ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 3438-6874 of 3450 (3367 ASCL, 83 submitted)

Previous12
Next
Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:2403.012] Pylians3: Libraries to analyze numerical simulations in Python 3

Pylians3 (Python3 libraries for the analysis of numerical simulations) provides a Python 3 version of Pylians (ascl:1811.008), which analyzes numerical simulations (both N-body and hydrodynamic); parts of the codebase are also written in cython and C. It computes density fields, power spectra, bispectra, and correlation functions, identifies voids, and populates halos with galaxies using an HOD. Pylians3 also applies HI+H2 corrections to the output of hydrodynamic simulations, make 21cm maps, computes DLAs column density distribution functions, and can plot density fields and make movies.

[ascl:2403.013] URecon: Reconstruct initial conditions of N-Body simulations

URecon reconstructs the initial conditions of N-body simulations from late time (e.g., z=0) density fields. This simple UNET architecture is implemented in TensorFlow and requires Pylians3 (ascl:2403.012) for measuring power spectrum of density fields. The package includes weights trained on Quijote fiducial cosmology simulations.

[ascl:2403.014] OneLoopBispectrum: Computation of the one-loop bispectrum of galaxies in redshift space

OneLoopBispectrum computes the one-loop bispectrum of galaxies in redshift space. It computes and simplifies the bispectrum kernels using Mathematica; this is cosmology-independent. The code also computes the full and flattened bispectrum templates, given the pre-computed integration kernels. OneLoopBispectrum uses Mathematica to read in and combine the bispectrum templates, and Python to interpolate and extract the one-loop bispectrum.

[ascl:2403.015] CLASS-PT: Nonlinear perturbation theory extension of the Boltzmann code CLASS

CLASS-PT modifies the CLASS (ascl:1106.020) code to compute the non-linear power spectra of dark matter and biased tracers in one-loop cosmological perturbation theory, for both Gaussian and non-Gaussian initial conditions. CLASS-PT can be interfaced with the MCMC sampler MontePython (ascl:1805.027) using the (new and improved) custom-built likelihoods found here.

[ascl:2403.016] DensityFieldTools: Manipulating density fields and measuring power spectra and bispectra

The DensityFieldTools toolset manipulates density fields and measures power spectra and bispectra using a very simple interface. After loading a density field, it computes the power spectrum and the bispectrum for a desired binning. The bispectrum estimator also automatically computes the power spectrum for the chosen binning, to facilitate, for example, shot-noise subtraction. DensityFieldTools also provides a quick way to measure (cross-)power spectra directly from density fields.

[submitted] obsplanning - a set of python utilities to aid in planning astronomical observations

Obsplanning is a suite of tools to help plan astronomical observations from ground-based observatories, for traditional single-site as well as multi-station (VLBI) observing. Conveniently determine observability of objects in the sky from your observatory, and produce plots to help you prepare for your observations over the course of a session. Celestial source coordinates (including solar system objects) can be queried or created, and transformed. Calibrator or reference sources can be selected by proximity, and slew order can be optimized to save valuable telescope time. Plots and visualizations can be easily made to chart source elevation and transits, source proximity to the Sun and Moon, concurrent 'up time' of sources at multiple sites (for VLBI or tandem observations), 'dark time' at a telescope site for a given year, finder plots made from real images (with options to query online databases), and more.

[submitted] pysymlog - Symmetric (signed) logarithm scale for your python plots

This package provides some utilities for binning, normalizing colors, wrangling tick marks, and more, in symmetric logarithm space. That is, for numbers spanning positive and negative values, working in log scale with a transition through zero, down to some threshold. This can be quite useful for representing data that span many scales like standard log-space, but that include values of zero (that might be returned by physical measurement) or even negative values (for example offsets from some reference, or things like temperatures). This package provides convenient functions for creating 1D and 2D histograms and symmetric log bins, generating logspace-like arrays through zero and managing matplotlib major and minor ticks in symlog space, as well as bringing symmetric log scaling functionality to plotly.

