Results 2901-2950 of 3572 (3481 ASCL, 91 submitted)
Helios-r2 performs atmospheric retrieval of brown dwarf and exoplanet spectra. It uses a Bayesian statistics approach by employing a nested sampling method to generate posterior distributions and calculate the Bayesian evidence. The nested sampling itself is done by Multinest (ascl:1109.006). The computationally most demanding parts of the model have been written in NVIDIA's CUDA language for an increase in computational speed. Successful applications include retrieval of brown dwarf emission spectra and secondary eclipse measurements of exoplanets.
The samsam package provides two samplers, a scaled adaptive metropolis algorithm to robustly obtain samples from a target distribution, and a covariance importance sampling algorithm to efficiently compute the model evidence (or other integrals). It also includes tools to assess the convergence of the sam sampler and a few commonly used prior distributions.
The Exoplanet Characterization ToolKit (ExoCTK) focuses primarily on the atmospheric characterization of exoplanets and provides tools for time-series observation planning, forward modeling, data reduction, limb darkening, light curve fitting, and retrievals. It contains calculators for contamination, visibility, integrations and groups, and includes several Jupyter Notebooks to aid in learning how to use the various tools included in the ExoCTK package.
MuSCAT2_transit_pipeline provides photometry and transit analysis pipelines for MuSCAT2. It consists of a set of executable scripts and two Python packages: muscat2ph for photometry, and muscat2ta for transit analysis. The MuSCAT2 photometry can be carried out using the scripts only. The transit analysis can also in most cases be done using the main transit analysis script m2fit, but the muscat2ta package also offers high-level classes that can be used to carry out more customized transit analysis as a Python script (or Jupyter notebook).
petitRADTRANS (pRT) calculates transmission and emission spectra of exoplanets for clear and cloudy planets. It also incorporates an easy subpackage for running retrievals with nested sampling. It allows the calculation of emission or transmission spectra, at low or high resolution, clear or cloudy, and includes a retrieval module to fit a petitRADTRANS model to spectral data. pRT has two different opacity treatment modes. The low resolution mode runs calculations at λ/Δλ ≤ 1000 using the so-called correlated-k treatment for opacities. The high resolution mode runs calculations at λ/Δλ ≤ 106, using a line-by-line opacity treatment.
calviacat calibrates star photometry by comparison to a catalog, including PanSTARRS 1, ATLAS-RefCat2, and SkyMapper catalogs. Catalog queries are cached so that subsequent calibrations of the same or similar fields can be more quickly executed.
DustPy simulates the radial evolution of gas and dust in protoplanetary disks, involving viscous evolution of the gas disk and advection and diffusion of the dust disk, as well as dust growth by solving the Smoluchowski equation. The package provides a standard simulation and the ability to plot results, and also allows modification of the initial conditions for dust, gas, the grid, and the central star.
LOTUS (non-LTE Optimization Tool Utilized for the derivation of atmospheric Stellar parameters) derives stellar parameters via Equivalent Width (EW) method with the assumption of 1D non-local thermodynamic equilibrium. It mainly applies on the spectroscopic data from high resolution spectral survey. It can provide extremely accurate measurement of stellar parameters compared with non-spectroscopic analysis from benchmark stars. LOTUS provides a fast optimizer for obtaining stellar parameters based on Differential Evolution algorithm, well constrained uncertainty of derived stellar parameters from slice-sampling MCMC from PyMC3 (ascl:1610.016), and can interpolate the Curve of Growth from theoretical EW grid under the assumptions of LTE and Non-LTE. It also visualizes excitation and ionization balance when at the optimal combination of stellar parameters.
pocoMC performs Bayesian inference, including model comparison, for challenging scientific problems. The code utilizes a normalizing flow to precondition the target distribution by removing any correlations between its parameters. pocoMC then generates posterior samples, used for parameter estimation, with a powerful adaptive Sequential Monte Carlo algorithm manifesting a sampling efficiency that can be orders of magnitude higher than without precondition. Furthermore, pocoMC also provides an unbiased estimate of the model evidence that can be used for the task of Bayesian model comparison. The code is designed to excel in demanding parameter estimation problems that include multimodal and highly non–Gaussian target distributions.
walter calculates the number density of stars detected in a given observation aiming to resolve a stellar population. The code also calculates the exposure time needed to reach certain population features, such as the horizontal branch, and provides an estimate of the crowding limit. walter was written with the expectation that such calculations will be very useful for planning surveys with the Nancy Grace Roman Space Telescope (RST, formerly WFIRST).
vKompth fits the energy-dependent rms-amplitude and phase-lag spectra of low-frequency quasi-periodic oscillations in low mass black-hole X-ray binaries using a variable Comptonization model. The accretion disc is modeled as a multi-temperature blackbody source emitting soft photons which are then Compton up-scattered in a spherical corona, including feedback of Comptonized photons that return to the disc.
