard technique to allow parameters of the system other than the particle weights to be fit as well, including nuisance parameters that describe the observer's relation to the dynamical system (e.g., the inclination) or parameters describing an external potential.

[ascl:2106.020] simple_reg_dem: Differential Emission Measures in the solar corona

simple_reg_dem reconstructs differential emission measures (DEMs) in the solar corona. It overcomes issues, such as complexity, idiosyncratic output, convergence difficulty, and lack of speed, that exists in other methods. Initially written for extreme ultraviolet (EUV) data, the algorithm is notable for its simplicity, and is robust and extensible to any other wavelengths (e.g., X-rays) where the DEM treatment is valid. It is available in the SolarSoft (ascl:1208.013) package.

[ascl:1110.022] simple_cosfitter: Supernova-centric Cosmological Fitter

This is an implementation of a fairly simple-minded luminosity distance fitter, intended for use with supernova data. The calculational technique is based on evaluating the $chi^2$ of the model fit on a grid and marginalization over various nuisance parameters. Of course, the nature of these things is that this code has gotten steadily more complex, so perhaps the simple moniker is no longer justified.

[ascl:2212.015] SImMER: Stellar Image Maturation via Efficient Reduction

SImMER (Stellar Image Maturation via Efficient Reduction) reduces astronomical imaging data. It performs standard dark-subtraction and flat-fielding operations on data from, for example, the ShARCS camera on the Shane 3-m telescope at Lick Observatory and the PHARO camera on the Hale 5.1-m telescope at Palomar Observatory; its object-oriented design allows the software to be extended to other instruments. SImMER can also perform sky-subtraction, image registration, FWHM measurement, and contrast curve calculation, and can generate tables and plots. For widely separated stars which are of somewhat equal brightness, a “wide binary” mode allows the user to selects which star is the primary around which each image should be centered.

[ascl:2203.028] SimLine: Radiative transfer in molecular lines

SimLine computes the profiles of molecular rotational transitions and atomic fine structure lines in spherically symmetric clouds with arbitrary density, temperature and velocity structure. The code is designed towards a maximum flexibility and very high accuracy based on a completely adaptive discretization of all quantities. The code can treat arbitrary species in spherically symmetric configurations with arbitrary velocity structures and optical depths between about -5 and 5000. Moreover, SimLine includes the treatment of turbulence and clumping effects in a local statistical approximation combined with a radial dependence of the correlation parameters. The code consists of two parts: the self-consistent solution of the balance equations for all level populations and energy densities at all radial points and the computation of the emergent line profiles observed from a telescope with finite beam width and arbitrary offset.

[ascl:1010.025] SimFast21: Simulation of the Cosmological 21cm Signal

SimFast 21 generates a simulation of the cosmological 21cm signal. While limited to low spatial resolution, the next generation low-frequency radio interferometers that target 21 cm observations during the era of reionization and prior will have instantaneous fields-of-view that are many tens of square degrees on the sky. Predictions related to various statistical measurements of the 21 cm brightness temperature must then be pursued with numerical simulations of reionization with correspondingly large volume box sizes, of order 1000 Mpc on one side. The authors pursued a semi-numerical scheme to simulate the 21 cm signal during and prior to Reionization by extending a hybrid approach where simulations are performed by first laying down the linear dark matter density field, accounting for the non-linear evolution of the density field based on second-order linear perturbation theory as specified by the Zel'dovich approximation, and then specifying the location and mass of collapsed dark matter halos using the excursion-set formalism. The location of ionizing sources and the time evolving distribution of ionization field is also specified using an excursion-set algorithm. They account for the brightness temperature evolution through the coupling between spin and gas temperature due to collisions, radiative coupling in the presence of Lyman-alpha photons and heating of the intergalactic medium, such as due to a background of X-ray photons. The method is capable of producing the required large volume simulations with adequate resolution in a reasonable time so a large number of realizations can be obtained with variations in assumptions related to astrophysics and background cosmology that govern the 21 cm signal.

[ascl:2012.018] SimCADO: Observations simulator for infrared telescopes and instruments

SimCADO simulates observations with any NIR/Vis imaging system. Though the package was originally designed to simulate images for the European Extremely Large Telescope (ELT) and MICADO, with the proper input, it is capable of simulating observations from many different telescope and instrument configurations.

