Results 3051-3100 of 3562 (3469 ASCL, 93 submitted)

[ascl:2212.026]
Spender: Neural spectrum encoder and decoder

Spender establishes a restframe for galaxy spectra that has higher resolution and larger wavelength range than the spectra from which it is trained. The model can be trained from spectra at different redshifts or even from different instruments without the need to standardize the observations. Spender also has an explicit, differentiable redshift dependence, which can be coupled with a redshift estimator for a fully data-driven spectrum analysis pipeline. The code describes the restframe spectrum by an autoencoder and transforms the restframe model to the observed redshift; it also matches the spectral resolution and line spread function of the instrument.

[submitted]
unWISE-verse: An Integrated WiseView and Zooniverse Data Pipeline

unWISE-verse is an integrated Python pipeline for downloading sets of unWISE time-resolved coadd cutouts from the WiseView image service and uploading subjects to Zooniverse.org for use in astronomical citizen science research. This software was initially designed for the Backyard Worlds: Cool Neighbors research project and is optimized for target sets containing low luminosity brown dwarf candidates. However, unWISE-verse can be applied to other future astronomical research projects that seek to make use of unWISE infrared sky maps, such as studies of infrared variable/transient sources.

[ascl:2301.001]
CALSAGOS: Select cluster members and search, find, and identify substructures

CALSAGOS (Clustering ALgorithmS Applied to Galaxies in Overdense Systems) selects cluster members and searches, finds, and identifies substructures and galaxy groups in and around galaxy clusters using the redshift and position in the sky of the galaxies. The package offers two ways to determine cluster members, ISOMER and CLUMBERI. The ISOMER (Identifier of SpectrOscopic MembERs) function selects the spectroscopic cluster members by defining cluster members as those galaxies with a peculiar velocity lower than the escape velocity of the cluster. The CLUMBERI (CLUster MemBER Identifier) function select the cluster members using a 3D-Gaussian Mixture Modules (GMM). Both functions remove the field interlopers by using a 3-sigma clipping algorithm. CALSAGOS uses the function LAGASU (LAbeller of GAlaxies within SUbstructures) to search, find, and identify substructures and groups in and around a galaxy cluster; this function is based on clustering algorithms (GMM and DBSCAN), which search areas with high density to define a substructure or groups.

[ascl:2301.002]
Pyxel: Detector and end-to-end instrument simulation

Arko, Matej; Prod'homme, Thibaut; Lemmel, Frederic; Serra, Benoit; George, Elisabeth M.; Kelman, Bradley; Pichon, Thibault; Biancalani, Enrico; Gilbert, James

Pyxel hosts and pipelines models (analytical, numerical, statistical) simulating different types of detector effects on images produced by Charge-Coupled Devices (CCD), Monolithic, and Hybrid CMOS imaging sensors. Users can provide one or more input images to Pyxel, set the detector and model parameters, and select which effects to simulate, such as cosmic rays, detector Point Spread Function (PSF), electronic noises, Charge Transfer Inefficiency (CTI), persistence, dark current, and charge diffusion, among others. The output is one or more images including the simulated detector effects combined. The Pyxel framework, written in Python, provides basic image analysis tools, an input image generator, and a parametric mode to perform parametric and sensitivity analysis. It also offers a model calibration mode to find optimal values of its parameters based on a target dataset the model should reproduce.

[ascl:2301.003]
WF4Py: Gravitational waves waveform models in pure Python language

WF4Py implements frequency-domain gravitational wave waveform models in pure Python, thus enabling parallelization over multiple events at a time. Waveforms in WF4Py are built as classes; the functions take dictionaries containing the parameters of the events to analyze as input and provide Fourier domain waveform models. All the waveforms are accurately checked with their implementation in LALSuite (ascl:2012.021) and are a core element of GWFAST (ascl:2212.001).

