ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 2901-3000 of 3572 (3481 ASCL, 91 submitted)

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:2207.010] Helios-r2: Bayesian nested-sampling retrieval code

Helios-r2 performs atmospheric retrieval of brown dwarf and exoplanet spectra. It uses a Bayesian statistics approach by employing a nested sampling method to generate posterior distributions and calculate the Bayesian evidence. The nested sampling itself is done by Multinest (ascl:1109.006). The computationally most demanding parts of the model have been written in NVIDIA's CUDA language for an increase in computational speed. Successful applications include retrieval of brown dwarf emission spectra and secondary eclipse measurements of exoplanets.

[ascl:2207.011] samsam: Scaled Adaptive Metropolis SAMpler

The samsam package provides two samplers, a scaled adaptive metropolis algorithm to robustly obtain samples from a target distribution, and a covariance importance sampling algorithm to efficiently compute the model evidence (or other integrals). It also includes tools to assess the convergence of the sam sampler and a few commonly used prior distributions.

[ascl:2207.012] ExoCTK: Exoplanet Characterization Tool Kit

The Exoplanet Characterization ToolKit (ExoCTK) focuses primarily on the atmospheric characterization of exoplanets and provides tools for time-series observation planning, forward modeling, data reduction, limb darkening, light curve fitting, and retrievals. It contains calculators for contamination, visibility, integrations and groups, and includes several Jupyter Notebooks to aid in learning how to use the various tools included in the ExoCTK package.

[ascl:2207.013] MuSCAT2_transit_pipeline: MuSCAT2 photometry and transit analysis pipelines

MuSCAT2_transit_pipeline provides photometry and transit analysis pipelines for MuSCAT2. It consists of a set of executable scripts and two Python packages: muscat2ph for photometry, and muscat2ta for transit analysis. The MuSCAT2 photometry can be carried out using the scripts only. The transit analysis can also in most cases be done using the main transit analysis script m2fit, but the muscat2ta package also offers high-level classes that can be used to carry out more customized transit analysis as a Python script (or Jupyter notebook).

[ascl:2207.014] petitRADTRANS: Exoplanet spectra calculator

petitRADTRANS (pRT) calculates transmission and emission spectra of exoplanets for clear and cloudy planets. It also incorporates an easy subpackage for running retrievals with nested sampling. It allows the calculation of emission or transmission spectra, at low or high resolution, clear or cloudy, and includes a retrieval module to fit a petitRADTRANS model to spectral data. pRT has two different opacity treatment modes. The low resolution mode runs calculations at λ/Δλ ≤ 1000 using the so-called correlated-k treatment for opacities. The high resolution mode runs calculations at λ/Δλ ≤ 106, using a line-by-line opacity treatment.

[ascl:2207.015] calviacat: Calibrate star photometry by catalog comparison

calviacat calibrates star photometry by comparison to a catalog, including PanSTARRS 1, ATLAS-RefCat2, and SkyMapper catalogs. Catalog queries are cached so that subsequent calibrations of the same or similar fields can be more quickly executed.

[ascl:2207.016] DustPy: Simulation of dust evolution in protoplanetary disks

DustPy simulates the radial evolution of gas and dust in protoplanetary disks, involving viscous evolution of the gas disk and advection and diffusion of the dust disk, as well as dust growth by solving the Smoluchowski equation. The package provides a standard simulation and the ability to plot results, and also allows modification of the initial conditions for dust, gas, the grid, and the central star.

[ascl:2207.017] LOTUS: 1D Non-LTE stellar parameter determination via Equivalent Width method

LOTUS (non-LTE Optimization Tool Utilized for the derivation of atmospheric Stellar parameters) derives stellar parameters via Equivalent Width (EW) method with the assumption of 1D non-local thermodynamic equilibrium. It mainly applies on the spectroscopic data from high resolution spectral survey. It can provide extremely accurate measurement of stellar parameters compared with non-spectroscopic analysis from benchmark stars. LOTUS provides a fast optimizer for obtaining stellar parameters based on Differential Evolution algorithm, well constrained uncertainty of derived stellar parameters from slice-sampling MCMC from PyMC3 (ascl:1610.016), and can interpolate the Curve of Growth from theoretical EW grid under the assumptions of LTE and Non-LTE. It also visualizes excitation and ionization balance when at the optimal combination of stellar parameters.

[ascl:2207.018] pocoMC: Preconditioned Monte Carlo method for accelerated Bayesian inference

pocoMC performs Bayesian inference, including model comparison, for challenging scientific problems. The code utilizes a normalizing flow to precondition the target distribution by removing any correlations between its parameters. pocoMC then generates posterior samples, used for parameter estimation, with a powerful adaptive Sequential Monte Carlo algorithm manifesting a sampling efficiency that can be orders of magnitude higher than without precondition. Furthermore, pocoMC also provides an unbiased estimate of the model evidence that can be used for the task of Bayesian model comparison. The code is designed to excel in demanding parameter estimation problems that include multimodal and highly non–Gaussian target distributions.

[ascl:2207.019] walter: Predictor for the number of resolved stars in a given observation from RST

walter calculates the number density of stars detected in a given observation aiming to resolve a stellar population. The code also calculates the exposure time needed to reach certain population features, such as the horizontal branch, and provides an estimate of the crowding limit. walter was written with the expectation that such calculations will be very useful for planning surveys with the Nancy Grace Roman Space Telescope (RST, formerly WFIRST).

[ascl:2207.020] vKompth: Time-dependent Comptonization model for black-hole X-ray binaries

vKompth fits the energy-dependent rms-amplitude and phase-lag spectra of low-frequency quasi-periodic oscillations in low mass black-hole X-ray binaries using a variable Comptonization model. The accretion disc is modeled as a multi-temperature blackbody source emitting soft photons which are then Compton up-scattered in a spherical corona, including feedback of Comptonized photons that return to the disc.

[ascl:2207.021] BAYGAUD: BAYesian GAUssian Decomposer

BAYGAUD (BAYesian GAUssian Decomposer) implements the decomposition of velocity profiles in a data cube and subsequent classification. It uses MultiNest (ascl:1109.006) for calculating the posterior distribution and the evidence for a given likelihood function. The code models a given line profile with an optimal number of Gaussians based on the Bayesian Markov Chain Monte Carlo (MCMC) techniques. BAYGAUD is parallelized using the Message-Passing Interface (MPI) standard, which reduces the time needed to calculate the evidence using MCMC techniques.

[ascl:2207.022] triple-stability: Triple-star system stability determinator

triple-stability uses a simple form of an artificial neural network, a multi-layer perceptron, to check whether a given configuration of a triple-star system is dynamically stable. The code is written in Python and the MLP classifier can be imported to other custom Python3 scripts.