BAYGAUD (BAYesian GAUssian Decomposer) implements the decomposition of velocity profiles in a data cube and subsequent classification. It uses MultiNest (ascl:1109.006) for calculating the posterior distribution and the evidence for a given likelihood function. The code models a given line profile with an optimal number of Gaussians based on the Bayesian Markov Chain Monte Carlo (MCMC) techniques. BAYGAUD is parallelized using the Message-Passing Interface (MPI) standard, which reduces the time needed to calculate the evidence using MCMC techniques.
triple-stability uses a simple form of an artificial neural network, a multi-layer perceptron, to check whether a given configuration of a triple-star system is dynamically stable. The code is written in Python and the MLP classifier can be imported to other custom Python3 scripts.
MCFOST is a 3D continuum and line radiative transfer code based on an hybrid Monte Carlo and ray-tracing method. It is mainly designed to study the circumstellar environment of young stellar objects, but has been used for a wide range of astrophysical problems. The calculations are done exactly within the limitations of the Monte Carlo noise and machine precision, i.e., no approximation are used in the calculations. The code has been strongly optimized for speed.
MCFOST is primarily designed to study protoplanetary disks. The code can reproduce most of the observations of disks, including SEDs, scattered light images, IR and mm visibilities, and atomic and molecular line maps. As the Monte Carlo method is generic, any complex structure can be handled by MCFOST and its use can be extended to other astrophysical objects. For instance, calculations have succesfully been performed on infalling envelopes and AGB stars. MCFOST also includes a non-LTE line transfer module, and NLTE level population are obtained via iterations between Monte Carlo radiative transfer calculations and statistical equilibrium.
pymcfost provides an interface to and can be used to visualize results from the 3D radiative transfer code MCFOST (ascl:2207.023). pymcfost can set up continuum and line models, read a single model or library of models, plot basic quantities such as density structures and temperature maps, and plot observables, including SEDs, polarization maps, visibilities, and channels maps (with spatial and spectral convolution). It can also convert units (e.g. W.m-2 to Jy or brightness temperature), and it provides an interface to the ALMA CASA simulator (ascl:1107.013).
casa_cube provides an interface to data cubes generated by CASA (ascl:1107.013) or Gildas (ascl:1305.010). It performs simple tasks such as plotting given channel maps, moment maps, and line profile in various units, and also corrects for cloud extinction, reconvolves with a beam taper, and permits quick and easy comparisons with models.
pdspy fits Monte Carlo radiative transfer models for protostellar/protoplanetary disks to ALMA continuum and spectral line datasets using Markov Chain Monte Carlo fitting. It contains two tools, one to fit ALMA continuum visibilities and broadband spectral energy distributions (SEDs) with full radiative transfer models, and another to fit ALMA spectral line visibilities with protoplanetary disk models that include a vertically isothermal, power law temperature distribution. No radiative equilibrium calculation is done.
ConeRot extracts velocity perturbations in protoplanetary disks from observed line centroids maps ν∘, by creating axially-symmetric centroid maps. It also derives 3D rotation curves in disk-centered cylindrical coordinates, and can estimate the disk orientation based on line data alone. It approximates the unit opacity surface of an axially symmetric disc by a series of cones whose orientations are fit to the observed velocity centroid in concentric radial domains, or regions, with the disc orientation and the rotation curve both optimized to fit ν∘ in each region. ConeRot extracts the perturbations directly from observations without strong assumptions about the underlying disk model and employs a reduced number of free parameters.
disksurf measures the height of optically thick emission or photosphere in moderately inclined protoplanetary disks. The package is dependent on AstroPy (ascl:1304.002) and uses GoFish (ascl:2011.016) to retrieve data from FITS data cubes and user-specified parameters to return a surface object containing the disk-centric coordinates of the surface and the gas temperature and rotation velocity at those locations. disksurf provides clipping, smoothing, and diagnostic functions as well.
