Results 1451-1500 of 3562 (3469 ASCL, 93 submitted)

[ascl:1704.004]
STATCONT: Statistical continuum level determination method for line-rich sources

STATCONT determines the continuum emission level in line-rich spectral data by inspecting the intensity distribution of a given spectrum by using different statistical approaches. The sigma-clipping algorithm provides the most accurate continuum level determination, together with information on the uncertainty in its determination; this uncertainty is used to correct the final continuum emission level. In general, STATCONT obtains accuracies of < 10 % in the continuum determination, and < 5 % in most cases. The main products of the software are the continuum emission level, together with its uncertainty, and data cubes containing only spectral line emission, i.e. continuum-subtracted data cubes. STATCONT also includes the option to estimate the spectral index or variation of the continuum emission with frequency.

[ascl:1704.005]
VaST: Variability Search Toolkit

VaST (Variability Search Toolkit) finds variable objects on a series of astronomical images in FITS format. The software performs object detection and aperture photometry using SExtractor (ascl:1010.064) on each image, cross-matches lists of detected stars, performs magnitude calibration with respect to the first (reference) image and constructs a lightcurve for each object. The sigma-magnitude, Stetson's L variability index, Robust Median Statistic (RoMS) and other plots may be used to visually identify variable star candidates. The two distinguishing features of VaST are its ability to perform accurate aperture photometry of images obtained with non-linear detectors and to handle complex image distortions. VaST can be used in cases of unstable PSF (e.g., bad guiding or with digitized wide-field photographic images), and has been successfully applied to images obtained with telescopes ranging from 0.08 to 2.5m in diameter equipped with a variety of detectors including CCD, CMOS, MIC and photographic plates.

[ascl:1704.006]
Quickclump: Identify clumps within a 3D FITS datacube

Quickclump finds clumps in a 3D FITS datacube. It is a fast, accurate, and automated tool written in Python. Though Quickclump is primarily intended for decomposing observations of interstellar clouds into individual clumps, it can also be used for finding clumps in any 3D rectangular data.

[ascl:1704.007]
PySM: Python Sky Model

PySM generates full-sky simulations of Galactic foregrounds in intensity and polarization relevant for CMB experiments. The components simulated are thermal dust, synchrotron, AME, free-free, and CMB at a given Nside, with an option to integrate over a top hat bandpass, to add white instrument noise, and to smooth with a given beam. PySM is based on the large-scale Galactic part of Planck Sky Model code and uses some of its inputs.

[ascl:1704.008]
Transit: Radiative-transfer code for planetary atmospheres

Cubillos, Patricio; Blecic, Jasmina; Harrington, Joe; Rojo, Patricio; Foster, Austin J.; Stemm, Madison; Challener,Ryan; Foster, Andrew S. D.

Transit calculates the transmission or emission spectrum of a planetary atmosphere with application to extrasolar-planet transit and eclipse observations, respectively. It computes the spectra by solving the one-dimensional line-by-line radiative-transfer equation for an atmospheric model.

[ascl:1704.009]
Photo-z-SQL: Photometric redshift estimation framework

Photo-z-SQL is a flexible template-based photometric redshift estimation framework that can be seamlessly integrated into a SQL database (or DB) server and executed on demand in SQL. The DB integration eliminates the need to move large photometric datasets outside a database for redshift estimation, and uses the computational capabilities of DB hardware. Photo-z-SQL performs both maximum likelihood and Bayesian estimation and handles inputs of variable photometric filter sets and corresponding broad-band magnitudes.

[ascl:1704.010]
A-Track: Detecting Moving Objects in FITS images

A-Track is a fast, open-source, cross-platform pipeline for detecting moving objects (asteroids and comets) in sequential telescope images in FITS format. The moving objects are detected using a modified line detection algorithm.

[ascl:1704.011]
VULCAN: Chemical Kinetics For Exoplanetary Atmospheres

VULCAN describes gaseous chemistry from 500 to 2500 K using a reduced C-H-O chemical network with about 300 reactions. It uses eddy diffusion to mimic atmospheric dynamics and excludes photochemistry, and can be used to examine the theoretical trends produced when the temperature-pressure profile and carbon-to-oxygen ratio are varied.

[ascl:1704.012]
XID+: Next generation XID development

XID+ is a prior-based source extraction tool which carries out photometry in the Herschel SPIRE (Spectral and Photometric Imaging Receiver) maps at the positions of known sources. It uses a probabilistic Bayesian framework that provides a natural framework in which to include prior information, and uses the Bayesian inference tool Stan to obtain the full posterior probability distribution on flux estimates.