[ascl:2308.003] SIMBI: 3D relativistic gas dynamics code

SIMBI simulates heterogeneous relativistic gas dynamics up to 3d for special relativistic hydrodynamics and up to 2D Newtonian hydrodynamics. It supports user-defined mesh expansion and contraction, density, momentum, and energy density terms outside of grid; the code also supports source terms in the Euler equations and source terms at the boundaries. Boundary conditions, which include periodic, reflecting, outflow, and inflow boundaries, are given as an array of strings. If an inflow boundary condition is set but no inflow boundary source terms are given, SIMBI switches to outflow boundary conditions to prevent crashes. The code can track a single passive scalar, insert an immersed boundary, and is impermeable by default. SIMBI USES the Cython framework to blend together C++, CUDA, HIP, and Python.

[ascl:2204.011] SimAb: Planet formation model

SimAb (Simulating Abundances) simulates planet formation, focusing on the atmosphere accretion of gas giant planets. The package can run the simulation in two different modes. The single simulation mode is run by specifying the initial conditions (the core mass, the initial orbital distance, the planetesimal ratio, and the dust grain fraction), and the mature planet mass and orbital distance. The multi run simulation mode requires specifying the mass and the final orbital distance of the mature planet; the simulation randomly assigns initial orbital distance, initial core mass, initial planetesimal ratio, and initial dust grain fraction. The package also provides Jupyter codes for plotting the results of the simulations.

[ascl:1811.011] SIM5: Library for ray-tracing and radiation transport in general relativity

The SIM5 library contains routines for relativistic raytracing and radiation transfer in GR. Written C with a Python interface, it has a special focus on raytracing from accretion disks, tori, hot spots or any other 3D configuration of matter in Kerr geometry, but it can be used with any other metric as well. It handles both optically thick and thin sources as well as transport of polarization of the radiation and calculates the propagation of light rays from the source to an observer through a curved spacetime. It supports parallelization and runs on GPUs.

[ascl:1603.001] SILSS: SPHERE/IRDIS Long-Slit Spectroscopy pipeline

The ESO's VLT/SPHERE instrument includes a unique long-slit spectroscopy (LSS) mode coupled with Lyot coronagraphy in its infrared dual-band imager and spectrograph (IRDIS) for spectral characterization of young, giant exoplanets detected by direct imaging. The SILSS pipeline is a combination of the official SPHERE pipeline and additional custom IDL routines developed within the SPHERE consortium for the speckle subtraction and spectral extraction of a companion's spectrum; it offers a complete end-to-end pipeline, from raw data (science+calibrations) to a final spectrum of the companion. SILSS works on both the low-resolution (LRS) and medium-resolution (MRS) data, and allows correction for some of the known biases of the instrument. Documentation is included in the header of the main routine of the pipeline.

[ascl:2103.025] Silo: Saving scientific data to binary disk files

Silo reads and writes a wide variety of scientific data to binary disk files. The files Silo produces and the data within them can be easily shared and exchanged between wholly independently developed applications running on disparate computing platforms. Consequently, Silo facilitates the development of general purpose tools for processing scientific data. One of the more popular tools that process Silo data files is the VisIt visualization tool (ascl:1103.007).

Silo supports gridless (point) meshes, structured meshes, unstructured-zoo and unstructured-arbitrary-polyhedral meshes, block structured AMR meshes, constructive solid geometry (CSG) meshes, piecewise-constant (e.g., zone-centered) and piecewise-linear (e.g. node-centered) variables defined on the node, edge, face or volume elements of meshes as well as the decomposition of meshes into arbitrary subset hierarchies including materials and mixing materials. In addition, Silo supports a wide variety of other useful objects to address various scientific computing application needs. Although the Silo library is a serial library, it has features that enable it to be applied quite effectively and scalable in parallel.

[ascl:1107.016] SIGPROC: Pulsar Signal Processing Programs

SIGPROC is a package designed to standardize the initial analysis of the many types of fast-sampled pulsar data. Currently recognized machines are the Wide Band Arecibo Pulsar Processor (WAPP), the Penn State Pulsar Machine (PSPM), the Arecibo Observatory Fourier Transform Machine (AOFTM), the Berkeley Pulsar Processors (BPP), the Parkes/Jodrell 1-bit filterbanks (SCAMP) and the filterbank at the Ooty radio telescope (OOTY). The SIGPROC tools should help users look at their data quickly, without the need to write (yet) another routine to read data or worry about big/little endian compatibility (byte swapping is handled automatically).