ParticleGridMapper.jl interpolates particle data onto either a Cartesian (uniform) grid or an adaptive mesh refinement (AMR) grid where each cell contains no more than one particle. The AMR grid can be trimmed with a user-defined maximum level of refinement. Three different interpolation schemes are supported: nearest grid point (NGP), smoothed-particle hydrodynamics (SPH), and Meshless finite mass (MFM). It is multi-threading parallel.
This code analyzes a dipole axis in the distribution of galaxy spin directions. The code takes as input a list of galaxies, their equatorial coordinates, and their spin directions. It then determines the statistical significance of possible dipole axis at any point in the sky by comparing the cosine dependence of the spin directions to the mean and standard deviation of the cosine dependence after 2000 runs with random spin directions. A code to analyze the binomial distribution of the spin directions using Monte Carlo simulation is also available.
BANZAI (Beautiful Algorithms to Normalize Zillions of Astronomical Images) processes raw data taken from Las Cumbres Observatory and produces science quality data products. It is capable of reducing single or multi-extension fits files. For historical data, BANZAI can also reduce the data cubes that were produced by the Sinistro cameras.
gwdet computes the probability of detecting a gravitational-wave signal from compact binaries averaging over sky-location and source inclination. The code has two classes, averageangles and detectability. averageangles computes the detection probability, averaged over all angles (such as sky location, polarization, and inclination), as a function of the projection parameter. detectability computes the detection probability of a non-spinning compact binary.
piXedfit provides a self-contained set of tools for analyzing spatially resolved properties of galaxies using imaging data or a combination of imaging data and the integral field spectroscopy (IFS) data. piXedfit has six modules that can handle all tasks in the analysis of the spatially resolved SEDs of galaxies, including images processing, a spatial-matching between reduced broad-band images with an IFS data cube, pixel binning, performing SED fitting, and making visualization plots for the SED fitting results.
SSHT performs fast and exact spin spherical harmonic transforms; functionality is also provided to perform fast and exact adjoint transforms, forward and inverse transforms, and spherical harmonic transforms for a number of alternative sampling schemes. The code can interface with DUCC (ascl:2008.023) and use it as a backend for spherical harmonic transforms and rotations.
massmappy recovers convergence mass maps on the celestial sphere from weak lensing cosmic shear observations. It relies on SSHT (ascl:2207.034) and HEALPix (ascl:1107.018) to handle sampled data on the sphere. The spherical Kaiser-Squires estimator is implemented.
BMarXiv scans new (i.e., since the last time checked) submissions from arXiv, ranks submissions based on keyword matches, and produces an HTML page as an output.
The keywords are looked for (with regex capabilities) in the title, abstract, but also the author list, so it is possible to look for people too. The score is calculated for each specific entry but additional (and optional) scoring is performed using the first author recent submissions and/or the other authors' recent submissions.
It is possible to include/exclude any arXiv categories (within astro-ph or not). New astronomical conferences (from CADC by default) and new codes (from ASCL.net) are also checked and can also be scanned for keywords.
A local bibliography file can be scanned to find frequent words/groups of words that could become scanned keywords.
Eidein interactively visualizes a data sample for the selection of an informative (contains data with high predictive uncertainty, is diverse, but not redundant) data subsample for deep active learning. The data sample is projected to 2-D with a dimensionality reduction technique. It is visualized in an interactive scatter plot that allows a human expert to select and annotate the data subsample.
BlaST (Blazar Synchrotron Tool) estimates the synchrotron peak of blazars given their spectral energy distribution. It uses a machine-learning algorithm that simplifies the estimation and also provides a reliable uncertainty estimation. The package naturally accounts for additional SED components from the host galaxy and the disk emission. BlaST also supports bulk estimation, e.g. estimating a whole catalog, by providing a directory or zip file containing the seds as well as an output file in which to write the results.
qrpca uses QR-decomposition for fast principal component analysis. The software is particularly suited for large dimensional matrices. It makes use of torch for internal matrix computations and enables GPU acceleration, when available. Written in both R and python languages, qrpca provides functionalities similar to the prcomp (R) and sklearn (python) packages.
Scatfit models observed burst signals of impulsive time domain radio signals ( e.g., Fast Radio Bursts (FRBs) or pulsars pulses), which usually are convolution products of various effects, and fits them to the experimental data. It includes several models for scattering and instrumental effects. The code loads the experimental time domain radio data, cleans them, fits an aggregate scattering model to the data, and robustly estimates the model parameters and their uncertainties. Additionally, scatfit determines the scaling of the scattering time with frequency, i.e. the scattering index, and the scattering-corrected dispersion measure of the burst or pulse.
