Astrophysics Source Code Library

Making codes discoverable since 1999

Welcome to the ASCL

The Astrophysics Source Code Library (ASCL) is a free online registry for source codes of interest to astronomers and astrophysicists, including solar system astronomers, and lists codes that have been used in research that has appeared in, or been submitted to, peer-reviewed publications. The ASCL is indexed by the SAO/NASA Astrophysics Data System (ADS) and Web of Science and is citable by using the unique ascl ID assigned to each code. The ascl ID can be used to link to the code entry by prefacing the number with (i.e.,

Most Recently Added Codes

2020 Jun 30

[ascl:2006.023] deepSIP: deep learning of Supernova Ia Parameters

deepSIP (deep learning of Supernova Ia Parameters) measures the phase and light-curve shape of a Type Ia Supernova (SN Ia) from an optical spectrum. The package contains a set of three trained Convolutional Neural Networks (CNNs) for the aforementioned purposes, but tools for preprocessing spectra, modifying the neural architecture, training models, and sweeping through hyperparameters are also included.

[ascl:2006.022] MCSED: Spectral energy distribution fitting package for galactic systems

MCSED models the optical, near-infrared and infrared spectral energy distribution (SED) of galactic systems. Its modularity and options make it flexible and able to address the varying physical properties of galaxies over cosmic time and environment and adjust to changes in understanding of stellar evolution, the details of mass loss, and the products of binary evolution through substitution or addition of new datasets or algorithms. MCSED is built to fit a galaxy’s full SED, from the far-UV to the far-IR. Among other physical processes, it can model continuum emission from stars, continuum and line-emission from ionized gas, attenuation from dust, and mid- and far-IR emission from dust and polycyclic aromatic hydrocarbons (PAHs). MCSED performs its calculations by creating a complex stellar population (CSP) out of a linear combination of simple-stellar populations (SSPs) using an efficient Markov Chain Monte Carlo algorithm. It is very quick, and takes advantage of parallel processing.

[ascl:2006.021] FAMED: Extraction and mode identification of oscillation frequencies for solar-like pulsators

The FAMED (Fast and AutoMated pEak bagging with Diamonds) pipeline is a multi-platform parallelized software that performs and automates extraction and mode identification of oscillation frequencies for solar-like pulsators. The pipeline can be applied to a large variety of stars, ranging from hot F-type main sequence, up to stars evolving along the red giant branch, settled into the core-Helium-burning main sequence, and even evolved beyond towards the early asymptotic giant branch. FAMED is based on DIAMONDS (ascl:1410.001), a Bayesian parameter estimation and model comparison by means of the nested sampling Monte Carlo (NSMC) algorithm.

[ascl:2006.020] GenetIC: Initial conditions generator for cosmological simulations

GenetIC generates initial conditions for cosmological simulations, especially for zoom simulations of galaxies. It provides support for "genetic modifications" of specific attributes of simulations to allow study of the impact of such modifications on the outcomes; the code can also produce constrained initial conditions.

[ascl:2006.019] TATOO : Tidal-chronology Age TOOl

TATOO (Tidal-chronology Age TOOl) estimates the age of massive close-in planetary systems, even those subject to tidal spin-up, using the systems' observed properties: the mass of the planet and the star, stellar rotational, and planetary orbital periods. It can also be used as a classical gyrochronological tool and offers first order correction of the impact of tidal interaction on gyrochronology.

[ascl:2006.018] Powderday: Dust radiative transfer package

The dust radiative transfer software Powderday interfaces with galaxy formation simulations to produce spectral energy distributions and images. The code uses fsps (ascl:1010.043) and its Python bindings python-fsps for stellar SEDs, Hyperion (ascl:1207.004) for dust radiative transfer, and works with a variety of packages, including Arepo (ascl:1909.010), Changa (ascl:1105.005), Gasoline (ascl:1710.019), and Gizmo (ascl:1410.003); threaded throughout is yt (ascl:1011.022).

[ascl:2006.017] AstroCatR: Time series reconstruction of large-scale astronomical catalogs

AstroCatR reconstructs celestial objects' time series data for astronomical catalogs. It is a command-line program running on the Linux platform and is implemented in C and Python; AstroCatR's capabilities are based on specialized sky partitioning and MPI parallel programming. The package contains three parts: ETL (extract-transform-load) pre-processing, TS-matching calculation, and time series data retrieval. Once the user obtains the original catalogs, running ETL pre-processing generates a sky zoning file. The TS-matching module marks celestial objects, and finally, running the Query program searches celestial objects from the time series datasets which matched with the target.

[ascl:2006.016] PyPopStar: Single-age, single-metallicity populations generator

PyPopStar generates single-age, single-metallicity populations (i.e., star clusters). The software provides control over different parameters, including cluster characteristics (age, metallicity, mass, distance); total extinction, differential extinction, and extinction law; stellar evolution and atmosphere models; stellar multiplicity and Initial Mass Function; and photometric filters. PyPopStar can be used to create a cluster isochrone in many filters using different stellar models, generate a star cluster at any age with an unusual IMF and unresolved multiplicity, and make a spectrum of a star cluster in integrated light.

[ascl:2006.015] ARCHI: Add-on pipeline module for background star analysis from CHEOPS data

The CHaracterizing ExOPlanet Satellite (CHEOPS) mission pipeline provides photometry for the central star in its field; ARCHI takes in data from the CHEOPS mission pipeline, analyzes the background stars, and determines the photometry of these stars, thus creating the possibility of producing photometric time-series of several close-by targets at once, in addition to using different stars in the image to calibrate systematic errors.

[ascl:2006.014] CARACal: Containerized Automated Radio Astronomy Calibration pipeline

CARACal (Containerized Automated Radio Astronomy Calibration, formerly MeerKATHI) reduces radio-interferometric data. Developed originally as an end-to-end continuum- and line imaging pipeline for MeerKAT, it can also be used with other radio telescopes. CARACal reduces large data sets and produces high-dynamic-range continuum images and spectroscopic data cubes. The pipeline is platform-independent and delivers imaging quality metrics to efficiently assess the data quality.