[ascl:1110.023] SiFTO: An Empirical Method for Fitting SN Ia Light Curves

SiFTO is an empirical method for modeling Type Ia supernova (SN Ia) light curves by manipulating a spectral template. We make use of high-redshift SN data when training the model, allowing us to extend it bluer than rest-frame U. This increases the utility of our high-redshift SN observations by allowing us to use more of the available data. We find that when the shape of the light curve is described using a stretch prescription, applying the same stretch at all wavelengths is not an adequate description. SiFTO therefore uses a generalization of stretch which applies different stretch factors as a function of both the wavelength of the observed filter and the stretch in the rest-frame B band. SiFTO has been compared to other published light-curve models by applying them to the same set of SN photometry, and it's been demonstrated that SiFTO and SALT2 perform better than the alternatives when judged by the scatter around the best-fit luminosity distance relationship. When SiFTO and SALT2 are trained on the same data set the cosmological results agree.

[ascl:2303.015] SIDM: Density profiles of self-interacting dark-matter halos with inhabitant galaxies

The SIDM model combines the isothermal Jeans model and the model of adiabatic halo contraction into a simple semi-analytic procedure for computing the density profile of self-interacting dark-matter (SIDM) haloes with the gravitational influence from the inhabitant galaxies. It agrees well with cosmological SIDM simulations over the entire core-forming stage and up to the onset of gravothermal core-collapse. The fast speed of the method facilitates analyses that would be challenging for numerical simulations.

[ascl:1703.007] sidm-nbody: Monte Carlo N-body Simulation for Self-Interacting Dark Matter

Self-Interacting Dark Matter (SIDM) is a hypothetical model for cold dark matter in the Universe. A strong interaction between dark matter particles introduce a different physics inside dark-matter haloes, making the density profile cored, reduce the number of subhaloes, and trigger gravothermal collapse. sidm-nbody is an N-body simulation code with Direct Simulation Monte Carlo scattering for self interaction, and some codes to analyse gravothermal collapse of isolated haloes. The N-body simulation is based on GADGET 1.1.

[ascl:1905.024] SICON: Stokes Inversion based on COnvolutional Neural networks

SICON (Stokes Inversion based on COnvolutional Neural networks) provides a three-dimensional cube of thermodynamical and magnetic properties from the interpretation of two-dimensional maps of Stokes profiles by use of a convolutional neural network. In addition to being much faster than parallelized inversion codes, SICON, when trained on synthetic Stokes profiles from two numerical simulations of different structures of the solar atmosphere, also provided a three-dimensional view of the physical properties of the region of interest in geometrical height, and pressure and Wilson depression properties that are decontaminated from the blurring effect of instrumental point spread functions.

[ascl:1706.009] sick: Spectroscopic inference crank

sick infers astrophysical parameters from noisy observed spectra. Phenomena that can alter the data (e.g., redshift, continuum, instrumental broadening, outlier pixels) are modeled and simultaneously inferred with the astrophysical parameters of interest. This package relies on emcee (ascl:1303.002); it is best suited for situations where a grid of model spectra already exists, and one would like to infer model parameters given some data.

[ascl:1411.026] sic: Sparse Inpainting Code

sic (Sparse Inpainting Code) generates Gaussian, isotropic CMB realizations, masks them, and recovers the large-scale masked data using sparse inpainting; it is written in Fortran90.

[ascl:1704.003] Shwirl: Meaningful coloring of spectral cube data with volume rendering

Shwirl visualizes spectral data cubes with meaningful coloring methods. The program has been developed to investigate transfer functions, which combines volumetric elements (or voxels) to set the color, and graphics shaders, functions used to compute several properties of the final image such as color, depth, and/or transparency, as enablers for scientific visualization of astronomical data. The program uses Astropy (ascl:1304.002) to handle FITS files and World Coordinate System, Qt (and PyQt) for the user interface, and VisPy, an object-oriented Python visualization library binding onto OpenGL.