[ascl:2207.023] MCFOST: Radiative transfer code

MCFOST is a 3D continuum and line radiative transfer code based on an hybrid Monte Carlo and ray-tracing method. It is mainly designed to study the circumstellar environment of young stellar objects, but has been used for a wide range of astrophysical problems. The calculations are done exactly within the limitations of the Monte Carlo noise and machine precision, i.e., no approximation are used in the calculations. The code has been strongly optimized for speed.

MCFOST is primarily designed to study protoplanetary disks. The code can reproduce most of the observations of disks, including SEDs, scattered light images, IR and mm visibilities, and atomic and molecular line maps. As the Monte Carlo method is generic, any complex structure can be handled by MCFOST and its use can be extended to other astrophysical objects. For instance, calculations have succesfully been performed on infalling envelopes and AGB stars. MCFOST also includes a non-LTE line transfer module, and NLTE level population are obtained via iterations between Monte Carlo radiative transfer calculations and statistical equilibrium.

[ascl:2207.024] pymcfost: Python interface to the MCFOST 3D radiative transfer code

pymcfost provides an interface to and can be used to visualize results from the 3D radiative transfer code MCFOST (ascl:2207.023). pymcfost can set up continuum and line models, read a single model or library of models, plot basic quantities such as density structures and temperature maps, and plot observables, including SEDs, polarization maps, visibilities, and channels maps (with spatial and spectral convolution). It can also convert units (e.g. W.m-2 to Jy or brightness temperature), and it provides an interface to the ALMA CASA simulator (ascl:1107.013).

[ascl:2207.025] casa_cube: Display and analyze astronomical data cubes

casa_cube provides an interface to data cubes generated by CASA (ascl:1107.013) or Gildas (ascl:1305.010). It performs simple tasks such as plotting given channel maps, moment maps, and line profile in various units, and also corrects for cloud extinction, reconvolves with a beam taper, and permits quick and easy comparisons with models.

[ascl:2207.026] pdspy: MCMC tool for continuum and spectral line radiative transfer modeling

pdspy fits Monte Carlo radiative transfer models for protostellar/protoplanetary disks to ALMA continuum and spectral line datasets using Markov Chain Monte Carlo fitting. It contains two tools, one to fit ALMA continuum visibilities and broadband spectral energy distributions (SEDs) with full radiative transfer models, and another to fit ALMA spectral line visibilities with protoplanetary disk models that include a vertically isothermal, power law temperature distribution. No radiative equilibrium calculation is done.

[ascl:2207.027] ConeRot: Velocity perturbations extractor

ConeRot extracts velocity perturbations in protoplanetary disks from observed line centroids maps ν∘, by creating axially-symmetric centroid maps. It also derives 3D rotation curves in disk-centered cylindrical coordinates, and can estimate the disk orientation based on line data alone. It approximates the unit opacity surface of an axially symmetric disc by a series of cones whose orientations are fit to the observed velocity centroid in concentric radial domains, or regions, with the disc orientation and the rotation curve both optimized to fit ν∘ in each region. ConeRot extracts the perturbations directly from observations without strong assumptions about the underlying disk model and employs a reduced number of free parameters.

[ascl:2207.028] disksurf: Measure the molecular emission surface of protoplanetary disks

disksurf measures the height of optically thick emission or photosphere in moderately inclined protoplanetary disks. The package is dependent on AstroPy (ascl:1304.002) and uses GoFish (ascl:2011.016) to retrieve data from FITS data cubes and user-specified parameters to return a surface object containing the disk-centric coordinates of the surface and the gas temperature and rotation velocity at those locations. disksurf provides clipping, smoothing, and diagnostic functions as well.

[ascl:2207.029] ParticleGridMapper: Particle data interpolator

ParticleGridMapper.jl interpolates particle data onto either a Cartesian (uniform) grid or an adaptive mesh refinement (AMR) grid where each cell contains no more than one particle. The AMR grid can be trimmed with a user-defined maximum level of refinement. Three different interpolation schemes are supported: nearest grid point (NGP), smoothed-particle hydrodynamics (SPH), and Meshless finite mass (MFM). It is multi-threading parallel.

[ascl:2207.030] Analysis of dipole alignment in large-scale distribution of galaxy spin directions

This code analyzes a dipole axis in the distribution of galaxy spin directions. The code takes as input a list of galaxies, their equatorial coordinates, and their spin directions. It then determines the statistical significance of possible dipole axis at any point in the sky by comparing the cosine dependence of the spin directions to the mean and standard deviation of the cosine dependence after 2000 runs with random spin directions. A code to analyze the binomial distribution of the spin directions using Monte Carlo simulation is also available.

[ascl:2207.031] BANZAI: Beautiful Algorithms to Normalize Zillions of Astronomical Images

BANZAI (Beautiful Algorithms to Normalize Zillions of Astronomical Images) processes raw data taken from Las Cumbres Observatory and produces science quality data products. It is capable of reducing single or multi-extension fits files. For historical data, BANZAI can also reduce the data cubes that were produced by the Sinistro cameras.

[ascl:2207.032] gwdet: Detectability of gravitational-wave signals from compact binary coalescences

gwdet computes the probability of detecting a gravitational-wave signal from compact binaries averaging over sky-location and source inclination. The code has two classes, averageangles and detectability. averageangles computes the detection probability, averaged over all angles (such as sky location, polarization, and inclination), as a function of the projection parameter. detectability computes the detection probability of a non-spinning compact binary.

[ascl:2207.033] piXedfit: Analyze spatially resolved SEDs of galaxies

piXedfit provides a self-contained set of tools for analyzing spatially resolved properties of galaxies using imaging data or a combination of imaging data and the integral field spectroscopy (IFS) data. piXedfit has six modules that can handle all tasks in the analysis of the spatially resolved SEDs of galaxies, including images processing, a spatial-matching between reduced broad-band images with an IFS data cube, pixel binning, performing SED fitting, and making visualization plots for the SED fitting results.

[ascl:2207.034] SSHT: Fast spin spherical harmonic transforms

SSHT performs fast and exact spin spherical harmonic transforms; functionality is also provided to perform fast and exact adjoint transforms, forward and inverse transforms, and spherical harmonic transforms for a number of alternative sampling schemes. The code can interface with DUCC (ascl:2008.023) and use it as a backend for spherical harmonic transforms and rotations.

