Results 3001-3050 of 3572 (3481 ASCL, 91 submitted)

[ascl:2210.027]
LensingETC: Lensing Exposure Time Calculator

Shajib, Anowar J.; Glazebrook, Karl; Barone, Tania; Lewis, Geraint F.; Jones, Tucker; Tran, Kim-Vy H.; Buckley-Geer, Elizabeth; Collett, Thomas E.; Frieman, Joshua; Jacobs, Colin

LensingETC optimizes observing strategies for multi-filter imaging campaigns of galaxy-scale strong lensing systems. It uses the lens modelling software lenstronomy (ascl:1804.012) to simulate and model mock imaging data, forecasts the lens model parameter uncertainties, and optimizes observing strategies.

[ascl:2210.028]
CK: Cloud modeling and removal

Teinturier, Lucas; Vieira, Nicholas; Jacquet, Elisa; Geoffrion, Juliette; Bestavros, Youssef; Keating, Dylan; Cowan, Nicolas B.

Cloud Killer recovers surface albedo maps by using reflected light photometry to map the clouds and surface of unresolved exoplanets. For light curves with negligible photometric uncertainties, the minimal top-of-atmosphere albedo at a location is a good estimate of its surface albedo. On synthetic data, it shows little bias, good precision, and accuracy, but slightly underestimated uncertainties; exoplanets with large, changing cloud structures observed near quadrature phases are good candidates for Cloud Killer cloud removal.

[ascl:2210.029]
paltas: Simulation-based inference on strong gravitational lensing systems

Wagner-Carena, Sebastian; Aalbers, Jelle; Birrer, Simon; Nadler, Ethan O.; Darragh-Ford, Elise; Marshall, Philip J.; Wechsler, Risa H.

paltas conducts simulation-based inference on strong gravitational lensing images. It builds on lenstronomy (ascl:1804.012) to create large datasets of strong lensing images with realistic low-mass halos, Hubble Space Telescope (HST) observational effects, and galaxy light from HST's COSMOS field. paltas also includes the capability to easily train neural posterior estimators of the parameters of the lensing system and to run hierarchical inference on test populations.

[ascl:2210.030]
cuvarbase: fast period finding utilities for GPUs

cuvarbase provides a Python library for performing period finding (Lomb-Scargle, Phase Dispersion Minimization, Conditional Entropy, Box-least squares) on astronomical time-series datasets. Speedups over CPU implementations depend on the algorithm, dataset, and GPU capabilities but are typically ~1-2 orders of magnitude and are especially high for BLS and Lomb-Scargle.

[ascl:2211.001]
PTAfast: PTA correlations from stochastic gravitational wave background

PTAfast calculates the overlap reduction function in Pulsar Timing Array produced by the stochastic gravitational wave background for arbitrary polarizations, propagation velocities, and pulsar distances.

[ascl:2211.002]
KC: Analytical propagator with collision detection for Keplerian systems

The analytic propagator Kepler-Collisions calculates collisions for Keplerian systems. The algorithm maintains a list of collision possibilities and jumps from one collision to the next; since collisions are rare in astronomical scales, jumping from collision to collision and calculating each one is more efficient than calculating all the time steps that are between collisions.

[ascl:2211.003]
AMBER: Abundance Matching Box for the Epoch of Reionization

AMBER (Abundance Matching Box for the Epoch of Reionization) models the cosmic dawn. The semi-numerical code allows users to directly specify the reionization history through the redshift midpoint, duration, and asymmetry input parameters. The reionization process is further controlled through the minimum halo mass for galaxy formation and the radiation mean free path for radiative transfer. The parallelized code is over four orders of magnitude faster than radiative transfer simulations and will efficiently enable large-volume models, full-sky mock observations, and parameter-space studies.