[ascl:1704.013]
Difference-smoothing: Measuring time delay from light curves

The Difference-smoothing MATLAB code measures the time delay from the light curves of images of a gravitationally lendsed quasar. It uses a smoothing timescale free parameter, generates more realistic synthetic light curves to estimate the time delay uncertainty, and uses *X*^{2} plot to assess the reliability of a time delay measurement as well as to identify instances of catastrophic failure of the time delay estimator. A systematic bias in the measurement of time delays for some light curves can be eliminated by applying a correction to each measured time delay.

[ascl:1704.014]
Multipoles: Potential gain for binary lens estimation

Multipoles, written in Python, calculates the quadrupole and hexadecapole approximations of the finite-source magnification: quadrupole (Wk,rho,Gamma) and hexadecapole (Wk,rho,Gamma). The code is efficient and faster than previously available methods, and could be generalized for use on large portions of the light curves.

[ascl:1705.001]
COSMOS: Carnegie Observatories System for MultiObject Spectroscopy

COSMOS (Carnegie Observatories System for MultiObject Spectroscopy) reduces multislit spectra obtained with the IMACS and LDSS3 spectrographs on the Magellan Telescopes. It can be used for the quick-look analysis of data at the telescope as well as for pipeline reduction of large data sets. COSMOS is based on a precise optical model of the spectrographs, which allows (after alignment and calibration) an accurate prediction of the location of spectra features. This eliminates the line search procedure which is fundamental to many spectral reduction programs, and allows a robust data pipeline to be run in an almost fully automatic mode, allowing large amounts of data to be reduced with minimal intervention.

[ascl:1705.002]
DMATIS: Dark Matter ATtenuation Importance Sampling

DMATIS (Dark Matter ATtenuation Importance Sampling) calculates the trajectories of DM particles that propagate in the Earth's crust and the lead shield to reach the DAMIC detector using an importance sampling Monte-Carlo simulation. A detailed Monte-Carlo simulation avoids the deficiencies of the SGED/KS method that uses a mean energy loss description to calculate the lower bound on the DM-proton cross section. The code implementing the importance sampling technique makes the brute-force Monte-Carlo simulation of moderately strongly interacting DM with nucleons computationally feasible. DMATIS is written in Python 3 and MATHEMATICA.

[ascl:1705.003]
demc2: Differential evolution Markov chain Monte Carlo parameter estimator

demc2, also abbreviated as DE-MCMC, is a differential evolution Markov Chain parameter estimation library written in R for adaptive MCMC on real parameter spaces.

[ascl:1705.004]
PCAT: Probabilistic Cataloger

PCAT (Probabilistic Cataloger) samples from the posterior distribution of a metamodel, i.e., union of models with different dimensionality, to compare the models. This is achieved via transdimensional proposals such as births, deaths, splits and merges in addition to the within-model proposals. This method avoids noisy estimates of the Bayesian evidence that may not reliably distinguish models when sampling from the posterior probability distribution of each model.

The code has been applied in two different subfields of astronomy: high energy photometry, where transdimensional elements are gamma-ray point sources; and strong lensing, where light-deflecting dark matter subhalos take the role of transdimensional elements.

[ascl:1705.005]
SPTCLASS: SPecTral CLASSificator code

SPTCLASS assigns semi-automatic spectral types to a sample of stars. The main code includes three spectral classification schemes: the first one is optimized to classify stars in the mass range of TTS (K5 or later, hereafter LATE-type scheme); the second one is optimized to classify stars in the mass range of IMTTS (F late to K early, hereafter Gtype scheme), and the third one is optimized to classify stars in the mass range of HAeBe (F5 or earlier, hereafter HAeBe scheme). SPTCLASS has an interactive module that allows the user to select the best result from the three schemes and analyze the input spectra.

[ascl:1705.006]
f3: Full Frame Fotometry for Kepler Full Frame Images

Light curves from the Kepler telescope rely on "postage stamp" cutouts of a few pixels near each of 200,000 target stars. These light curves are optimized for the detection of short-term signals like planet transits but induce systematics that overwhelm long-term variations in stellar flux. Longer-term effects can be recovered through analysis of the Full Frame Images, a set of calibration data obtained monthly during the Kepler mission. The Python package f3 analyzes the Full Frame Images to infer long-term astrophysical variations in the brightness of Kepler targets, such as magnetic activity or sunspots on slowly rotating stars.