[ascl:1110.004] SHTOOLS: Tools for Working with Spherical Harmonics

SHTOOLS performs (among others) spherical harmonic transforms and reconstructions, rotations of spherical harmonic coefficients, and multitaper spectral analyses on the sphere. The package accommodates any standard normalization of the spherical harmonic functions ("geodesy" 4π normalized, Schmidt semi-normalized, orthonormalized, and unnormalized), and either real or complex spherical harmonics can be employed. Spherical harmonic transforms are calculated by exact quadrature rules using either (1) the sampling theorem of Driscoll and Healy (1994) where data are equally sampled (or spaced) in latitude and longitude, or (2) Gauss-Legendre quadrature. A least squares inversion routine for irregularly sampled data is included as well. The Condon-Shortley phase factor of (-1)m can be used or excluded with the associated Legendre functions. The spherical harmonic transforms are accurate to approximately degree 2800, corresponding to a spatial resolution of better than 4 arc minutes. Routines are included for performing localized multitaper spectral analyses and standard gravity calculations, such as computation of the geoid, and the determination of the potential associated with finite-amplitude topography. The routines are fast. Spherical harmonic transforms and reconstructions take on the order of 1 second for bandwidths less than 600 and about 3 minutes for bandwidths close to 2800.

[ascl:1107.005] Sherpa: CIAO Modeling and Fitting Package

Sherpa is the CIAO (ascl:1311.006) modeling and fitting application made available by the Chandra X-ray Center (CXC). It can be used for analysis of images, spectra and time series from many telescopes, including optical telescopes such as Hubble. Sherpa is flexible, modular and extensible. It has an IPython user interface and it is also an importable Python module. Sherpa models, optimization and statistic functions are available via both C++ and Python for software developers wishing to link such functions directly to their own compiled code.

The CIAO 4.3 Sherpa release supports fitting of 1-D X-ray spectra from Chandra and other X-ray missions, as well as 1-D non-X-ray data, including ASCII data arrays, radial profiles, and lightcurves. The options for grating data analysis include fitting the spectrum with multiple response files required for overlapping orders in LETG observations. Modeling of 2-D spatial data is fully supported, including the PSF and exposure maps. User specified models can be added to Sherpa with advanced "user model" functionality.

[ascl:2306.043] SHERLOCK: Explore Kepler, K2, and TESS data

The end-to-end SHERLOCK (Searching for Hints of Exoplanets fRom Lightcurves Of spaCe-based seeKers) pipeline allows users to explore data from space-based missions to search for planetary candidates. It can recover alerted candidates by the automatic pipelines such as SPOC and the QLP, Kepler objects of interest (KOIs) and TESS objects of interest (TOIs), and can search for candidates that remain unnoticed due to detection thresholds, lack of data exploration, or poor photometric quality. SHERLOCK has six different modules to perform its tasks; these modules can be executed by filling in an initial YAML file with some basic information and using a few lines of code sequentially to pass from one step to the next. Alternatively, the user may provide with the light curve in a csv file, where the time, normalized flux, and flux error are provided in columns in comma-separated format.

[ascl:1108.002] SHERA: SHEar Reconvolution Analysis

Current and upcoming wide-field, ground-based, broad-band imaging surveys promise to address a wide range of outstanding problems in galaxy formation and cosmology. Several such uses of ground-based data, especially weak gravitational lensing, require highly precise measurements of galaxy image statistics with careful correction for the effects of the point-spread function (PSF). The SHERA (SHEar Reconvolution Analysis) software simulates ground-based imaging data with realistic galaxy morphologies and observing conditions, starting from space-based data (from COSMOS, the Cosmological Evolution Survey) and accounting for the effects of the space-based PSF. This code simulates ground-based data, optionally with a weak lensing shear applied, in a model-independent way using a general Fourier space formalism. The utility of this pipeline is that it allows for a precise, realistic assessment of systematic errors due to the method of data processing, for example in extracting weak lensing galaxy shape measurements or galaxy radial profiles, given user-supplied observational conditions and real galaxy morphologies. Moreover, the simulations allow for the empirical test of error estimates and determination of parameter degeneracies, via generation of many noise maps. The public release of this software, along with a large sample of cleaned COSMOS galaxy images (corrected for charge transfer inefficiency), should enable upcoming ground-based imaging surveys to achieve their potential in the areas of precision weak lensing analysis, galaxy profile measurement, and other applications involving detailed image analysis.