[ascl:2211.004]
PAHDecomp: Decomposing the mid-IR spectra of extremely obscured galaxies

PAHDecomp models mid-infrared spectra of galaxies; it is based on the popular PAHFIT code (ascl:1210.009). In contrast to PAHFIT, this model decomposes the continuum into a star-forming component and an obscured nuclear component based on Bayesian priors on the shape of the star-forming component (using templates + prior on extinction), making this tool ideally suited for modeling the spectra of heavily obscured galaxies. PAHDecomp successfully recovers properties of Compact Obscured Nuclei (CONs) where the inferred nuclear optical depth strongly correlates with the surface brightness of HCN-vib emission in the millimeter. This is currently set up to run on the short low modules of Spitzer IRS data (5.2 - 14.2 microns) but will be ideal for JWST/MIRI MRS data in the future.

[ascl:2211.005]
unTimely_Catalog_explorer: A search and visualization tool for the unTimely Catalog

unTimely Catalog Explorer searches for and visualizes detections in the unTimely Catalog, a full-sky, time-domain catalog of detections based on WISE and NEOWISE image data acquired between 2010 and 2020. The tool searches the catalog by coordinates to create finder charts for each epoch with overplotted catalog positions and light curves using the unTimely photometry, to overplot these light curves with AllWISE multi-epoch and NEOWISE-R single exposure (L1b) photometry, and to create image blinks with overlaid catalog positions in GIF format.

[ascl:2211.006]
baobab: Training data generator for hierarchically modeling strong lenses with Bayesian neural networks

Park, Ji Won; Wagner-Carena, Sebastian; Birrer, Simon; Marshall, Philip J.; Lin, Joshua Yao-Yu; Roodman, Aaron

baobab generates images of strongly-lensed systems, given some configurable prior distributions over the parameters of the lens and light profiles as well as configurable assumptions about the instrument and observation conditions. Wrapped around lenstronomy (ascl:1804.012), baobab supports prior distributions ranging from artificially simple to empirical. A major use case for baobab is the generation of training and test sets for hierarchical inference using Bayesian neural networks (BNNs); the code can generate the training and test sets using different priors.

[ascl:2211.007]
mgcnn: Standard and modified gravity (MG) cosmological models classifier

mgcnn is a Convolutional Neural Network (CNN) architecture for classifying standard and modified gravity (MG) cosmological models based on the weak-lensing convergence maps they produce. It is implemented in Keras using TensorFlow as the backend. The code offers three options for the noise flag, which correspond to noise standard deviations, and additional options for the number of training iterations and epochs. Confusion matrices and evaluation metrics (loss function and validation accuracy) are saved as numpy arrays in the generated output/ directory after each iteration.

[ascl:2211.008]
pmclib: Population Monte Carlo library

Benabed, Karim; Cappé, Olivier; Cardoso, Jean-François; Fort, Gersende; Kilbinger, Martin; Prunet, Simon; Robert, Christian P.; Wraith, Darren

The Population Monte-Carlo (PMC) sampling code pmclib performs fast end efficient parallel iterative importance sampling to compute integrals over the posterior including the Bayesian evidence.

[ascl:2211.009]
ovejero: Bayesian neural network inference of strong gravitational lenses

Wagner-Carena, Sebastian; Park, Ji Won; Birrer, Simon; Marshall, Philip J.; Roodman, Aaron; Wechsler, Risa H.

ovejero conducts hierarchical inference of strongly-lensed systems with Bayesian neural networks. It requires lenstronomy (ascl:1804.012) and fastell (ascl:9910.003) to run lens models with elliptical mass distributions. The code trains Bayesian Neural Networks (BNNs) to predict posteriors on strong gravitational lensing images and can integrate with forward modeling tools in lenstronomy to allow comparison between BNN outputs and more traditional methods. ovejero also provides hierarchical inference tools to generate population parameter estimates and unbiased posteriors on independent test sets.

[ascl:2211.010]
BlackJAX: Library of samplers for JAX

BlackJAX is a sampling library designed for ease of use, speed, and modularity and works on CPU as well as GPU. It is not a probabilistic programming library (PLL), though it integrates well with PPLs as long as they can provide a (potentially unnormalized) log-probability density function compatible with JAX. BlackJAX is written in pure Python and depends on XLA via JAX (ascl:2111.002). It can be used by those who have a logpdf and need a sampler or need more than a general-purpose sampler. It is also useful for building a sample on GPU and for users who want to learn how sampling algorithms work.