The TOM Toolkit combines a flexible, searchable database of all information related to a scientific research project, with an observation and data analysis control system, and communication and data visualization tools. This Toolkit includes a fully operational TOM (Target and Observation Manager) system in addition to a range of optional tools for specific tasks, including interfaces to widely-used observing facilities and data archives and data visualization tools. With TOM Toolkit, project teams can develop and customize a system for their own science goals, without needing specialist expertise in databasing.
Asymmetric Uncertainty implements and provides an object class for dealing with uncertainties for physical quantities that are not symmetric. Instances of the class behave appropriately with other numeric objects under most mathematical operations, and the associated errors propagate accordingly. The class also provides utilities such as methods for evaluating and plotting probability density functions, as well as capabilities for handling arrays of such objects. Standard and symmetric uncertainties are also supported.
ThermoEngine estimates the thermodynamic properties of minerals, fluids, and melts, and calculates phase equilibriums. The Equilibrate module of ThermoEngine provides Python functions and classes for computing equilibrium phase assemblages with focus on MELTS calculations. The Phases module includes Python functions and classes for computing standard thermodynamic calculations utilizing the Berman, Holland and Powell, or Stixrude-Lithgow-Bertelloni endmember databases, and calculations based on solution properties utilized by MELTS. There are many helper functions available in this module that assist in the calculation of pseudosections, univariant equilibria and the construction of phase diagrams.
VapoRock calculates the equilibrium partial pressures of metal-bearing gas species of specific elements above the magma ocean surface to determine the metal-bearing composition of the atmosphere as a function of temperature and the bulk composition of the magma ocean. It utilizes ENKI's ThermoEngine (ascl:2208.006) and combines estimates for element activities in silicate melts with thermodynamic data for metal and metal oxide vapor species.
RJ-plots uses a moments of inertia method to disentangle a 2D structure's elongation from its centrally over/under-density, thus providing a means for the automated and objective classification of such structures. It may be applied to any 2D pixelated image such as column density maps or moment zero maps of molecular lines. This method is a further development of J-plots (ascl:2009.007).
LeXInt (Leja interpolation for eXponential Integrators) is a temporal exponential integration package using the method of polynomial interpolation at Leja points. Exponential Rosenbrock (EXPRB) and Exponential Propagation Iterative Runge-Kutta (EPIRK) methods use the Leja interpolation method to compute the functions. For linear PDEs, one can get the exact solution (in time) by directly computing the matrix exponential.
FFD (Flare Frequency Distribution) fits power-laws to FFDs. FFDs relate the frequency (i.e., occurrence rate) of flares to their energy, peak flux, photometric equivalent width, or other parameters. This module was created to handle disparate datasets between which the flare detection limit varies; in essence, the number of flares detected is treated as following a Poisson distribution while the flare energies are treated as following a power law.
POIS (Python Optical Interferometry Simulation) provides the building blocks to simulate the operation of a ground-based optical interferometer perturbed by atmospheric seeing perturbations. The package includes functions to generate simulated atmospheric turbulent wavefront perturbations, correct these perturbations using adaptive optics, and combine beams from an arbitrary number of telescopes, with or without spatial filtering, to provide complex fringe visibility measurements.
DELIGHT (Deep Learning Identification of Galaxy Hosts of Transients) automatically identifies host galaxies of transient candidates using multi-resolution images and a convolutional neural network. This library has a class with several methods to get the most likely host coordinates starting from given transient coordinates. In order to do this, the DELIGHT object needs a list of object identifiers and coordinates (oid, ra, dec). With this information, it downloads PanSTARRS images centered around the position of the transients (2 arcmin x 2 arcmin), gets their WCS solutions, creates the multi-resolution images, does some extra preprocessing of the data, and finally predicts the position of the hosts using a multi-resolution image and a convolutional neural network. DELIGHT can also estimate the host's semi-major axis if requested, taking advantage of the multi-resolution images.