[ascl:2207.035] massmappy: Mapping dark matter on the celestial sphere

massmappy recovers convergence mass maps on the celestial sphere from weak lensing cosmic shear observations. It relies on SSHT (ascl:2207.034) and HEALPix (ascl:1107.018) to handle sampled data on the sphere. The spherical Kaiser-Squires estimator is implemented.

[submitted] BMarXiv

BMarXiv scans new (i.e., since the last time checked) submissions from arXiv, ranks submissions based on keyword matches, and produces an HTML page as an output.

The keywords are looked for (with regex capabilities) in the title, abstract, but also the author list, so it is possible to look for people too. The score is calculated for each specific entry but additional (and optional) scoring is performed using the first author recent submissions and/or the other authors' recent submissions.

It is possible to include/exclude any arXiv categories (within astro-ph or not). New astronomical conferences (from CADC by default) and new codes (from ASCL.net) are also checked and can also be scanned for keywords.

A local bibliography file can be scanned to find frequent words/groups of words that could become scanned keywords.

[submitted] Eidein: Interactive Visualization Tool for Deep Active Learning

Eidein interactively visualizes a data sample for the selection of an informative (contains data with high predictive uncertainty, is diverse, but not redundant) data subsample for deep active learning. The data sample is projected to 2-D with a dimensionality reduction technique. It is visualized in an interactive scatter plot that allows a human expert to select and annotate the data subsample.

[ascl:2208.001] BlaST: Synchrotron peak estimator for blazars

BlaST (Blazar Synchrotron Tool) estimates the synchrotron peak of blazars given their spectral energy distribution. It uses a machine-learning algorithm that simplifies the estimation and also provides a reliable uncertainty estimation. The package naturally accounts for additional SED components from the host galaxy and the disk emission. BlaST also supports bulk estimation, e.g. estimating a whole catalog, by providing a directory or zip file containing the seds as well as an output file in which to write the results.

[ascl:2208.002] qrpca: QR-based Principal Components Analysis

qrpca uses QR-decomposition for fast principal component analysis. The software is particularly suited for large dimensional matrices. It makes use of torch for internal matrix computations and enables GPU acceleration, when available. Written in both R and python languages, qrpca provides functionalities similar to the prcomp (R) and sklearn (python) packages.

[ascl:2208.003] Scatfit: Scattering fits of time domain radio signals (Fast Radio Bursts or pulsars)

Scatfit models observed burst signals of impulsive time domain radio signals ( e.g., Fast Radio Bursts (FRBs) or pulsars pulses), which usually are convolution products of various effects, and fits them to the experimental data. It includes several models for scattering and instrumental effects. The code loads the experimental time domain radio data, cleans them, fits an aggregate scattering model to the data, and robustly estimates the model parameters and their uncertainties. Additionally, scatfit determines the scaling of the scattering time with frequency, i.e. the scattering index, and the scattering-corrected dispersion measure of the burst or pulse.

[ascl:2208.004] TOM Toolkit: Target and Observation Manager Toolkit

The TOM Toolkit combines a flexible, searchable database of all information related to a scientific research project, with an observation and data analysis control system, and communication and data visualization tools. This Toolkit includes a fully operational TOM (Target and Observation Manager) system in addition to a range of optional tools for specific tasks, including interfaces to widely-used observing facilities and data archives and data visualization tools. With TOM Toolkit, project teams can develop and customize a system for their own science goals, without needing specialist expertise in databasing.

[ascl:2208.005] Asymmetric Uncertainty: Handling nonstandard numerical uncertainties

Asymmetric Uncertainty implements and provides an object class for dealing with uncertainties for physical quantities that are not symmetric. Instances of the class behave appropriately with other numeric objects under most mathematical operations, and the associated errors propagate accordingly. The class also provides utilities such as methods for evaluating and plotting probability density functions, as well as capabilities for handling arrays of such objects. Standard and symmetric uncertainties are also supported.

[ascl:2208.006] ThermoEngine: Thermodynamic properties estimator and phase equilibrium calculator

ThermoEngine estimates the thermodynamic properties of minerals, fluids, and melts, and calculates phase equilibriums. The Equilibrate module of ThermoEngine provides Python functions and classes for computing equilibrium phase assemblages with focus on MELTS calculations. The Phases module includes Python functions and classes for computing standard thermodynamic calculations utilizing the Berman, Holland and Powell, or Stixrude-Lithgow-Bertelloni endmember databases, and calculations based on solution properties utilized by MELTS. There are many helper functions available in this module that assist in the calculation of pseudosections, univariant equilibria and the construction of phase diagrams.

[ascl:2208.007] VapoRock: Modeling magma ocean atmospheres and stellar nebula

VapoRock calculates the equilibrium partial pressures of metal-bearing gas species of specific elements above the magma ocean surface to determine the metal-bearing composition of the atmosphere as a function of temperature and the bulk composition of the magma ocean. It utilizes ENKI's ThermoEngine (ascl:2208.006) and combines estimates for element activities in silicate melts with thermodynamic data for metal and metal oxide vapor species.

[ascl:2208.008] RJ-plots: Automated objective classification of 2D structures

RJ-plots uses a moments of inertia method to disentangle a 2D structure's elongation from its centrally over/under-density, thus providing a means for the automated and objective classification of such structures. It may be applied to any 2D pixelated image such as column density maps or moment zero maps of molecular lines. This method is a further development of J-plots (ascl:2009.007).

[ascl:2208.009] LeXInt: Leja Exponential Integrators

LeXInt (Leja interpolation for eXponential Integrators) is a temporal exponential integration package using the method of polynomial interpolation at Leja points. Exponential Rosenbrock (EXPRB) and Exponential Propagation Iterative Runge-Kutta (EPIRK) methods use the Leja interpolation method to compute the functions. For linear PDEs, one can get the exact solution (in time) by directly computing the matrix exponential.

[ascl:2208.010] FFD: Flare Frequency Distribution

FFD (Flare Frequency Distribution) fits power-laws to FFDs. FFDs relate the frequency (i.e., occurrence rate) of flares to their energy, peak flux, photometric equivalent width, or other parameters. This module was created to handle disparate datasets between which the flare detection limit varies; in essence, the number of flares detected is treated as following a Poisson distribution while the flare energies are treated as following a power law.

[ascl:2208.011] POIS: Python Optical Interferometry Simulation

POIS (Python Optical Interferometry Simulation) provides the building blocks to simulate the operation of a ground-based optical interferometer perturbed by atmospheric seeing perturbations. The package includes functions to generate simulated atmospheric turbulent wavefront perturbations, correct these perturbations using adaptive optics, and combine beams from an arbitrary number of telescopes, with or without spatial filtering, to provide complex fringe visibility measurements.