[ascl:2211.011]
fastSHT: Fast Spherical Harmonic Transforms

fastSHT performs spherical harmonic transforms on a large number of spherical maps. It converts massive SHT operations to a BLAS level 3 problem and uses the highly optimized matrix multiplication toolkit to accelerate the computation. GPU acceleration is supported and can be very effective. The core code is written in Fortran, but a Python wrapper is provided and recommended.

[ascl:2211.012]
gsf: Grism SED Fitting package

gsf fits photometric data points, simultaneously with grism spectra if provided, to get posterior probability of galaxy physical properties, such as stellar mass, dust attenuation, metallicity, as well as star formation and metallicity enrichment histories. Designed for extra-galactic science, this flexible, python-based SED fitting code involves a Markov-Chain Monte-Carlo (MCMC) process, and may take more time (depending on the number of parameters and length of MCMC chains) than other SED fitting codes based on chi-square minimization.

[ascl:2211.013]
2DFFTUtils: 2DFFT Utilities implementation

The Python module 2DFFTUtils implements tasks associated with measuring spiral galaxy pitch angle with 2DFFT (ascl:1608.015). Since most of the 2DFFT utilities are implemented in one place, it makes preparing images for 2DFFT and dealing with 2DFFT data interactively or in scripts event easier.

[ascl:2211.014]
PDFchem: Average abundance of species from Av-PDFs

PDFchem models the cold ISM at moderate and large scales using functions connecting the quantities of the local and the observed visual extinctions and the local number density with probability density functions. For any given observed visual extinction sampled with thousands of clouds, the algorithm instantly computes the average abundances of the most important species and performs radiative transfer calculations to estimate the average emission of the most commonly observed lines.

[ascl:2211.015]
H-FISTA: Phase retrieval for pulsar spectroscopy

H-FISTA (Hierarchical Fast Iterative Shrinkage Thresholding Algorithm) retrieves the phases of the wavefield from intensity measurements for pulsar spectroscopy. The code accepts input data in ASCII format as produced by PSRchive's (ascl:1105.014) psrflux function, a FITS file, or a pickle. If using a notebook, any custom reader can be used as long as the data ends up in a NumPy array. H-FISTA obtains sparse models of the wavefield in a hierarchical approach with progressively increasing depth. Once the tail of the noise distribution is reached, the hierarchy terminates with a final unregularized optimization, resulting in a fully dense model of the complex wavefield that permits the discovery of faint signals by appropriate averaging.

[ascl:2211.016]
Korg: 1D local thermodynamic equilibrium stellar spectral synthesis

Korg computes stellar spectra from 1D model atmospheres and linelists assuming local thermodynamic equilibrium and implements both plane-parallel and spherical radiative transfer. The code is generally faster than other codes, and is compatible with automatic differentiation libraries and easily extensible, making it ideal for statistical inference and parameter estimation applied to large data sets.

[ascl:2211.017]
BiGONLight: Bi-local Geodesic Operators framework for Numerical Light propagation

BiGONLight (Bi-local geodesic operators framework for numerical light propagation) encodes the Bi-local Geodesic Operators formalism (BGO) to study light propagation in the geometric optics regime in General Relativity. The parallel transport equations, the optical tidal matrix, and the geodesic deviation equations for the bilocal operators are expressed in 3+1 form and encoded in BiGONLight as Mathematica functions. The bilocal operators are used to obtain all possible optical observables by combining them with the observer and emitter four-velocities and four-accelerations. The user can choose the position of the source and the observer anywhere along the null geodesic with any four-velocities and four-accelerations.

[ascl:2211.018]
ODNet: Asteroid occultation detection convolutional neural network

Cazeneuve, Dorian; Marchis, Franck; Blaclard, Guillaume; Dalba, Paul A.; Martin, Victor; Asencioa, Joé

ODNet uses a convolutional neural network to examine frames of a given observation, using the flux of a targeted star along time, to detect occultations. This is particularly useful to reliably detect asteroid occultations for the Unistellar Network, which consists of 10,000 digital telescopes owned by citizen scientists that is regularly used to record asteroid occultations. ODNet is not costly in term of computing power, opening the possibility for embedding the code on the telescope directly. ODNet's models were developed and trained using TensorFlow version 2.4.