SPAMMS (Spectroscopic PAtch Model for Massive Stars), designed with geometrically deformed systems in mind, combines the eclipsing binary modelling code PHOEBE 2 (ascl:1106.002) and the NLTE radiative transfer code FASTWIND to produce synthetic spectra for systems at given phases, orientations and geometries. SPAMMS reproduces the morphology of observed spectral line profiles for overcontact systems and the Rossiter-Mclaughlin and Struve-Sahade effects.
uvcombine combines single-dish and interferometric data. It can combine high-resolution images that are missing large angular scales (Fourier-domain short-spacings) with low-resolution images containing the short/zero spacing. uvcombine includes the "feathering" technique for interferometry data, implementing a similar approach to CASA’s (ascl:1107.013) feather task but with additional options. Also included are consistency tests for the flux calibration and single-dish scale by comparing the data in the uv-overlap range.
J-comb combines high-resolution data with large-scale missing information with low-resolution data containing the short spacing. Based on uvcombine (ascl:2208.014), it takes as input FITS files of low- and high-resolution images, the angular resolution of the input images, and the pixel size of the input images, and outputs a FITS file of the combined image.
CRPropa3, an improved version of CRPropa2 (ascl:1412.013), provides a simulation framework to study the propagation of ultra-high-energy nuclei up to iron on their voyage through an (extra)galactic environment. It takes into account pion production, photodisintegration, and energy losses by pair production of all relevant isotopes in the ambient low-energy photon fields, as well as nuclear decay. CRPropa3 can model the deflection in (inter)galactic magnetic fields, the propagation of secondary electromagnetic cascades, and neutrinos for a multitude of scenarios for different source distributions and magnetic environments. It enables the user to predict the spectra of UHECR (and of their secondaries), their composition and arrival direction distribution. Additionally, the low-energy Galactic propagation can be simulated by solving the transport equation using stochastic differential equations. CRPropa3 features a very flexible simulation setup with python steering and shared-memory parallelization.
HOCHUNK3D is an updated version of the HOCHUNK radiative equilibrium code (ascl:1711.013); the code has been converted to Fortran 95, which allows a specification of one-dimensional (1D), 2D, or 3D grids at runtime. The code is parallelized so it can be run on multiple processors on one machine, or on multiple machines in a network. It includes 3-D functionality and several other additional geometries and features. The code calculates radiative equilibrium temperature solution, thermal and PAH/vsg emission, scattering and polarization in protostellar geometries. HOCHUNK3D also computes spectral energy distributions (SEDs), polarization spectra, and images.
EstrellaNueva calculates expected rates of supernova neutrinos in detectors. It provides a link between supernova simulations and the expected events in detectors by calculating fluences and event rates in order to ease any comparison between theory and observation. The software is a standalone tool for exploring many physics scenarios, and offers an option to add analytical cross sections and define any target material.
RadioLensfit measures star-forming galaxy ellipticities using a Bayesian model fitting approach. The software uses an analytical exponential Sersic model and works in the visibility domain avoiding Fourier Transform. It also simulates visibilities of observed SF galaxies given a source catalog and Measurement Sets containing the description of the radio interferometer and of the observation. It provides both serial and MPI versions.
GStokes performs simple multipolar fits to circular polarization data to provide information about the field strength and geometry. It provides forward calculation of the disc-integrated Stokes parameter profiles as well as magnetic inversions under several widely used simplifying approximations of the polarized line formation. GStokes implements the Unno–Rachkovsky analytical solution of the polarized radiative transfer equation and the weak-field approximation with the Gaussian local profiles. The magnetic field geometry is described with one of the common low-order multipolar field parametrizations. Written in IDL, GStokes provides a user-friendly graphical front-end.
GSSP (Grid Search in Stellar Parameters) is based on a grid search in the fundamental atmospheric parameters and (optionally) individual chemical abundances of the star (or binary stellar components) in question. It uses atmosphere models and spectrum synthesis, which assumes a comparison of the observations with each theoretical spectrum from the grid. The code can optimize five stellar parameters at a time (effective temperature, surface gravity, metallicity, microturbulent velocity, and projected rotational velocity of the star) and synthetic spectra can be computed in any number of wavelength ranges. GSSP builds the grid of theoretical spectra from all possible combinations of the above mentioned parameters, and delivers the set of best fit parameters, the corresponding synthetic spectrum, and the ASCII file containing the individual parameter values for all grid points and the corresponding chi-square values.
PyNAPLE (PYthon Nac Automated Pair Lunar Evaluator) detects changes and new impact craters on the lunar surface using Lunar Reconnaissance Orbiter Narrow Angle Camera (LRO NAC) images. The code enables large scale analyses of sub-kilometer scale cratering rates and refinement of both scaling laws and the luminous efficiency.
Would you like to view a random code?