[ascl:2208.012] DELIGHT: Identify host galaxies of transient candidates

DELIGHT (Deep Learning Identification of Galaxy Hosts of Transients) automatically identifies host galaxies of transient candidates using multi-resolution images and a convolutional neural network. This library has a class with several methods to get the most likely host coordinates starting from given transient coordinates. In order to do this, the DELIGHT object needs a list of object identifiers and coordinates (oid, ra, dec). With this information, it downloads PanSTARRS images centered around the position of the transients (2 arcmin x 2 arcmin), gets their WCS solutions, creates the multi-resolution images, does some extra preprocessing of the data, and finally predicts the position of the hosts using a multi-resolution image and a convolutional neural network. DELIGHT can also estimate the host's semi-major axis if requested, taking advantage of the multi-resolution images.

[ascl:2208.013] SPAMMS: Spectroscopic PAtch Model for Massive Stars

SPAMMS (Spectroscopic PAtch Model for Massive Stars), designed with geometrically deformed systems in mind, combines the eclipsing binary modelling code PHOEBE 2 (ascl:1106.002) and the NLTE radiative transfer code FASTWIND to produce synthetic spectra for systems at given phases, orientations and geometries. SPAMMS reproduces the morphology of observed spectral line profiles for overcontact systems and the Rossiter-Mclaughlin and Struve-Sahade effects.

[ascl:2208.014] uvcombine: Combine images with different resolutions

uvcombine combines single-dish and interferometric data. It can combine high-resolution images that are missing large angular scales (Fourier-domain short-spacings) with low-resolution images containing the short/zero spacing. uvcombine includes the "feathering" technique for interferometry data, implementing a similar approach to CASA’s (ascl:1107.013) feather task but with additional options. Also included are consistency tests for the flux calibration and single-dish scale by comparing the data in the uv-overlap range.

[ascl:2208.015] J-comb: Combine high-resolution and low-resolution data

J-comb combines high-resolution data with large-scale missing information with low-resolution data containing the short spacing. Based on uvcombine (ascl:2208.014), it takes as input FITS files of low- and high-resolution images, the angular resolution of the input images, and the pixel size of the input images, and outputs a FITS file of the combined image.

[ascl:2208.016] CRPropa3: Simulation framework for propagating extraterrestrial ultra-high energy particles

CRPropa3, an improved version of CRPropa2 (ascl:1412.013), provides a simulation framework to study the propagation of ultra-high-energy nuclei up to iron on their voyage through an (extra)galactic environment. It takes into account pion production, photodisintegration, and energy losses by pair production of all relevant isotopes in the ambient low-energy photon fields, as well as nuclear decay. CRPropa3 can model the deflection in (inter)galactic magnetic fields, the propagation of secondary electromagnetic cascades, and neutrinos for a multitude of scenarios for different source distributions and magnetic environments. It enables the user to predict the spectra of UHECR (and of their secondaries), their composition and arrival direction distribution. Additionally, the low-energy Galactic propagation can be simulated by solving the transport equation using stochastic differential equations. CRPropa3 features a very flexible simulation setup with python steering and shared-memory parallelization.

[ascl:2208.017] HOCHUNK3D: Dust radiative transfer in 3D

HOCHUNK3D is an updated version of the HOCHUNK radiative equilibrium code (ascl:1711.013); the code has been converted to Fortran 95, which allows a specification of one-dimensional (1D), 2D, or 3D grids at runtime. The code is parallelized so it can be run on multiple processors on one machine, or on multiple machines in a network. It includes 3-D functionality and several other additional geometries and features. The code calculates radiative equilibrium temperature solution, thermal and PAH/vsg emission, scattering and polarization in protostellar geometries. HOCHUNK3D also computes spectral energy distributions (SEDs), polarization spectra, and images.

[ascl:2208.018] EstrellaNueva: Expected rates of supernova neutrinos calculator

EstrellaNueva calculates expected rates of supernova neutrinos in detectors. It provides a link between supernova simulations and the expected events in detectors by calculating fluences and event rates in order to ease any comparison between theory and observation. The software is a standalone tool for exploring many physics scenarios, and offers an option to add analytical cross sections and define any target material.

[ascl:2208.019] RadioLensfit: Radio weak lensing shear measurement in the visibility domain

RadioLensfit measures star-forming galaxy ellipticities using a Bayesian model fitting approach. The software uses an analytical exponential Sersic model and works in the visibility domain avoiding Fourier Transform. It also simulates visibilities of observed SF galaxies given a source catalog and Measurement Sets containing the description of the radio interferometer and of the observation. It provides both serial and MPI versions.

[ascl:2208.020] GStokes: Magnetic field structure and line profiles calculator

GStokes performs simple multipolar fits to circular polarization data to provide information about the field strength and geometry. It provides forward calculation of the disc-integrated Stokes parameter profiles as well as magnetic inversions under several widely used simplifying approximations of the polarized line formation. GStokes implements the Unno–Rachkovsky analytical solution of the polarized radiative transfer equation and the weak-field approximation with the Gaussian local profiles. The magnetic field geometry is described with one of the common low-order multipolar field parametrizations. Written in IDL, GStokes provides a user-friendly graphical front-end.

[ascl:2208.021] GSSP: Grid Search in Stellar Parameters

GSSP (Grid Search in Stellar Parameters) is based on a grid search in the fundamental atmospheric parameters and (optionally) individual chemical abundances of the star (or binary stellar components) in question. It uses atmosphere models and spectrum synthesis, which assumes a comparison of the observations with each theoretical spectrum from the grid. The code can optimize five stellar parameters at a time (effective temperature, surface gravity, metallicity, microturbulent velocity, and projected rotational velocity of the star) and synthetic spectra can be computed in any number of wavelength ranges. GSSP builds the grid of theoretical spectra from all possible combinations of the above mentioned parameters, and delivers the set of best fit parameters, the corresponding synthetic spectrum, and the ASCII file containing the individual parameter values for all grid points and the corresponding chi-square values.

[ascl:2208.022] PyNAPLE: Automated pipeline for detecting changes on the lunar surface

PyNAPLE (PYthon Nac Automated Pair Lunar Evaluator) detects changes and new impact craters on the lunar surface using Lunar Reconnaissance Orbiter Narrow Angle Camera (LRO NAC) images. The code enables large scale analyses of sub-kilometer scale cratering rates and refinement of both scaling laws and the luminous efficiency.