[ascl:2211.019]
APERO: A PipelinE to Reduce Observations

Cook, Neil James; Artigau, Étienne; Doyon, René; Hobson, Melissa; Martioli, Eder; Bouchy, François; Moutou, Claire; Carmona, Andres; Usher, Chris; Fouqué, Pascal; Arnold, Luc; Delfosse, Xavier; Boisse, Isabelle; Cadieux, Charles; Vandal, Thomas; Donati, Jean-François; Deslières, Ariane

APERO (A PipelinE to Reduce Observations) performs data reduction for the Canada-France-Hawaii Telescope's near-infrared spectropolarimeter SPIRou and offers different recipes or modules for performing specific tasks. APERO can individually run recipes or process a set of files, such as cleaning a data file of detector effects, collecting all dark files and creating a master dark image to use for correction, and creating a bad pixel mask for identifying and dealing with bad pixels. It can extract out flat images to measure the blaze and produced blaze correction and flat correction images, extract dark frames to provide correction for the thermal background after extraction of science or calibration frames, and correct extracted files for leakage coming from a FP (for OBJ_FP files only). It can also take a hot star and calculate telluric transmission, and then use the telluric transmission to calculate principle components (PCA) for correcting input images of atmospheric absorption, among many other tasks.

[ascl:2211.020]
EXCEED-DM: EXtended Calculation of Electronic Excitations for Direct detection of Dark Matter

EXCEED-DM (EXtended Calculation of Electronic Excitations for Direct detection of Dark Matter) provides a complete framework for computing DM-electron interaction rates. Given an electronic configuration, EXCEED-DM computes the relevant electronic matrix elements, then particle physics specific rates from these matrix elements. This allows for separation between approximations regarding the electronic state configuration, and the specific calculation being performed.

[submitted]
SLEPLET

Many fields in science and engineering measure data that inherently live on non-Euclidean geometries, such as the sphere. Techniques developed in the Euclidean setting must be extended to other geometries. Due to recent interest in geometric deep learning, analogues of Euclidean techniques must also handle general manifolds or graphs. Often, data are only observed over partial regions of manifolds, and thus standard whole-manifold techniques may not yield accurate predictions. In this thesis, a new wavelet basis is designed for datasets like these.

Although many definitions of spherical convolutions exist, none fully emulate the Euclidean definition. A novel spherical convolution is developed, designed to tackle the shortcomings of existing methods. The so-called sifting convolution exploits the sifting property of the Dirac delta and follows by the inner product of a function with the translated version of another. This translation operator is analogous to the Euclidean translation in harmonic space and exhibits some useful properties. In particular, the sifting convolution supports directional kernels; has an output that remains on the sphere; and is efficient to compute. The convolution is entirely generic and thus may be used with any set of basis functions. An application of the sifting convolution with a topographic map of the Earth demonstrates that it supports directional kernels to perform anisotropic filtering.

Slepian wavelets are built upon the eigenfunctions of the Slepian concentration problem of the manifold - a set of bandlimited functions which are maximally concentrated within a given region. Wavelets are constructed through a tiling of the Slepian harmonic line by leveraging the existing scale-discretised framework. A straightforward denoising formalism demonstrates a boost in signal-to-noise for both a spherical and general manifold example. Whilst these wavelets were inspired by spherical datasets, like in cosmology, the wavelet construction may be utilised for manifold or graph data.

[ascl:2212.001]
GWFAST: Fisher information matrix python package for gravitational-wave detectors

GWFAST forecasts the signal-to-noise ratios and parameter estimation capabilities of networks of gravitational-wave detectors, based on the Fisher information matrix approximation. It is designed for applications to third-generation gravitational-wave detectors. It is based on Automatic Differentiation, which makes use of the library JAX (ascl:2111.002). This allows efficient parallelization and numerical accuracy. The code includes a module for parallel computation on clusters.