[ascl:1705.007]
getimages: Background derivation and image flattening method

*getimages* performs background derivation and image flattening for high-resolution images obtained with space observatories. It is based on median filtering with sliding windows corresponding to a range of spatial scales from the observational beam size up to a maximum structure width X. The latter is a single free parameter of *getimages* that can be evaluated manually from the observed image. The median filtering algorithm provides a background image for structures of all widths below X. The same median filtering procedure applied to an image of standard deviations derived from a background-subtracted image results in a flattening image. Finally, a flattened image is computed by dividing the background-subtracted by the flattening image. Standard deviations in the flattened image are now uniform outside sources and filaments. Detecting structures in such radically simplified images results in much cleaner extractions that are more complete and reliable. *getimages* also reduces various observational and map-making artifacts and equalizes noise levels between independent tiles of mosaicked images. The code (a Bash script) uses FORTRAN utilities from *getsources* (ascl:1507.014), which must be installed.

[submitted]
HHTpywrapper: Python Wrapper for Hilbert–Huang Transform MATLAB Package

HHTpywrapper is a python interface to call the Hilbert–Huang Transform (HHT) MATLAB package. HHT is a time-frequency analysis method to adaptively decompose a signal, that could be generated by non-stationary and/or nonlinear processes, into basis components at different timescales, and then Hilbert transform these components into instantaneous phases, frequencies and amplitudes as functions of time. HHT has been successfully applied to analyzing X-ray quasi-periodic oscillations (QPOs) from the active galactic nucleus RE J1034+396 (Hu et al. 2014) and two black hole X-ray binaries, XTE J1550–564 (Su et al. 2015) and GX 339-4 (Su et al. 2017). HHTpywrapper provides examples of reproducing HHT analysis results in Su et al. (2015) and Su et al. (2017). This project is originated from the Astro Hack Week 2015.

[ascl:1705.008]
MBProj2: Multi-Band x-ray surface brightness PROJector 2

MBProj2 obtains thermodynamic profiles of galaxy clusters. It forward-models cluster X-ray surface brightness profiles in multiple bands, optionally assuming hydrostatic equilibrium. The code is a set of Python classes the user can use or extend. When modelling a cluster assuming hydrostatic equilibrium, the user chooses a form for the density profile (e.g. binning or a beta model), the metallicity profile, and the dark matter profile (e.g. NFW). If hydrostatic equilibrium is not assumed, a temperature profile model is used instead of the dark matter profile. The code uses the emcee Markov Chain Monte Carlo code (ascl:1303.002) to sample the model parameters, using these to produce chains of thermodynamic profiles.

[ascl:1705.009]
LensPop: Galaxy-galaxy strong lensing population simulation

LensPop simulates observations of the galaxy-galaxy strong lensing population in the Dark Energy Survey (DES), the Large Synoptic Survey Telescope (LSST), and Euclid surveys.

[ascl:1705.010]
PROFILER: 1D galaxy light profile decomposition

Written in Python, PROFILER analyzes the radial surface brightness profiles of galaxies. It accurately models a wide range of galaxies and galaxy components, such as elliptical galaxies, the bulges of spiral and lenticular galaxies, nuclear sources, discs, bars, rings, and spiral arms with a variety of parametric functions routinely employed in the field (Sérsic, core-Sérsic, exponential, Gaussian, Moffat and Ferrers). In addition, Profiler can employ the broken exponential model (relevant for disc truncations or antitruncations) and two special cases of the edge-on disc model: namely along the major axis (in the disc plane) and along the minor axis (perpendicular to the disc plane).

[ascl:1705.011]
FDBinary: A tool for spectral disentangling of double-lined spectroscopic binary stars

FDBinary disentangles spectra of SB2 stars. The spectral disentangling technique can be applied on a time series of observed spectra of an SB2 to determine the parameters of orbit and reconstruct the spectra of component stars, without the use of template spectra. The code is written in C and is designed as a command-line utility for a Unix-like operating system. FDBinary uses the Fourier-space approach in separation of composite spectra. This code has been replaced with the newer fd3 (ascl:1705.012).