[ascl:2208.023] CubeFit: Regularized 3D fitting for spectro-imaging data

Cubefit is an OXY class that performs spectral fitting with spatial regularization in a spectro-imaging context. The 3D model is based on a 1D model and 2D parameter maps; the 2D maps are regularized using an L1L2 regularization by default. The estimator is a compound of a chi^2 based on the 1D model, a regularization term based of the 2D regularization of the various 2D parameter maps, and an optional decorrelation term based on the cross-correlation of specific pairs of parameter maps.

[ascl:2208.024] toise: Performance estimator for high-energy neutrino detectors

The toise framework estimates the sensitivity of natural-medium neutrino detectors such as IceCube-Gen2 to sources of high-energy astrophysical neutrinos. It uses parameterizations of a detector's fiducial area or volume, selection efficiency, energy resolution, angular resolution, and event classification efficiency to convert (surface) neutrino fluxes into mean event rates in bins of observable space. These are then used to estimate statistical quantities of interest, e.g., the median sensitivity to some flux (i.e., 90% upper limit assuming the true flux is zero) or the median discovery potential (i.e., the flux level at which the null hypothesis would be rejected at 5 sigma in 50% of realizations).

[ascl:2208.025] Yonder: Data denoising and reconstruction

YONDER uses singular value decomposition to perform low-rank data denoising and reconstruction. It takes a tabular data matrix and an error matrix as input and returns a denoised version of the original dataset as output. The approach enables a more accurate data analysis in the presence of uncertainties. Consequently, this package can be used as a simple toolbox to perform astronomical data cleaning.

[ascl:2209.001] A-SLOTH: Semi-analytical model to connect first stars and galaxies to observables

A-SLOTH (Ancient Stars and Local Observables by Tracing Halos) connects the formation of the first stars and galaxies to observables. The model is based on dark matter merger trees, on which A-SLOTH applies analytical recipes for baryonic physics to model the formation of both metal-free and metal-poor stars and the transition between them. The software samples individual stars and includes radiative, chemical, and mechanical feedback. A-SLOTH has versatile applications with moderate computational requirements. It can be used to constrain the properties of the first stars and high-z galaxies based on local observables, predicts properties of the oldest and most metal-poor stars in the Milky Way, can serve as a subgrid model for larger cosmological simulations, and predicts next-generation observables of the early Universe, such as supernova rates or gravitational wave events.

[ascl:2209.002] Herculens: Differentiable gravitational lensing

Herculens models imaging data of strong gravitational lenses. The package supports various degrees of model complexity, ranging from standard smooth analytical profiles to pixelated models and machine learning approaches. In particular, it implements multiscale pixelated models regularized with sparsity constraints and wavelet decomposition, for modeling both the source light distribution and the lens potential. The code is fully differentiable - based on JAX (ascl:2111.002) - which enables fast convergence to the solution, access to the parameters covariance matrix, efficient exploration of the parameter space including the sampling of posterior distributions using variational inference or Hamiltonian Monte-Carlo methods.

[ascl:2209.003] DeepMass: Cosmological map inference with deep learning

DeepMass infers dark matter maps from weak gravitational lensing measurements and uses deep learning to reconstruct cosmological maps. The code can also be incorporated into a Moment Network to enable high-dimensional likelihood-free inference.

[ascl:2209.004] Cluster Toolkit: Tools for analyzing galaxy clusters

Cluster Toolkit calculates weak lensing signals from galaxy clusters and cluster cosmology. It offers 3D density and correlation functions, halo bias models, projected density and differential profiles, and radially averaged profiles. It also calculates halo mass functions, mass-concentration relations, Sunyaev-Zel’dovich (SZ) cluster signals, and cluster magnification. Cluster Toolkit consists of a Python front end wrapped around a well optimized back end in C.

[ascl:2209.005] SCORE: Shape COnstraint REstoration

The Shape COnstraint REstoration algorithm (SCORE) is a proximal algorithm based on sparsity and shape constraints to restore images. Its main purpose is to restore images while preserving their shape information. It can, for example, denoise a galaxy image by instanciating SCORE and using its denoise method and then visualize the results, and can deconvolve multiple images with different parameter values.

[ascl:2209.006] KaRMMa: Curved-sky mass map reconstruction

KaRMMa (Kappa Reconstruction for Mass MApping) performs curved-sky mass map reconstruction using a lognormal prior from weak-lensing surveys. It uses a fully Bayesian approach with a physically motivated lognormal prior to sample from the posterior distribution of convergence maps. The posterior distribution of KaRMMa maps are nearly unbiased in one-point and two-point functions and peak/void counts. KaRMMa successfully captures the non-Gaussian nature of the distribution of κ values in the simulated maps, and KaRMMa posteriors correctly characterize the uncertainty in summary statistics.

[ascl:2209.007] AMBER: Fast pipeline for detecting single-pulse radio transients

AMBER (Apertif Monitor for Bursts Encountered in Real-time) detects single-pulse radio phenomena, such as pulsars and fast radio bursts, in real time. It is a fully auto-tuned pipeline that offloads compute-intensive kernels to many-core accelerators; the software automatically tunes these kernels to achieve high performance on different platforms.

[ascl:2209.008] PINION: Accelerating radiative transfer simulations for cosmic reionization

PINION (Physics-Informed neural Network for reIONization) predicts the complete 4-D hydrogen fraction evolution from the smoothed gas and mass density fields from pre-computed N-body simulations. Trained on C2-Ray simulation outputs with a physics constraint on the reionization chemistry equation, PINION accurately predicts the entire reionization history between z = 6 and 12 with only five redshift snapshots and a propagation mask as a simplistic approximation of the ionizing photon mean free path. The network's predictions are in good agreement with simulation to redshift z > 7, though the oversimplified propagation mask degrades the network's accuracy for z < 7.

[ascl:2209.009] GRUMPY: Galaxy formation with RegUlator Model in PYthon

GRUMPY (Galaxy formation with RegUlator Model in PYthon) models the formation of dwarf galaxies. When coupled with realistic mass accretion histories of halos from simulations and reasonable choices for model parameter values, this simple regulator-type framework reproduces a broad range of observed properties of dwarf galaxies over seven orders of magnitude in stellar mass. GRUMPY matches observational constraints on the stellar mass--halo mass relation and observed relations between stellar mass and gas phase and stellar metallicities, gas mass, size, and star formation rate. It also models the general form and diversity of star formation histories (SFHs) of observed dwarf galaxies. The software can be used to predict photometric properties of dwarf galaxies hosted by dark matter haloes in N-body simulations, such as colors, surface brightnesses, and mass-to-light ratios and to forward model observations of dwarf galaxies.