[ascl:2212.002]
Eventdisplay: Analysis and reconstruction package for ground-based Gamma-ray astronomy

Eventdisplay reconstructs and analyzes data from the Imaging Atmospheric Cherenkov Telescopes (IACT). It has been primarily developed for VERITAS and CTA analysis. The package calibrates and parametrizes images, event reconstruction, and stereo analysis, and provides train boosted decision trees for direction and energy reconstruction. It fills and uses lookup tables for mean scaled width and length calculation, energy reconstruction, and stereo reconstruction, and calculates radial camera acceptance from data files and instrument response functions such as effective areas, angular point-spread function, and energy resolution. Eventdisplay offers additional tools as well, including tools for calculating sky maps and spectral energy distribution, and to plot instrument response function, spectral energy distributions, light curves, and sky maps, among others.

[ascl:2212.003]
MGCosmoPop: Modified gravity and cosmology with binary black holes population models

MGCosmoPop implements a hierarchical Bayesian inference method for constraining the background cosmological history, in particular the Hubble constant, together with modified gravitational-wave propagation and binary black holes population models (mass, redshift and spin distributions) with gravitational-wave data. It includes support for loading and analyzing data from the GWTC-3 catalog as well as for generating injections to evaluate selection effects, and features a module to run in parallel on clusters.

[ascl:2212.004]
FastDF: Integrating neutrino geodesics in linear theory

FastDF (Fast Distribution Function) integrates relativistic particles along geodesics in a comoving periodic volume with forces determined by cosmological linear perturbation theory. Its main application is to set up accurate particle realizations of the linear phase-space distribution of massive relic neutrinos by starting with an analytical solution deep in radiation domination. Such particle realizations are useful for Monte Carlo experiments and provide consistent initial conditions for cosmological N-body simulations. Gravitational forces are calculated from three-dimensional potential grids, which are obtained by convolving random phases with linear transfer functions using Fast Fourier Transforms. The equations of motion are solved using a symplectic leapfrog integration scheme to conserve phase-space density and prevent the build-up of errors. Particles can be exported in different gauges and snapshots are provided in the HDF5 format, compatible with N-body codes like SWIFT (ascl:1805.020) and Gadget-4 (ascl:2204.014). The code has an interface with CLASS (ascl:1106.020) for calculating transfer functions and with monofonIC (ascl:2008.024) for setting up initial conditions with dark matter, baryons, and neutrinos.

[ascl:2212.005]
MTNeedlet: Spherical maps filtering

MTNeedlet uses needlets to filter spherical (Healpix) maps and detect and analyze the maxima population using a multiple testing approach. It has been developed with the CMB in mind, but it can be applied to other spherical maps. It pivots around three basic steps: 1.) The calculation of several types of needlets and their possible use to filter maps; 2.) The detection of maxima (or minima) on spherical maps, their visualization and basic analysis; and 3.) The multiple testing approach in order to detect anomalies in the maxima population of the maps with respect to the expected behavior for a random Gaussian map. MTNeedlet relies on Healpy (ascl:2008.022) to efficiently deal with spherical maps.

[ascl:2212.006]
GPry: Bayesian inference of expensive likelihoods with Gaussian processes

GPry efficiently obtains marginal quantities from computationally expensive likelihoods. It works best with smooth (continuous) likelihoods and posteriors that are slow to converge by other methods, which is dependent on the number of dimensions and expected shape of the posterior distribution. The likelihood should be low-dimensional (d<20 as a rule of thumb), though the code may still provide considerable improvements in speed in higher dimensions, despite an increase in the computational overhead of the algorithm. GPry is an alternative to samplers such as MCMC and Nested Sampling with a goal of speeding up inference in cosmology, though the software will work with any likelihood that can be called as a python function. It uses Cobaya's (ascl:1910.019) model framework so all of Cobaya's inbuilt likelihoods work, too.

