ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Edsjö, Joakim'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1110.002] DarkSUSY: Supersymmetric Dark Matter Calculations

DarkSUSY, written in Fortran, is a publicly-available advanced numerical package for neutralino dark matter calculations. In DarkSUSY one can compute the neutralino density in the Universe today using precision methods which include resonances, pair production thresholds and coannihilations. Masses and mixings of supersymmetric particles can be computed within DarkSUSY or with the help of external programs such as FeynHiggs, ISASUGRA and SUSPECT. Accelerator bounds can be checked to identify viable dark matter candidates. DarkSUSY also computes a large variety of astrophysical signals from neutralino dark matter, such as direct detection in low-background counting experiments and indirect detection through antiprotons, antideuterons, gamma-rays and positrons from the Galactic halo or high-energy neutrinos from the center of the Earth or of the Sun.

[ascl:1708.030] GAMBIT: Global And Modular BSM Inference Tool

GAMBIT (Global And Modular BSM Inference Tool) performs statistical global fits of generic physics models using a wide range of particle physics and astrophysics data. Modules provide native simulations of collider and astrophysics experiments, a flexible system for interfacing external codes (the backend system), a fully featured statistical and parameter scanning framework, and additional tools for implementing and using hierarchical models.

[ascl:2011.029] DarkBit: Dark matter constraints calculator

DarkBit computes dark matter constraints on extensions to the Standard Model of particle physics. Written in the GAMBIT (ascl:1708.030) framework, it seamlessly integrates with other tools in the statistical fitting framework; it is also available as a standalone tool. It offers a signal yield calculator for gamma-ray observations, provides likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes, and provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states.

[ascl:2011.030] DDCalc: Dark matter direct detection phenomenology package

DDCalc performs various dark matter direct detection calculations, including signal rate predictions, constraints on light DM, and likelihoods for several experiments. It offers eighteen non-relativistic effective operators to describe velocity and momentum transfer, and elastic scattering of DM particles off nucleons, and has an extended detector interface.