[ascl:2209.010] HyPhy: Hydrodynamical Physics via Deep Generative Painting

HyPhy maps from dark matter only simulations to full hydrodynamical physics models. It uses a fully convolutional variational auto-encoder (VAE) to synthesize hydrodynamic fields conditioned on dark matter fields from N-body simulations. After training, HyPhy can probabilistically map new dark matter only simulations to corresponding full hydrodynamical outputs and generate posterior samples for studying the variance of the mapping. This conditional deep generative model is implemented in TensorFlow.

[ascl:2209.011] GaLight: 2D modeling of galaxy images

GaLight (Galaxy shapes of Light) performs two-dimensional model fitting of optical and near-infrared images to characterize the light distribution of galaxies with components including a disk, bulge, bar and quasar. Light is decomposes into PSF and Sersic, and the fitting is based on lenstronomy (ascl:1804.01). GaLight's automated features including searching PSF stars in the FOV, automatically estimating the background noise level, and cutting out the target object galaxies (QSOs) and preparing the materials to model the data. It can also detect objects in the cutout stamp and quickly create Sersic keywords to model them, and model QSOs and galaxies using 2D Sersic profile and scaled point source.

[ascl:2209.012] URILIGHT: Time-dependent Monte-Carlo radiative-transfer

The time dependent Monte-Carlo code URILIGHT, written in Fortran 90, assumes homologous expansion. Energy deposition resulting from the decay of radioactive isotopes is calculated by a Monte-Carlo solution of the γ-ray transport, for which interaction with matter is included through Compton scattering and photoelectric absorption. The temperature is iteratively solved for in each cell by requiring that the total emissivity equals the total absorbed energy.

[ascl:2209.013] wsynphot: Synthetic photometry package using quantities

wsynphot provides a broad set of filters, including observation facility, instrument, and wavelength range, and functions for imaging stars to produce a filter curve showing the transmission of light for each wavelength value. It can create a filter curve object, plot the curve, and allows the user to do calculations on the filter curve object.

[ascl:2209.014] SyntheticISOs: Synthetic Population of Interstellar Objects

Synthetic Population of Interstellar Objects generates a synthetic population of interstellar objects (orbits and sizes) in arbitrary volume of space around the Sun. The only necessary assumption is that the population of ISOs in the interstellar space (far from any massive body) is homogeneous and isotropic. The assumed distribution of interstellar velocities of ISOs has to be provided as an input. This distribution can be defined analytically, but also in a discrete form. The algorithm, based on the multivariate inverse transform sampling method, is implemented in Python.

[ascl:2209.015] TauREx3: Tau Retrieval for Exoplanets

TauREx 3 (Tau Retrieval for Exoplanets) provides a fully Bayesian inverse atmospheric retrieval framework for exoplanetary atmosphere modeling and retrievals. It is fully customizable, allowing the user to mix and match atmospheric parameters and add additional ones. The framework builds forward models, simulates instruments, and performs retrievals, and provides a rich library of classes for building additional programs and using new atmospheric parameters.

[ascl:2209.016] RAPOC: Rosseland and Planck mean opacities calculator

RAPOC (Rosseland and Planck Opacity Converter) uses molecular absorption measurements (i.e., wavelength-dependent opacities) for a given temperature, pressure, and wavelength range to calculate Rosseland and Planck mean opacities for use in atmospheric modeling. The code interpolates between discrete data points and can use ExoMol and DACE data, or any user-defined data provided in a readable format. RAPOC is simple, straightforward, and easily incorporated into other codes.

[ascl:2209.017] SpectraPy: Extract and reduce astronomical spectral data

SpectraPy collects algorithms and methods for data reduction of astronomical spectra obtained by a through slits spectrograph. It produces two-dimensional wavelength calibrated spectra corrected by instrument distortions. The library is designed to be spectrograph independent and can be used on both longslit (LS) and multi object spectrograph (MOS) data. SpectraPy comes with a set of already configured spectrographs, but it can be easily configured to reduce data of other instruments.

[ascl:2209.018] libTheSky: Compute positions of celestial bodies and events

libTheSky compute the positions of celestial bodies, such as the Moon, planets, and stars, and events, including conjunctions and eclipses, with great accuracy. Written in Fortran, libTheSky can use different reference frames (heliocentric, geocentric, topocentric) and coordinate systems (ecliptic, equatorial, galactic; spherical, rectangular), and the user can choose low- or high-accuracy calculations, depending on need.

[ascl:2209.019] SolTrack: Compute the position of the Sun in topocentric coordinates

SolTrack computes the position of the Sun, the rise and set times and azimuths, and transit times and altitudes. It includes corrections for aberration and parallax, and has a simple routine to correct for atmospheric refraction, taking into account local atmospheric conditions. SolTrack is derived from the Fortran library libTheSky (ascl:2209.018). The package can be used to track the Sun on a low-specs machine, such as a microcontroller or PLC, and can be used for (highly) concentrated (photovoltaic) solar power or accurate solar-energy modeling.

[ascl:2209.020] FastQSL: Quasi-separatrix Layers computation method

FastQSL calculate the squashing factor Q at the photosphere, a cross section, or a box volume, given a 3D magnetic field with Cartesian, uniform or stretched grids. It is available in IDL and in an optimized version using Fortran for calculations and field line tracing. Use of a GPU accelerates a step-size adaptive scheme for the most computationally intensive part, the field line tracing, making the code fast and efficient.

[submitted] EleFits

EleFits is a modern C++ package to read and write FITS files which focuses on safety, user-friendliness, and performance.

[ascl:2210.001] PSS: Pulsar Survey Scraper

Pulsar Survey Scraper aggregates pulsar discoveries before they are included in the ATNF pulsar catalog and enables searching and filtering based on position and dispersion measure. This facilitates identifying new pulsar discoveries. Pulsar Survey Scraper can be downloaded or run online using the Pulsar Survey Scraper webform.

[ascl:2210.002] SPINspiral: Parameter estimation for analyzing gravitational-wave signals

SPINspiral analyzes gravitational-wave signals from stellar-mass binary inspirals detected by ground-based interferometers such as LIGO and Virgo. It performs parameter estimation on these signals using Markov-chain Monte-Carlo (MCMC) techniques. This analysis includes the spins of the binary components. Written in C, the package is modular; its main routine is as small as possible and calls other routines, which perform tasks such as reading input, choosing and setting (starting or injection) parameters, and handling noise. Other routines compute overlaps and likelihoods, contain the MCMC core, and manage more general support functions and third-party routines.