[ascl:2212.007]
PyMCCF: Python Modernized Cross Correlation Function for reverberation mapping studies

PyMCCF (Python Modernized Cross Correlation Function), also known as MCCF, cross correlates two light curves that are unevenly sampled using linear interpolation and measures the peak and centroid of the cross-correlation function. Based on PyCCF (ascl:1805.032) and ICCF, it introduces a new parameter, MAX, to reduce the number of interpolated points used to just those which are not farther from the nearest real one than the MAX. This significantly reduces noise from interpolation errors. The estimation of the errors in PyMCCF is exactly the same as in PyCCF.

[ascl:2212.008]
panco2: Pressure profile measurements of galaxy clusters

Kéruzoré, F.; Mayet, F.; Artis, E.; Macías-Pérez, J.F.; Muñoz-Echeverría, M.; Perotto, L.; Ruppin, F.

panco2 extracts measurements of the pressure profile of the hot gas inside galaxy clusters from millimeter-wave observations. The extraction is performed using forward modeling the millimeter-wave signal of clusters and MCMC sampling of a posterior distribution for the parameters given the input data. Many characteristic features of millimeter-wave observations can be taken into account, such as filtering (both through PSF smearing and transfer functions), point source contamination, and correlated noise.

[ascl:2212.009]
Hazma: Compute indirect detection constraints on sub-GeV dark matter

Hazma enables indirect detection of sub-GeV dark matter. It computes gamma-ray and electron/positron spectra from dark matter annihilations, sets limits on sub-GeV dark matter using existing gamma-ray data, and determines the discovery reach of future gamma-ray detectors. The code also derives accurate CMB constraints. Hazma comes with several sub-GeV dark matter models, for which it provides functions to compute dark matter annihilation cross sections and mediator decay widths. A variety of low-level tools are provided to make it straightforward to define new models.

[ascl:2212.010]
sf_deconvolve: PSF deconvolution and analysis

sf_deconvolve performs PSF deconvolution using a low-rank approximation and sparsity. It can handle a fixed PSF for the entire field or a stack of PSFs for each galaxy position. The code accepts Numpy binary files or FITS as input, takes the observed (*i.e.* with PSF effects and noise) stack of galaxy images and a known PSF, and attempts to reconstruct the original images. sf_deconvolve can be run in a terminal or in an active Python session, and includes options for initialization, optimization, low-Rank approximation, sparsity, PSF estimation, and other attributes.

[ascl:2212.011]
xwavecal: Wavelength calibrating echelle spectrographs

The xwavecal library automatically wavelength calibrates echelle spectrographs for high precision radial velocity work. The routines are designed to operate on data with extracted 1D spectra. The library provides a convienience function which returns a list of wavelengths from just a list of spectral feature coordinates (pixel and order) and a reference line list. The returned wavelengths are the wavelengths of the measured spectral features under the best fit wavelength model. xwavecal also provides line identification and spectral reduction utilities. The library is modular; each step of the wavelength calibration is a stage which can be disabled by removing the associated line in the config.ini file. Wavelength calibrating data which already have spectra means only using the wavelength calibration stages. Using the full experimental pipeline means enabling the other data reduction stages, such as overscan subtraction.

[ascl:2212.012]
BANZAI-NRES: BANZAI data reduction pipeline for NRES

McCully, Curtis; Daily, Matthew; Brandt, G. Mirek; Johnson, Marshall C.; Bowman, Mark; Harbeck, Daniel-Rolf

The BANZAI-NRES pipeline processes data from the Network of Robotic Echelle Spectrographs (NRES) on the Las Cumbres Observatory network and provides extracted, wavelength calibrated spectra. If the target is a star, it provides stellar classification parameters (*e.g.*, effective temperature and surface gravity) and a radial velocity measurement. The automated radial velocity measurements from this pipeline have a precision of ~ 10 m/s for high signal-to-noise observations. The data flow and infrastructure of this code relies heavily on BANZAI (ascl:2207.031), enabling BANZAI-NRES to focus on analysis that is specific to spectrographs. The wavelength calibration is primarily done using xwavecal (ascl:2212.011). The pipeline propagates an estimate of the formal uncertainties from all of the data processing stages and includes these in the output data products. These are used as weights in the cross correlation function to measure the radial velocity.

