Astrophysics Source Code Library

Making codes discoverable since 1999

Welcome to the ASCL

The Astrophysics Source Code Library (ASCL) is a free online registry for source codes of interest to astronomers and astrophysicists and lists codes that have been used in research that has appeared in, or been submitted to, peer-reviewed publications. The ASCL is indexed by the SAO/NASA Astrophysics Data System (ADS) and is citable by using the unique ascl ID assigned to each code. The ascl ID can be used to link to the code entry by prefacing the number with (i.e.,

Most Recently Added Codes

2018 Sep 25

[submitted] PASTA: Python Astronomical Stacking Tool Array

PASTA is a software package written in the Python programming language for median stacking of astronomical sources. It includes a number of features for filtering sources, outputting stack statistics, generating Karma annotations, formatting sourcelists, and reading information from stacked Flexible Image Transport System (FITS) images. PASTA was originally written to examine polarization stack properties, and it includes a Monte Carlo modeller for obtaining true polarized intensity from the observed polarization of a stack. PASTA is also useful as a generic stacking tool, even if polarization properties are not being examined.

2018 Sep 15

[submitted] spops: Spinning black-hole binary population synthesis

spops is a database of populations synthesis simulations of spinning black-hole binary systems, together with a python module to query it. Data are obtained with the startrack and precession [ascl:1611.004] numerical codes to consistently evolve binary stars from formation to gravitational-wave detection. spops allows to quickly explore the interplay between stellar physics and black-hole spin dynamics.

2018 Sep 13

[submitted] PCCDPACK - Polarimetry with CCD

PCCDPACK is set of routines written in CL-IRAF (including compiled Fortran codes), to analyze polarimetry data. The package lets to analyze dozens of point objects simultaneosly on the same CCD image. In additional, a subpackage (specpol) is also included to analyse spectropolarimetry data.

2018 Sep 04

[submitted] LEMON: Differential photometry for humans (and astronomers)

LEMON is a differential-photometry pipeline, written in Python, that determines the changes in the brightness of astronomical objects over time and compiles their measurements into light curves. This code makes it possible to completely reduce thousands of FITS images of time series in a matter of only a few hours, requiring minimal user interaction.

2018 Aug 31

[ascl:1808.011] Robbie: Radio transients and variables detection workflow

Robbie automates cataloging sources, finding variables, and identifying transients in the image domain. It works in a batch processing paradigm with a modular design so components can be swapped out or upgraded to adapt to different input data while retaining a consistent and coherent methodological approach. Robbie is based on commonly used and open software, including AegeanTools (ascl:1212.009) and STILS/TOPCAT (ascl:1101.010).

2018 Aug 30

[ascl:1808.010] hi_class: Horndeski in the Cosmic Linear Anisotropy Solving System

hi_class implements Horndeski's theory in the modern Cosmic Linear Anisotropy Solving System (ascl:1106.020). It can be used to compute any linear observable in seconds, including cosmological distances, CMB, matter power and number count spectra. hi_class can be readily interfaced with Monte Python (ascl:1307.002) to test Gravity and Dark Energy models.

2018 Aug 29

[ascl:1808.009] py-sdm: Support Distribution Machines

py-sdm (Support Distribution Machines) is a Python implementation of nonparametric nearest-neighbor-based estimators for divergences between distributions for machine learning on sets of data rather than individual data points. It treats points of sets of data as samples from some unknown probability distribution and then statistically estimates the distance between those distributions, such as the KL divergence, the closely related Rényi divergence, L2 distance, or other similar distances.

[ascl:1808.008] PyMieDap: Python Mie Doubling Adding Program

PyMieDAP (Python Mie Doubling Adding Program) makes light scattering computations with Mie scattering and radiative transfer computations with full orders of scattering and taking into account the polarization of the light scattered. Full planet modeling at any phase angle is possible. With the included subpackage exopy, it is also possible to simulate systems with a star, a planet and a possible moon.

[ascl:1808.007] 2DSF: Vectorized Structure Function Algorithm

The vectorized physical domain structure function (SF) algorithm calculates the velocity anisotropy within two-dimensional molecular line emission observations. The vectorized approach is significantly faster than brute force iterative algorithms and is very efficient for even relatively large images. Furthermore, unlike frequency domain algorithms which require the input data to be fully integrable, this algorithm, implemented in Python, has no such requirements, making it a robust tool for observations with irregularities such as asymmetric boundaries and missing data.

[ascl:1808.006] Fips: An OpenGL based FITS viewer

FIPS is a cross-platform FITS viewer with a responsive user interface. Unlike other FITS viewers, FIPS uses GPU hardware via OpenGL to provide functionality such as zooming, panning and level adjustments. OpenGL 2.1 and later is supported. FIPS supports all 2D image formats except floating point formats on OpenGL 2.1. FITS image extension has basic limited support.