[ascl:2210.003] NIRDust: Near Infrared Dust finder for Type2 AGN K-band spectra

NIRDust uses K-band (2.2 micrometers) spectra to measure the temperature of the dust heated by an Active Galactic Nuclei (AGN) accretion disk. The package provides several functionalities to pre-process spectra and fit the hot dust component of a AGN K-band spectrum with a blackbody function. NIRDust needs a minimum of two spectra to run: a target spectrum, where the dust temperature will be estimated, and a reference spectrum, where the emission is considered to be purely stellar. The reference spectrum will be used by NIRDust to model the stellar emission from the target spectrum.

[ascl:2210.004] Finder_charts: Create finder charts from image data of various sky surveys

Finder_charts creates multi-band finder charts from image data of various partial- and all-sky surveys such as DSS, 2MASS, WISE, UKIDSS, VHS, Pan-STARRS, and DES. It also creates a WISE time series of image data acquired between 2010 and 2021. All images are reprojected so that north is up and east is to the left. The resulting finder charts can be overplotted with corresponding catalog positions. All catalog entries within the specified field of view can be saved in a variety of formats, including ipac, csv, and tex, as can the finder charts in png, pdf, eps, and other common graphics formats. Finder_charts consists of a single Python module, which depends only on well-known packages, making it easy to install.

[ascl:2210.005] PSFr: Point Spread Function reconstruction

PSFr empirically reconstructs an oversampled version of the point spread function (PSF) from astronomical imaging observations. The code provides a light-weighted API of a refined version of an algorithm originally implemented in lenstronomy (ascl:1804.012). It provides user support with different artifacts in the data and supports the masking of pixels, or the treatment of saturation levels. PSFr has been used to reconstruct the PSF from multiply imaged lensed quasar images observed by the Hubble Space Telescope in a crowded lensing environment and more recently with James Webb Space Telescope (JWST) imaging data for a wide dynamical flux range.

[ascl:2210.006] ExoRad2: Generic point source radiometric model

ExoRad 2.0, a generic point source radiometric model, interfaces with any instrument to provide an estimate of several Payload performance metrics. For each target and for each photometric and spectroscopic channel, the code provides estimates of signals in pixels, saturation times, and read, photon, and dark current noise. ExoRad also provides estimates for the zodiacal background, inner sanctum, and sky foreground.

[ascl:2210.007] COMET: Emulated predictions of large-scale structure observables

COMET (Clustering Observables Modelled by Emulated perturbation Theory) provides emulated predictions of large-scale structure observables from models that are based on perturbation theory. It substantially speeds up these analytic computations without any relevant sacrifice in accuracy, enabling an extremely efficient exploration of large-scale structure likelihoods. At its core, COMET exploits an evolution mapping approach which gives it a high degree of flexibility and allows it to cover a wide cosmology parameter space at continuous redshifts up to z∼3z \sim 3z∼3. Among others, COMET supports parameters for cold dark matter density (ωc\omega_cωc​), baryon density (ωb\omega_bωb​), Scalar spectral index (nsn_sns​), Hubble expansion rate (hhh) and Curvature density (ΩK\Omega_KΩK​). The code can obtain the real-space galaxy power spectrum at one-loop order multipoles (monopole, quadrupole, hexadecapole) of the redshift-space, power spectrum at one-loop order, the linear matter power spectrum (with and without infrared resummation), Gaussian covariance matrices for the real-space power spectrum, and redshift-space multipoles and χ2\chi^2χ2's for arbitrary combinations of multipoles. COMET provides an easy-to-use interface for all of these computations.

[ascl:2210.008] RADTRAN: General purpose planetary radiative transfer model

RADTRAN calculates the transmission, absorption or emission spectra emitted by planetary atmospheres using either line-by-line integration, spectral band models, or 'correlated-K' approaches. Part of the NEMESIS project (ascl:2210.009), the code also incorporates both multiple scattering and single scattering calculations. RADTRAN is general purpose and not hard-wired to any specific planet.

[ascl:2210.009] NEMESIS: Non-linear optimal estimator for multivariate spectral analysis

NEMESIS (Non-linear optimal Estimator for MultivariatE spectral analySIS) is the general purpose correlated-k/LBL retrieval code developed from the RADTRAN project (ascl:2210.008). Originally based on the correlated-k approximation, NEMESIS also works in line-by-line (LBL) mode. It has been designed to be generally applicable to any planet and with any observing mode and so is suitable for both solar-system studies and also exoplanetary studies.

[ascl:2210.010] TSRecon: Time series reconstruction method of massive astronomical catalogs

The time series reconstruction method of massive astronomical catalogs reconstructs all celestial objects' time series data for astronomical catalogs with great accuracy. In addition, the program, which requires a Spark cluster, solves the boundary source leakage problem on the premise of ensuring accuracy, and the user can set different parameters for different data sets to filter the error records in the catalogs.

[ascl:2210.011] gbdes: DECam instrumental signature fitting and processing programs

gbdes derives photometric and astrometric calibration solutions for complex multi-detector astronomical imagers. The package includes routines to filter catalogs down to useful stellar objects, collect metadata from the catalogs and create a config file holding FITS binary tables describing exposures, instruments, fields, and other available information in the data, and uses a friends-of-friends matching algorithm to link together all detections of common objects found in distinct exposures. gbdes also calculates airmasses and parallactic angles for each exposure, calculates and saves the expected differential chromatic refraction (DCR) needed for precision astrometry, optimizes the parameters of a photometric model to maximize agreement between magnitudes measured in different exposures of the same source, and optimizing the parameters of an astrometric model to maximize agreement among the exposures and any reference catalogs, and performs other tasks. The solutions derived and used by gbdes are stored in YAML format; gbdes uses the Python code pixmappy (ascl:2210.012) to read the astrometric solution files and execute specified transformations.

[ascl:2210.012] pixmappy: Python interface to gbdes astrometry solutions

pixmappy provides a Python interface to gbdes pixel map (astrometry) solutions. It reads the YAML format astrometry solutions produced by gbdes (ascl:2210.011) and issues a PixelMap instance, which is a map from one 2d coordinate system ("pixel") to another ("world") 2d system. A PixelMap instance can be used as a function mapping one (or many) coordinate pairs. An inverse method does reverse mapping, and the local jacobian of the map is available also. The type of mapping that can be expressed is very flexible, and PixelMaps can be compounded into chains of tranformations.

[ascl:2210.013] iharm3D: Hybrid MPI/OpenMP 3D HARM with vectorization

iharm3D implements the HARM algorithm (ascl:1209.005) with modifications and enables a second-order, conservative, shock-capturing scheme for general-relativistic magnetohydrodynamics (GRMHD). Written in C, it simulates black hole accretion systems in arbitrary stationary spacetimes.