[ascl:2212.013]
PACMAN: Planetary Atmosphere, Crust, and MANtle geochemical evolution

PACMAN (Planetary Atmosphere, Crust, and MANtle geochemical evolution) runs a coupled redox-geochemical-climate evolution model. It runs Monte Carlo calculations over nominal parameter ranges, including number of iterations and number of cores for parallelization, which can be altered to reproduce different scenarios and sensitivity tests. Model outputs and corresponding input parameters are saved in separate files which are used to plot results; the the user can choose which outputs to plot, including all successful outputs, nominal Earth outputs, waterworld false positives, desertworld false positives, and high CO2:H2O false positives. Among other functions, PACMAN contains functions for interpolating the pre-computed Outgoing Longwave Radiation (OLR) grid, the atmosphere-ocean partitioning grid, and the stratospheric water vapor grid, calculating bond albedo and outgassing fluxes.

[ascl:2212.014]
pyTANSPEC: Python tool for extracting 1D TANSPEC spectra from 2D images

pyTANSPEC extracts XD-mode spectra automatically from data collected by the TIFR-ARIES Near Infrared Spectrometer (TANSPEC) on India's ground-based 3.6-m Devasthal Optical Telescope at Nainital, India. The TANSPEC offers three modes of observations, imaging with various filters, spectroscopy in the low-resolution prism mode with derived R~ 100-400 and the high-resolution cross-dispersed mode (XD-mode) with derived median R~ 2750 for a slit of width 0.5 arcsec. In the XD-mode, ten cross-dispersed orders are packed in the 2048 x 2048 pixels detector to cover the full wavelength regime. The XD-mode is most utilized; pyTANSPEC provides a dedicated pipeline for consistent data reduction for all orders and to reduces data reduction time. The code requires nominal human intervention only for the quality assurance of the reduced data. Two customized configuration files are used to guide the data reduction. The pipeline creates a log file for all the fits files in a given data directory from its header, identifies correct frames (science, continuum and calibration lamps) based on the user input, and offers an option to the user for eyeballing and accepting/removing of the frames, does the cleaning of raw science frames and yields final wavelength calibrated spectra of all orders simultaneously.

[ascl:2212.015]
SImMER: Stellar Image Maturation via Efficient Reduction

SImMER (Stellar Image Maturation via Efficient Reduction) reduces astronomical imaging data. It performs standard dark-subtraction and flat-fielding operations on data from, for example, the ShARCS camera on the Shane 3-m telescope at Lick Observatory and the PHARO camera on the Hale 5.1-m telescope at Palomar Observatory; its object-oriented design allows the software to be extended to other instruments. SImMER can also perform sky-subtraction, image registration, FWHM measurement, and contrast curve calculation, and can generate tables and plots. For widely separated stars which are of somewhat equal brightness, a “wide binary” mode allows the user to selects which star is the primary around which each image should be centered.

[ascl:2212.016]
AbundanceMatching: Subhalo abundance matching with scatter

The AbundanceMatching Python module creates (interpolates and extrapolates) abundance functions and also provides fiducial deconvolution and abundance matching.

[ascl:2212.017]
powspec: Power and cross spectral density of 2D arrays

powspec provides functions to compute power and cross spectral density of 2D arrays. Units are properly taken into account. It can, for example, create fake Gaussian field images, compute power spectra P(k) of each image, shrink a mask with regard to a kernel, generate a Gaussian field, and plot various results.

[ascl:2212.018]
SourceXtractor++: Extracts sources from astronomical images

SourceXtractor++ extracts a catalog of sources from astronomical images; it is the successor to SExtractor (ascl:1010.064). SourceXtractor++ has been completely rewritten in C++ and improves over its predecessor in many ways. It provides support for multiple “measurement” images, has an optimized multi-object, multi-frame model-fitting engine, and can define complex priors and dependencies for model parameters. It also offers efficient image data caching and multi-threaded processing, and has a modular design with support for third-party plug-ins.