This code is no longer maintained and has been superseded by GalSim (ascl:1402.009).

[ascl:1108.017] SHELLSPEC: Simple Radiative Transfer along Line of Sight in Moving Media

SHELLSPEC calculates lightcurves, spectra and images of interacting binaries and extrasolar planets immersed in a moving circumstellar environment which is optically thin. It solves simple radiative transfer along the line of sight in moving media. The assumptions include LTE and optional known state quantities and velocity fields in 3D. Optional (non)transparent objects such as a spot, disc, stream, jet, shell or stars as well as an empty space may be defined (embedded) in 3D and their composite synthetic spectrum calculated. Roche model can be used as a boundary condition for the radiative tranfer. A related code based on SHELLSPEC, Pyshellspec (ascl:2106.006), solves the inverse problem of finding the stellar and orbital parameters.

[ascl:2210.021] SHEEP: Machine Learning pipeline for astronomy classification

The photometric redshift-aided classification pipeline SHEEP uses ensemble learning to classify astronomical sources into galaxies, quasars and stars. It uses tabular data and also allows the use of sparse data. The approach uses SDSS and WISE photometry, but SHEEP can also be used with other types of tabular data, such as radio fluxes or magnitudes.

[ascl:2107.016] shear-stacking: Stacked shear profiles and tests based upon them

shear-stacking calculates stacked shear profiles and tests based upon them, e.g. consistency for different slices of lensed background galaxies. The basic concept is that the lensing signal in terms of surface mass density (instead of shear) should be entirely determined by the properties of the lens sample and have no dependence on source galaxy properties.

[ascl:1508.010] SHDOM: Spherical Harmonic Discrete Ordinate Method for atmospheric radiative transfer

The Spherical Harmonic Discrete Ordinate Method (SHDOM) radiative transfer model computes polarized monochromatic or spectral band radiative transfer in a one, two, or three-dimensional medium for either collimated solar and/or thermal emission sources of radiation. The model is written in a variant of Fortran 77 and in Fortran90 and requires a Fortran 90 compiler. Also included are programs for generating the optical property files input to SHDOM from physical properties of water cloud particles and aerosols.

[ascl:2307.024] SHARK: Gas and dust hydrodynamics with dust coagulation/fragmentation

SHARK solves the hydrodynamic equations for gas and dust mixtures accounting for dust coagulation and fragmentation (among other things). The code is written in Fortran and is capable of handling both 1D and 2D Cartesian geometries; 1D simulations with spherical geometry are also possible. SHARK is versatile and can be used to model various astrophysical environments.

[ascl:1811.005] Shark: Flexible semi-analytic galaxy formation model

Shark is a flexible semi-analytic galaxy formation model for easy exploration of different physical processes. Shark has been implemented with several models for gas cooling, active galactic nuclei, stellar and photo-ionization feedback, and star formation (SF). The software can determine the stellar mass function and stellar–halo mass relation at z=0–4; cosmic evolution of the star formation rate density, stellar mass, atomic and molecular hydrogen; local gas scaling relations; and structural galaxy properties. It performs particularly well for the mass–size relation for discs/bulges, the gas–stellar mass and stellar mass–metallicity relations. Shark is written in C++11 and has been parallelized with OpenMP.

[ascl:2206.026] ShapePipe: Galaxy shape measurement pipeline

ShapePipe processes single-exposure images and stacked images. Input images have to be calibrated beforehand for astrometry and photometry. The code can handle different image and file types, such as single-exposure mosaic, single-exposure single-CCD, stacked images, database catalog files, and PSF files, some of which are created by the pipeline during the analysis, among others. The end product of ShapePipe is a final catalog containing information for each galaxy, including its shape parameters and the ellipticity components :math:e_1 and :math:e_2. This catalog also contains shapes of artificially sheared images. This information is used in post-processing to compute calibrated shear estimates via metacalibration.

[ascl:2109.022] ShapeMeasurementFisherFormalism: Fisher Formalism for Weak Lensing

ShapeMeasurementFisherFormalism is used to study Fisher Formalism predictions on galaxy weak lensing for LSST Dark Energy Science Collaboration. It can create predictions with user-defined parameters for one or two galaxies simulated from GalSim (ascl:1402.009).