[ascl:1705.012]
fd3: Spectral disentangling of double-lined spectroscopic binary stars

The spectral disentangling technique can be applied on a time series of observed spectra of a spectroscopic double-lined binary star (SB2) to determine the parameters of orbit and reconstruct the spectra of component stars, without the use of template spectra. fd3 disentangles the spectra of SB2 stars, capable also of resolving the possible third companion. It performs the separation of spectra in the Fourier space which is faster, but in several respects less versatile than the wavelength-space separation. (Wavelength-space separation is implemented in the twin code CRES.) fd3 is written in C and is designed as a command-line utility for a Unix-like operating system. fd3 is a new version of FDBinary (ascl:1705.011), which is now deprecated.

[ascl:1705.013]
PSOAP: Precision Spectroscopic Orbits A-Parametrically

PSOAP (Precision Spectroscopic Orbits A-Parametrically) uses Gaussian processes to infer component spectra of single-lined and double-lined spectroscopic binaries, while simultaneously exploring the posteriors of the orbital parameters and the spectra themselves. PSOAP accounts for the natural λ-covariances in each spectrum, thus providing a natural "de-noising" of the spectra typically offered by Fourier techniques.

[ascl:1705.014]
NPTFit: Non-Poissonian Template Fitting

NPTFit is a specialized Python/Cython package that implements Non-Poissonian Template Fitting (NPTF), originally developed for characterizing populations of unresolved point sources. It offers fast evaluation of likelihoods for NPTF analyses and has an easy-to-use interface for performing non-Poissonian (as well as standard Poissonian) template fits using MultiNest (ascl:1109.006) or other inference tools. It allows inclusion of an arbitrary number of point source templates, with an arbitrary number of degrees of freedom in the modeled flux distribution, and has modules for analyzing and plotting the results of an NPTF.

[ascl:1705.015]
WeirdestGalaxies: Outlier Detection Algorithm on Galaxy Spectra

WeirdestGalaxies finds the weirdest galaxies in the Sloan Digital Sky Survey (SDSS) by using a basic outlier detection algorithm. It uses an unsupervised Random Forest (RF) algorithm to assign a similarity measure (or distance) between every pair of galaxy spectra in the SDSS. It then uses the distance matrix to find the galaxies that have the largest distance, on average, from the rest of the galaxies in the sample, and defined them as outliers.

[ascl:1705.016]
astroABC: Approximate Bayesian Computation Sequential Monte Carlo sampler

astroABC is a Python implementation of an Approximate Bayesian Computation Sequential Monte Carlo (ABC SMC) sampler for parameter estimation. astroABC allows for massive parallelization using MPI, a framework that handles spawning of processes across multiple nodes. It has the ability to create MPI groups with different communicators, one for the sampler and several others for the forward model simulation, which speeds up sampling time considerably. For smaller jobs the Python multiprocessing option is also available.

[ascl:1705.017]
supernovae: Photometric classification of supernovae

Supernovae classifies supernovae using their light curves directly as inputs to a deep recurrent neural network, which learns information from the sequence of observations. Observational time and filter fluxes are used as inputs; since the inputs are agnostic, additional data such as host galaxy information can also be included.

[ascl:1706.001]
Exotrending: Fast and easy-to-use light curve detrending software for exoplanets

The simple, straightforward Exotrending code detrends exoplanet transit light curves given a light curve (flux versus time) and good ephemeris (epoch of first transit and orbital period). The code has been tested with Kepler and K2 light curves and should work with any other light curve.

[ascl:1706.002]
rtpipe: Searching for Fast Radio Transients in Interferometric Data

rtpipe (real-time pipeline) analyzes radio interferometric data with an emphasis on searching for transient or variable astrophysical sources. The package combines single-dish concepts such as dedispersion and filters with interferometric concepts, including images and the uv-plane. In contrast to time-domain data recorded with large single-dish telescopes, visibilities from interferometers can precisely localize sources anywhere in the entire field of view. rtpipe opens interferometers to the study of fast transient sky, including sources like pulsars, stellar flares, rotating radio transients, and fast radio bursts. Key portions of the search pipeline, such as image generation and dedispersion, have been accelerated. That, in combination with its multi-threaded, multi-node design, makes rtpipe capable of searching millisecond timescale data in real time on small compute clusters.