[ascl:2212.019]
m2mcluster: Star clusters made-to-measure modeling

m2mcluster performs made-to-measure modeling of star clusters, and can fit target observations of a Galactic globular cluster's 3D density profile and individual kinematic properties, including proper motion velocity dispersion, and line of sight velocity dispersion. The code uses AMUSE (ascl:1107.007) to model the gravitational *N*-body evolution of the system between time steps; GalPy (ascl:1411.008) is also required.

[ascl:2212.020]
Omega: Photon equations of motion

Omega solves the photon equations of motion in the environment surrounding a black hole. This black hole can be either Schwarzschild (nonrotating) or Kerr (rotating) by choice of the user. The software offers numerous options, such as the geometrical setup of the accretion disk around the black hole (including no disk, band, slab, wedge, among others, the spin parameter of the central black hole, and the thickness of the accretion disk. Other options that can be set includ the azimuthal angle of the photon emission/reception, the poloidal angle of the photon emission/reception, and how far away or close to the system to look.

[ascl:2212.021]
Infinity: Calculate accretion disk radiation forces onto moving particles

Infinity sets an observer in a black hole - accretion disk system. The black hole can be either Schwarzschild (nonrotating) or Kerr (rotating) by choice of the user. This observer can be on the surface of the disk, in its exterior or its interior (if the disk is not opaque). Infinity then scans the entire sky around the observer and investigates whether photons emitted by the hot accretion disk material can reach them. After recording the incoming radiation, the program calculates the stress-energy tensor of the radiation. Afterwards, the program calculates the radiation flux and hence, the radiation force exerted on target particles of various velocity profiles.

[ascl:2212.022]
Elysium: Observing black hole accretion disks

Elysium creates an observing screen at the desirable distance away from a black hole system. Observers set on every pixel of this screen then photograph the area toward the black hole - accretion disk system and report back what they record. This can be the accretion disk (incoming photons bring in radiation and thus energy), the black hole event horizon, or the empty space outside and beyond the system (there are no incoming photons or energy). The central black hole can be either Schwarzschild (nonrotating) or Kerr (rotating) by choice of the user.

[ascl:2212.023]
Tranquillity: Creating black hole spin divergence plots

Tranquillity creates an observing screen looking toward a black hole - accretion disk system, seeks the object, then searches and locates its contour. Subsequently, it attempts to locate the first Einstein "echo" ring and its location. Finally, it collates the retrieved information and draws conclusions; these include the accretion disk level inclination compared to the line of sight and the main disk and the first echo median. The displacement, and thus the divergence of the latter two, is the required information in order to construct the divergence plots. Other programs can later on automatically read these plots and provide estimations of the central black hole spin.

[ascl:2212.024]
Burning Arrow: Black hole massive particles orbit degradation

Burning Arrow determines the destabilization of massive particle circular orbits due to thermal radiation, emitted in X-ray, from the hot accretion disk material. This code requires the radiation forces exerted on the material at the point of interest found by running the code Infinity (ascl:2212.021). Burning Arrow begins by assuming a target particle in the disk that moves in a circular orbit. It then introduces the recorded radiation forces from Infinity code for the target region. The forces are subsequently introduced into the target particle equations of motion and the trajectory is recalculated. Burning Arrow then produces images of the black hole - accretion disk system that includes the degenerated particle trajectories that obey the assorted velocity profiles.

[ascl:2212.025]
CONTROL: Colorado Ultraviolet Transit Experiment data reduction pipeline

Sreejith, A. G.; Fossati, Luca; Ambily, S.; Egan, Arika; Nell, Nicholas; France, Kevin; Fleming, Brian T.; Haas, Stephanie; Chambliss, Michael; DeCicco, Nicholas; Steller, Manfred

CONTROL (CUTE autONomous daTa ReductiOn pipeLine) produces science-quality output with a single command line with zero user interference for CUTE (Colorado Ultraviolet Transit Experiment) data. It can be used for any single order spectral data in any wavelength without any modification. The pipeline is governed by a parameter file, which is available with this distribution. CONTROL is fully automated and works in a series of steps following standard CCD reduction techniques. It creates a reduction log to track processes carried out and any parameters used.

Previous123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960**61**6263646566676869707172Next

Would you like to view a random code?