[ascl:2210.014] Blacklight: GR ray tracing code for post-processing Athena++ simulations

Blacklight postprocesses general-relativistic magnetohydrodynamic simulation data and produces outputs for analyzing data sets, including maps of auxiliary quantities and false-color renderings. The code can use Athena++ (ascl:1912.005) outputs directly, and also supports files in HARM (ascl:1209.005) and iHARM3d (ascl:2210.013) format. Written in C++, Blacklight offers support for adaptive mesh refinement input, slow-light calculations, and adaptive ray tracing.

[ascl:2210.015] Solar-MACH: Multi-spacecraft longitudinal configuration plotter

Solar-MACH (Solar MAgnetic Connection HAUS) derives and visualizes the spatial configuration and solar magnetic connection of different observers (i.e., spacecraft or planets) in the heliosphere at different times. It provides publication-ready figures for analyzing Solar Energetic Particle events (SEPs) or solar transients such as Coronal Mass Ejections (CMEs). Solar-MACH is available as a Python package; a Streamlit-enabled tool that runs in a browser is also available (solar-mach.github.io)

[ascl:2210.016] PETSc: Portable, Extensible Toolkit for Scientific Computation

PETSc (Portable, Extensible Toolkit for Scientific Computation) provides a suite of data structures and routines for the scalable (parallel) solution of scientific applications modeled by partial differential equations, and is intended for use in large-scale application projects. The toolkit includes a large suite of parallel linear, nonlinear equation solvers and ODE integrators that are easily used in application codes written in C, C++, Fortran and Python. PETSc provides many of the mechanisms needed within parallel application codes, such as simple parallel matrix and vector assembly routines that allow the overlap of communication and computation. In addition, PETSc (pronounced PET-see) includes support for managing parallel PDE discretizations.

[ascl:2210.017] PySME: Spectroscopy Made Easy reimplemented with Python

PySME is a partial reimplementation of Spectroscopy Made Easy (SME, ascl:1202.013), which fits an observed spectrum of a star with a model spectrum. The IDL routines of SME used to call a dynamically linked library of compiled C++ and Fortran programs have been rewritten in Python. In addition, an object oriented paradigm and continuous integration practices, including build automation, self-testing, and frequent builds, have been added.

[ascl:2210.018] LavAtmos: Gas-melt equilibrium calculations for a given temperature and melt composition

LavAtmos performs gas-melt equilibrium calculations for a given temperature and melt composition. The thermodynamics of the melt are modeled by the MELTS code as presented in the Thermoengine package (ascl:2208.006). In combination with atmospheric chemistry codes, LavAtmos enables the characterization of interior compositions through atmospheric signatures.

[ascl:2210.019] POSYDON: Single and binary star population synthesis code

POSYDON (POpulation SYnthesis with Detailed binary-evolution simulatiONs) incorporates full stellar structure and evolution modeling for single and binary-star population synthesis. The code is modular and allows the user to specify initial population properties and adopt choices that determine how stellar evolution proceeds. Populations are simulated with the use of MESA (ascl:1010.083) evolutionary tracks for single, non-interacting, and interacting binaries organized in grids. Machine-learning methods are incorporated and applied on the grids for classification and various interpolation calculations, and the development of irregular grids guided by active learning, for computational efficiency.

[ascl:2210.020] ixpeobssim: Imaging X-ray Polarimetry Explorer simulator and analyzer

The simulation and analysis framework ixpeobssim was specifically developed for the Imaging X-ray Polarimetry Explorer (IXPE). It produces realistic simulated observations, in the form of event lists in FITS format, that also contain a strict superset of the information included in the publicly released IXPE data products. The framework's core simulation capabilities are complemented by post-processing applications that support the spatial, spectral, and temporal models needed for analysis of typical polarized X-ray sources, allowing implementation of complex, polarization-aware analysis pipelines. Where applicable, the data formats are consistent with the common display and analysis tools used by the community, e.g., the binned count spectra can be fed into XSPEC (ascl:9910.005), along with the corresponding response functions, for doing standard spectral analysis. All ixpeobssim simulation and analysis tools are fully configurable via the command line.

[ascl:2210.021] SHEEP: Machine Learning pipeline for astronomy classification

The photometric redshift-aided classification pipeline SHEEP uses ensemble learning to classify astronomical sources into galaxies, quasars and stars. It uses tabular data and also allows the use of sparse data. The approach uses SDSS and WISE photometry, but SHEEP can also be used with other types of tabular data, such as radio fluxes or magnitudes.

[ascl:2210.022] MCCD: Multi-CCD Point Spread Function Modelling

MCCD (Multi-CCD) generates a Point Spread Function (PSF) model based on stars observations in the field of view. After defining the MCCD model parameters and running and validating the training, the model can recover the PSF at any position in the field of view. Written in Python, MCCD also calculates various statistics and can plot a random test star and its model reconstruction.

[ascl:2210.023] BornRaytrace: Weak gravitational lensing effects simulator

BornRaytrace uses neural data compression of weak lensing map summary statistics to simulate weak gravitational lensing effects. It can raytrace through overdensity Healpix maps to return a convergence map, include shear-kappa transformation on the full sphere, and also include intrinsic alignments (NLA model).

[ascl:2210.024] Faiss: Similarity search and clustering of dense vectors library

The Faiss library performs efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning. Faiss is written in C++ with complete wrappers for Python/numpy. Some of the most useful algorithms are implemented on the GPU.

[ascl:2210.025] tvguide: Observability by TESS

tvguide determines whether stars and galaxies are observable by TESS. It uses an object's right ascension and declination and estimates the pointing of TESS's cameras using predicted spacecraft ephemerides to determine whether and for how long the object is observable with TESS. tvguide returns a file with two columns, the first the minimum number of sectors the target is observable for and the second the maximum.

[ascl:2210.026] PGOPHER: Rotational, vibrational, and electronic spectra simulator

PGOPHER simulates and fits rotational, vibrational, and electronic spectra. It handles linear molecules and symmetric and asymmetric tops, including effects due to unpaired electrons and nuclear spin, with a separate mode for vibrational structure. The code performs many sorts of transitions, including Raman, multiphoton, and forbidden transitions. It can simulate multiple species and states simultaneously, including special effects such as perturbations and state dependent predissociation. Fitting can be to line positions, intensities, or band contours. PGOPHER uses a standard graphical user interface and makes comparison with, and fitting to, spectra from various sources easy. In addition to overlaying numerical spectra, it is also possible to overlay pictures from pdf files and even plate spectra to assist in checking that published constants are being used correctly.

Would you like to view a random code?