[ascl:1706.003]
DaMaSCUS: Dark Matter Simulation Code for Underground Scatterings

DaMaSCUS calculates the density and velocity distribution of dark matter (DM) at any detector of given depth and latitude to provide dark matter particle trajectories inside the Earth. Provided a strong enough DM-matter interaction, the particles scatter on terrestrial atoms and get decelerated and deflected. The resulting local modifications of the DM velocity distribution and number density can have important consequences for direct detection experiments, especially for light DM, and lead to signatures such as diurnal modulations depending on the experiment's location on Earth. The code involves both the Monte Carlo simulation of particle trajectories and generation of data as well as the data analysis consisting of non-parametric density estimation of the local velocity distribution functions and computation of direct detection event rates.

[ascl:1706.004]
Dark Sage: Semi-analytic model of galaxy evolution

DARK SAGE is a semi-analytic model of galaxy formation that focuses on detailing the structure and evolution of galaxies' discs. The code-base, written in C, is an extension of SAGE (ascl:1601.006) and maintains the modularity of SAGE. DARK SAGE runs on any N-body simulation with trees organized in a supported format and containing a minimum set of basic halo properties.

[ascl:1706.005]
LMC: Logarithmantic Monte Carlo

LMC is a Markov Chain Monte Carlo engine in Python that implements adaptive Metropolis-Hastings and slice sampling, as well as the affine-invariant method of Goodman & Weare, in a flexible framework. It can be used for simple problems, but the main use case is problems where expensive likelihood evaluations are provided by less flexible third-party software, which benefit from parallelization across many nodes at the sampling level. The parallel/adaptive methods use communication through MPI, or alternatively by writing/reading files, and mostly follow the approaches pioneered by CosmoMC (ascl:1106.025).

[ascl:1706.006]
GenPK: Power spectrum generator

GenPK generates the 3D matter power spectra for each particle species from a Gadget snapshot. Written in C++, it requires both FFTW3 and GadgetReader.

[ascl:1706.007]
encube: Large-scale comparative visualization and analysis of sets of multidimensional data

Vohl, Dany; Barnes, David G.; Fluke, Christopher J.; Poudel, Govinda; Georgiou-Karistianis, Nellie; Hassan, Amr H.; Benovitski, Yuri; Wong, Tsz Ho; Kaluza, Owen; Nguyen, Toan D.; Bonnington, C. Paul

Encube is a qualitative, quantitative and comparative visualization and analysis framework, with application to high-resolution, immersive three-dimensional environments and desktop displays, providing a capable visual analytics experience across the display ecology. Encube includes mechanisms for the support of: 1) interactive visual analytics of sufficiently large subsets of data; 2) synchronous and asynchronous collaboration; and 3) documentation of the discovery workflow. The framework is modular, allowing additional functionalities to be included as required.

[ascl:1706.008]
the-wizz: Clustering redshift estimation code

the-wizz clusters redshift estimates for any photometric unknown sample in a survey. The software is composed of two main parts: a pair finder and a pdf maker. The pair finder finds spatial pairs and stores the indices of all closer pairs around target reference objects in an output HDF5 data file. Users then query this data file using the indices of their unknown sample to produce an output clustering-z.

[ascl:1706.009]
sick: Spectroscopic inference crank

sick infers astrophysical parameters from noisy observed spectra. Phenomena that can alter the data (e.g., redshift, continuum, instrumental broadening, outlier pixels) are modeled and simultaneously inferred with the astrophysical parameters of interest. This package relies on emcee (ascl:1303.002); it is best suited for situations where a grid of model spectra already exists, and one would like to infer model parameters given some data.

[submitted]
Kliko - The Scientific Compute Container Format

We present Kliko, a Docker based container specification for running one or multiple related compute jobs. The key concepts of Kliko is the encapsulation of data processing software into a container and the formalisation of the input, output and task parameters. Formalisation is realised by bundling a container with a Kliko file, which describes the IO and task parameters. This Kliko container can then be opened and run by a Kliko runner. The Kliko runner will parse the Kliko definition and gather the values for these parameters, for example by requesting user input or pre defined values in a script. Parameters can be various primitive types, for example float, int or the path to a file. This paper will also discuss the implementation of a support library named Kliko which can be used to create Kliko containers, parse Kliko definitions, chain Kliko containers in workflows using, for example, Luigi a workflow manager. The Kliko library can be used inside the container interact with the Kliko runner. Finally this paper will discuss two reference implementations based on Kliko: RODRIGUES, a web based Kliko container schedular and output visualiser specifically for astronomical data, and VerMeerKAT, a multi container workflow data reduction pipeline which is being used as a prototype pipeline for the commisioning of the MeerKAT radio telescope.