[ascl:1307.014] Shapelets: Image Modelling

Shapelets are a complete, orthonormal set of 2D basis functions constructed from Laguerre or Hermite polynomials weighted by a Gaussian. A linear combination of these functions can be used to model any image, in a similar way to Fourier or wavelet synthesis. The shapelet decomposition is particularly efficient for images localized in space, and provide a high level of compression for individual galaxies in astronomical data. The basis has many elegant mathematical properties that make it convenient for image analysis and processing.

[ascl:2107.015] shapelens: Astronomical image analysis and shape estimation framework

The shapelens C++ library provides ways to load galaxies and star images from FITS files and catalogs and to analyze their morphology. The main purpose of this library is to make several weak-lensing shape estimators publicly available. All of them are based on the moments of the brightness distribution. The estimators include DEIMOS, for analytic deconvolution in moment space, DEIMOSElliptical, a practical implemention of DEIMOS with an automatically matched elliptical weight function, DEIMOSCircular, which is identical to DEIMOSElliptical but with a circular weight function, and others.

[ascl:1204.010] Shape: A 3D Modeling Tool for Astrophysics

Shape is a flexible interactive 3D morpho-kinematical modeling application for astrophysics. It reduces the restrictions on the physical assumptions, data type and amount required for a reconstruction of an object's morphology. It applies interactive graphics and allows astrophysicists to provide a-priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation.

[ascl:1605.003] Shadowfax: Moving mesh hydrodynamical integration code

Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).

[ascl:1712.015] SgrbWorldModel: Short-duration Gamma-Ray Burst World Model

SgrbWorldModel, written in Fortran 90, presents an attempt at modeling the population distribution of the Short-duration class of Gamma-Ray Bursts (SGRBs) as detected by the NASA's now-defunct Burst And Transient Source Experiment (BATSE) onboard the Compton Gamma Ray Observatory (CGRO). It is assumed that the population distribution of SGRBs is well fit by a multivariate log-normal distribution, whose differential cosmological rate of occurrence follows the Star-Formation-Rate (SFR) convolved with a log-normal binary-merger delay-time distribution. The best-fit parameters of the model are then found by maximizing the likelihood of the observed data by the BATSE detectors via a native built-in Adaptive Metropolis-Hastings Markov-Chain Monte Carlo (AMH-MCMC)Sampler that is part of the code. A model for the detection algorithm of the BATSE detectors is also provided.

[ascl:1210.005] SGNAPS: Software for Graphical Navigation, Analysis and Plotting of Spectra

SGNAPS allows the user to plot a one-dimensional spectrum, together with the corresponding two-dimensional and a reference spectrum (for example the sky spectrum). This makes it possible to check on the reality of spectral features that are present in the one-dimensional spectrum, which could be due to bad sky subtraction or fringing residuals. It is also possible to zoom in and out all three spectra, edit the one-dimensional spectrum, smooth it with a simple square window function, measure the signal to noise over a selected wavelength interval, and fit the position of a selected spectral line. SGNAPS also allows the astronomer to obtain quick redshift estimates by providing a tool to fit or mark the position of a spectral line, and a function that will compute a list of possible redshifts based on a list of known lines in galaxy spectra. SGNAPS is derived from the plotting tools of VIPGI and contains almost all of their capabilities.

NOTE: SGNAPS functionality has been transitioned to EZ.

[ascl:2302.004] SFQEDtoolkit: Strong-field QED processes modeling for PIC and Monte Carlo codes

SFQEDtoolkit implements strong-field QED (SFQED) processes in existing particle-in-cell (PIC) and Monte Carlo codes to determine the dynamics of particles and plasmas in extreme electromagnetic fields, such as those present in the vicinity of compact astrophysical objects. The code uses advanced function approximation techniques to calculate high-energy photon emission and electron-positron pair creation probability rates and energy distributions within the locally-constant-field approximation (LCFA) as well as with more advanced models.

[ascl:1712.007] SFoF: Friends-of-friends galaxy cluster detection algorithm

SFoF is a friends-of-friends galaxy cluster detection algorithm that operates in either spectroscopic or photometric redshift space. The linking parameters, both transverse and along the line-of-sight, change as a function of redshift to account for selection effects.