[ascl:2404.001] cbeam: Coupled-mode propagator for slowly-varying waveguides

cbeam models the propagation of guided light through slowly-varying few-mode waveguides using the coupled-mode theory (CMT). When compared with more general numerical methods for waveguide simulation, such as the finite-differences beam propagation method (FD-BPM), numerical implementations of the CMT can be much more computationally efficient. Written in Python and Julia, the package provides a Pythonic class structure to define waveguides, with simple classes for directional couplers and photonic lanterns already provided. cbeam also doubles as a finite-element eigenmode solver.

[ascl:2404.002] PIPE: Extracting PSF photometry from CHEOPS data

PIPE (PSF Imagette Photometric Extraction) extracts PSF (point-spread function) photometry from data acquired by the space telescope CHEOPS (CHaracterisation of ExOPlanetS). Advantages of PSF photometry over standard aperture photometry include reduced sensitivity to contaminants such as background stars, cosmic ray hits, and hot/bad pixels. For CHEOPS, an additional advantage is that photometry can be extracted from an imagette, a small window around the target that is downlinked at a shorter cadence than the larger-sized subarray used for aperture photometry. These advantages make PIPE particularly well suited for targets brighter or fainter than the nominal G = 7-11 mag range of CHEOPS, i.e., where short-cadence imagettes are available (bright end) or when contamination becomes a problem (faint end). Within the nominal range, PIPE usually offers no advantage over the standard aperture photometry.

[ascl:2404.003] KCWIKit: KCWI Post-Processing and Improvements

KCWIKit extends the official KCWI DRP (ascl:2301.019) with a variety of stacking tools and DRP improvements. The software offers masking and median filtering scripts to be used while running the KCWI DRP, and a step-by-step KCWI_DRP implementation for finer control over the reduction process. Once the DRP has finished, KCWIKit can be used to stack the output cubes via the Montage package. Various functions cross-correlate and mosaic the constituent cubes and the final stacked cubes are WCS corrected. Helper functions can then be used to deproject the stacked cube into lower-dimensional representations should the user desire.

[ascl:2404.004] TAT: Timing Analysis Toolkit for high-energy pulsar astrophysics

TAT-pulsar (Timing Analysis Toolkit for Pulsars) analyzes, processes, and visualizes pulsar data, thus handling the scientific intricacies of pulsar timing. By leveraging observational data from pulsars, along with the associated physical processes and statistical characteristics, the package integrates a suite of Python-based tools and data analysis scripts specifically developed for both isolated pulsars and binary systems. This enables swift analysis and the detailed presentation of timing properties in the high-energy pulsar field. Developed and implemented completely independently from other pulsar timing software such as Stingray (ascl:1608.001) and PINT (ascl:1902.007), TAT-pulsar serves as a valuable cross-checking and supplementary tool for data analysis.

[ascl:2404.005] GalMOSS: GPU-accelerated galaxy surface brightness fitting via gradient descent

GalMOSS performs two-dimensional fitting of galaxy profiles. This Python-based, Torch-powered tool seamlessly enables GPU parallelization and meets the high computational demands of large-scale galaxy surveys. It incorporates widely used profiles such as the Sérsic, Exponential disk, Ferrer, King, Gaussian, and Moffat profiles, and allows for the easy integration of more complex models. Tested on over 8,000 galaxies from the Sloan Digital Sky Survey (SDSS) g-band with a single NVIDIA A100 GPU, GalMOSS completed classical Sérsic profile fitting in about 10 minutes. Benchmark tests show that GalMOSS achieves computational speeds that are significantly faster than those of default implementations.

[ascl:2404.006] PolyBin3D: Binned polyspectrum estimation for 3D large-scale structure

PolyBin3D estimates the binned power spectrum and bispectrum for 3D fields such as the distributions of matter and galaxies. For each statistic, two estimators are available: the standard (ideal) estimators, which do not take into account the mask, and window-deconvolved estimators. In the second case, the computation of a Fisher matrix is required; this depends on binning and the mask, but does not need to be recomputed for each new simulation. PolyBin3D supports GPU acceleration using JAX. It is a sister code to PolyBin (ascl:2307.020), which computes the polyspectra of data on the two-sphere, and is a modern reimplementation of the former Spectra-Without-Windows (ascl:2108.011) code.

Previous12
Next

Would you like to view a random code?