[ascl:1706.010]
EXOSIMS: Exoplanet Open-Source Imaging Mission Simulator

EXOSIMS generates and analyzes end-to-end simulations of space-based exoplanet imaging missions. The software is built up of interconnecting modules describing different aspects of the mission, including the observatory, optical system, and scheduler (encoding mission rules) as well as the physical universe, including the assumed distribution of exoplanets and their physical and orbital properties. Each module has a prototype implementation that is inherited by specific implementations for different missions concepts, allowing for the simulation of widely variable missions.

[ascl:1706.011]
PyPulse: PSRFITS handler

PyPulse handles PSRFITS files and performs subsequent analyses on pulse profiles.

[ascl:1706.012]
KeplerSolver: Kepler equation solver

KeplerSolver solves Kepler's equation for arbitrary epoch and eccentricity, using continued fractions. It is written in C and its speed is nearly the same as the SWIFT routines, while achieving machine precision. It comes with a test program to demonstrate usage.

[ascl:1707.001]
HRM: HII Region Models

HII Region Models fits HII region models to observed radio recombination line and radio continuum data. The algorithm includes the calculations of departure coefficients to correct for non-LTE effects. HII Region Models has been used to model star formation in the nucleus of IC 342.

[ascl:1707.002]
SASRST: Semi-Analytic Solutions for 1-D Radiative Shock Tubes

SASRST, a small collection of Python scripts, attempts to reproduce the semi-analytical one-dimensional equilibrium and non-equilibrium radiative shock tube solutions of Lowrie & Rauenzahn (2007) and Lowrie & Edwards (2008), respectively. The included code calculates the solution for a given set of input parameters and also plots the results using Matplotlib. This software was written to provide validation for numerical radiative shock tube solutions produced by a radiation hydrodynamics code.

[ascl:1707.003]
pyaneti: Multi-planet radial velocity and transit fitting

Pyaneti is a multi-planet radial velocity and transit fit software. The code uses Markov chain Monte Carlo (MCMC) methods with a Bayesian approach and a parallelized ensemble sampler algorithm in Fortran which makes the code fast. It creates posteriors, correlations, and ready-to-publish plots automatically, and handles circular and eccentric orbits. It is capable of multi-planet fitting and handles stellar limb darkening, systemic velocities for multiple instruments, and short and long cadence data, and offers additional capabilities.

[ascl:1707.004]
CCFpams: Atmospheric stellar parameters from cross-correlation functions

CCFpams allows the measurement of stellar temperature, metallicity and gravity within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, the technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. Literature stellar parameters of high signal-to-noise (SNR) and high-resolution HARPS spectra of FGK Main Sequence stars are used to calibrate the stellar parameters as a function of CCF areas.

[ascl:1707.005]
PyMOC: Multi-Order Coverage map module for Python

PyMOC manipulates Multi-Order Coverage (MOC) maps. It supports reading and writing the three encodings mentioned in the IVOA MOC recommendation: FITS, JSON and ASCII.

[ascl:1707.006]
Gala: Galactic astronomy and gravitational dynamics

Gala is a Python package (and Astropy affiliated package) for Galactic astronomy and gravitational dynamics. The bulk of the package centers around implementations of gravitational potentials, numerical integration, nonlinear dynamics, and astronomical velocity transformations (i.e. proper motions). Gala uses the Astropy units and coordinates subpackages extensively to provide a clean, pythonic interface to these features but does any heavy-lifting in C and Cython for speed.

[ascl:1707.007]
swot: Super W Of Theta

SWOT (Super W Of Theta) computes two-point statistics for very large data sets, based on “divide and conquer” algorithms, mainly, but not limited to data storage in binary trees, approximation at large scale, parellelization (open MPI), and bootstrap and jackknife resampling methods “on the fly”. It currently supports projected and 3D galaxy auto and cross correlations, galaxy-galaxy lensing, and weighted histograms.

[ascl:1708.001]
ATOOLS: A command line interface to the AST library

The ATOOLS package of applications provides an interface to the AST library (ascl:1404.016), allowing quick experiments to be performed from the shell. It manipulates descriptions of coordinate frames and mappings in the form of AST objects and performs other functions, with each application within the package corresponding closely to one of the functions in the AST library.

Previous1234567891011121314151617181920212223242526272829**30**313233343536373839404142434445464748495051525354555657585960616263646566676869707172Next

Would you like to view a random code?