[ascl:1304.013] SFH: Star Formation History

SFH is an efficient IDL tool that quickly computes accurate predictions for the baryon budget history in a galactic halo.

[ascl:2001.003] sf3dmodels: Star-forming regions 3D modelling package

sf3dmodels models star-forming regions; it brings together analytical models in order to compute their physical properties in a 3-dimensional grid. The package can couple different models in a single grid to recreate complex star forming systems such as those being revealed by current instruments. The output data can be read with LIME (ascl:1107.012) or RADMC-3D (ascl:1108.016) to carry out radiative transfer calculations of the modeled region.

[ascl:2212.010] sf_deconvolve: PSF deconvolution and analysis

sf_deconvolve performs PSF deconvolution using a low-rank approximation and sparsity. It can handle a fixed PSF for the entire field or a stack of PSFs for each galaxy position. The code accepts Numpy binary files or FITS as input, takes the observed (i.e. with PSF effects and noise) stack of galaxy images and a known PSF, and attempts to reconstruct the original images. sf_deconvolve can be run in a terminal or in an active Python session, and includes options for initialization, optimization, low-Rank approximation, sparsity, PSF estimation, and other attributes.

[ascl:1010.064] SExtractor: Source Extractor

This new software optimally detects, de-blends, measures and classifies sources from astronomical images: SExtractor (Source Extractor). A very reliable star/galaxy separation can be achieved on most images using a neural network trained with simulated images. Salient features of SExtractor include its ability to work on very large images, with minimal human intervention, and to deal with a wide variety of object shapes and magnitudes. It is therefore particularly suited to the analysis of large extragalactic surveys.

[ascl:1508.006] SExSeg: SExtractor segmentation

SExSeg forces SExtractor (ascl:1010.064) to run using a pre-defined segmentation map (the definition of objects and their borders). The defined segments double as isophotal apertures. SExSeg alters the detection image based on a pre-defined segmenation map while preparing your "analysis image" by subtracting the background in a separate SExtractor run (using parameters you specify). SExtractor is then run in "double-image" mode with the altered detection image and background-subtracted analysis image.

[ascl:2206.019] SEVN: Stellar EVolution for N-body

The population synthesis code SEVN (Stellar EVolution for N-body) includes up-to-date stellar evolution (through look-up tables), binary evolution, and different recipes for core-collapse supernovae. SEVN also provides an up-to-date formalism for pair-instability and pulsational pair-instability supernovae, and is designed to interface with direct-summation N-body codes such as STARLAB (ascl:1010.076) and HiGPUs (ascl:1207.002).

[ascl:1803.009] SETI-EC: SETI Encryption Code

The SETI Encryption code, written in Python, creates a message for use in testing the decryptability of a simulated incoming interstellar message. The code uses images in a portable bit map (PBM) format, then writes the corresponding bits into the message, and finally returns both a PBM image and a text (TXT) file of the entire message. The natural constants (c, G, h) and the wavelength of the message are defined in the first few lines of the code, followed by the reading of the input files and their conversion into 757 strings of 359 bits to give one page. Each header of a page, i.e., the little-endian binary code translation of the tempo-spatial yardstick, is calculated and written on-the-fly for each page.

[ascl:2203.025] SetCoverPy: A heuristic solver for the set cover problem

SetCoverPy finds an (near-)optimal solution to the set cover problem (SCP) as fast as possible. It employs an iterative heuristic approximation method, combining the greedy and Lagrangian relaxation algorithms. It also includes a few useful tools for a quick chi-squared fitting given two vectors with measurement errors.

[ascl:2006.011] SERVAL: SpEctrum Radial Velocity AnaLyser

SERVAL calculates radial velocities (RVs) from stellar spectra. The code uses least-squares fitting algorithms to derive the RVs and additional spectral diagnostics. Forward modeling in pixel space is used to properly weight pixel errors, and the stellar templates are reconstructed from the observations themselves to make optimal use of the RV information inherent in the stellar spectra.

[ascl:1304.009] Sérsic: Exact deprojection of Sérsic surface brightness profiles

Sérsic is an implementation of the exact deprojection of Sérsic surface brightness profiles described in Baes and Gentile (2011). This code depends on the mpmath python library for an implementation of the Meijer G function required by the Baes and Gentile (hereafter B+G) formulas for rational values of the Sérsic index. Sérsic requires rational Sérsic indices, but any irrational number can be approximated arbitrarily well by some rational number. The code also depends on scipy, but the dependence is mostly for testing. The implementation of the formulas and the formulas themselves have undergone comprehensive testing.

[ascl:1312.001] SERPent: Scripted E-merlin Rfi-mitigation PipelinE for iNTerferometry

SERPent is an automated reduction and RFI-mitigation procedure that uses the SumThreshold methodology. It was originally developed for the LOFAR pipeline. SERPent is written in Parseltongue, enabling interaction with the Astronomical Image Processing Software (AIPS) program. Moreover, SERPent is a simple "out of the box" Python script, which is easy to set up and is free of compilers.

[ascl:1102.010] SEREN: A SPH code for star and planet formation simulations

SEREN is an astrophysical Smoothed Particle Hydrodynamics code designed to investigate star and planet formation problems using self-gravitating hydrodynamics simulations of molecular clouds, star-forming cores, and protostellar disks.

SEREN is written in Fortran 95/2003 with a modular philosophy for adding features into the code. Each feature can be easily activated or deactivated by way of setting options in the Makefile before compiling the code. This has the added benefit of allowing unwanted features to be removed at the compilation stage resulting in a smaller and faster executable program. SEREN is written with OpenMP directives to allow parallelization on shared-memory architecture.

[ascl:1404.005] SER: Subpixel Event Repositioning Algorithms

Subpixel Event Repositioning (SER) techniques significantly improve the already unprecedented spatial resolution of Chandra X-ray imaging with the Advanced CCD Imaging Spectrometer (ACIS). Chandra CCD SER techniques are based on the premise that the impact position of events can be refined, based on the distribution of charge among affected CCD pixels. Unlike ACIS SER models that are restricted to corner split (3- and 4-pixel) events and assume that such events take place at the split pixel corners, this IDL code uses two-pixel splits as well, and incorporates more realistic estimates of photon impact positions.

[ascl:1811.004] SEP: Source Extraction and Photometry

SEP (Source Extraction and Photometry) makes the core algorithms of Source Extractor (ascl:1010.064) available as a library of standalone functions and classes. These operate directly on in-memory arrays (no FITS files or configuration files). The code is derived from the Source Extractor code base (written in C) and aims to produce results compatible with Source Extractor whenever possible. SEP consists of a C library with no dependencies outside the standard library and a Python module that wraps the C library in a Pythonic API. The Python wrapper operates on NumPy arrays with NumPy as its only dependency. It is generated using Cython.

From Source Extractor, SEP includes background estimation, image segmentation (including on-the-fly filtering and source deblending), aperture photometry in circular and elliptical apertures, and source measurements such as Kron radius, "windowed" position fitting, and half-light radius. It also adds the following features that are not available in Source Extractor: optimized matched filter for variable noise in source extraction; circular annulus and elliptical annulus aperture photometry functions; local background subtraction in shape consistent with aperture in aperture photometry functions; exact pixel overlap mode in all aperture photometry functions; and masking of elliptical regions on images.

[ascl:1807.026] SENR: Simple, Efficient Numerical Relativity

SENR (Simple, Efficient Numerical Relativity) provides the algorithmic framework that combines the C codes generated by NRPy+ (ascl:1807.025) into a functioning numerical relativity code. It is part of the numerical relativity code package SENR/NRPy+. The package extends previous implementations of the BSSN reference-metric formulation to a much broader class of curvilinear coordinate systems, making it suitable for modeling physical configurations with approximate or exact symmetries, such as modeling black hole dynamics.

[ascl:2012.003] Sengi: Interactive viewer for spectral outputs from stellar population synthesis models

Sengi enables online viewing of the spectral outputs of stellar population synthesis (SPS) codes. Typical SPS codes require significant disk space or computing resources to produce spectra for simple stellar populations with arbitrary parameters, making it difficult to present their results in an interactive, web-friendly format. Sengi uses Non-negative Matrix Factorisation (NMF) and bilinear interpolation to estimate output spectra for arbitrary values of stellar age and metallicity; this reduces the disk requirements and computational expense, allowing Sengi to serve the results in a client-based Javascript application.

Would you like to view a random code?