[ascl:2301.004]
HEADSS: HiErArchical Data Splitting and Stitching for non-distributed clustering algorithms

HEADSS (HiErArchical Data Splitting and Stitching) facilitates clustering at scale, unlike clustering algorithms that scale poorly with increased data volume or that are intrinsically non-distributed. HEADSS automates data splitting and stitching, allowing repeatable handling, and removal, of edge effects. Implemented in conjunction with scikit's HDBSCAN, the code achieves orders of magnitude reduction in single node memory requirements for both non-distributed and distributed implementations, with the latter offering similar order of magnitude reductions in total run times while recovering analogous accuracy. HEADSS also establishes a hierarchy of features by using a subset of clustering features to split the data.

[ascl:2301.005]
fitOmatic: Interferometric data modeling

The fitOmatic model-fitting prototyping tool tests multi-wavelength model-fitting and exploits VLTI data. It provides tools to define simple geometrical models and conveniently adjust the model's parameters. Written in Yorick, it takes optical interferometry FITS (oifits) files as input and allows the user to define a model of the source from a set of pre-defined models, which can be combined to make more complicated models. fitOmatic then computes the Fourier Transform of the modeled brightness distribution and synthetic observables are computed at the wavelengths and projected baselines of the observations. fitomatic's strength is its ability to define vector-parameters, *i.e.*, parameters that may depend on wavelength and/or time. The self-cal (ascl:2301.006) component of fitOmatic is also available as a separate code.

[ascl:2301.006]
Self-cal: Optical/IR long-baseline interferometry

Self-cal produces radio-interferometric images of an astrophysical object. The code is an adaptation of the self-calibration algorithm to optical/infrared long-baseline interferometry, especially to make use of differential phases and differential visibilities. It works together with the Mira image reconstruction software and has been used mainly on VLTI data. Self-cal, written in Yorick, is also available as part of fitsOmatic (ascl:2301.005).

[ascl:2301.007]
LoLLiPoP: Low-L Likelihood Polarized for Planck

Tristram, Matthieu; Garrido, Xavier; Hamimeche, Samira; Lewis, Antony; Mangilli, A.; Plaszczynski, S.

LoLLiPoP is a Planck low-l polarization likelihood based on cross-power-spectra for which the bias is zero when the noise is uncorrelated between maps. It uses a modified approximation to apply to cross-power spectra and is interfaced with the Cobaya (ascl:1910.019) MCMC sampler. Cross-spectra are computed on the CMB maps from Commander component separation applied on each detset-split Planck frequency maps.

[ascl:2301.008]
HiLLiPoP: High-L Likelihood Polarized for Planck

HiLLiPoP is a multifrequency CMB likelihood for Planck data. The likelihood is a spectrum-based Gaussian approximation for cross-correlation spectra from Planck 100, 143 and 217GHz split-frequency maps, with semi-analytic estimates of the Cl covariance matrix based on the data. The cross-spectra are debiased from the effects of the mask and the beam leakage using Xpol (ascl:2301.009) before being compared to the model, which includes CMB and foreground residuals. They cover the multipoles from ℓ=30 to ℓ=2500. HiLLiPoP is interfaced with the Cobaya (ascl:1910.019) MCMC sampler.

[ascl:2301.009]
Xpol: Pseudo-Cl power spectrum estimator

Xpol computes angular power spectra based on cross-correlation between maps and covariance matrices. The code is written in C and is fully MPI parallelized in CPU and memory using spherical transform by s2hat (ascl:1110.013). It has been used to derive CMB and dust power spectra for Archeops and CMB, dust, CIB, SZ, SZ-CIB for Planck, among others.

[ascl:2301.010]
Fastcc: Broadband radio telescope receiver fast color corrections

Peel, Mike W.; Genova-Santos, Ricardo; Dickinson, C.; Leahy, J. P.; López-Caraballo, Carlos; Fernández-Torreiro, M.; Rubiño-Martín, J. A.; Spencer, Locke D.

Fastcc returns color corrections for different spectra for various Cosmic Microwave Background experiments. Available in both Python and IDL, the script is easy to use when analyzing radio spectra of sources with data from multiple wide-survey CMB experiments in a consistent way across multiple experiments.

[ascl:2301.011]
Rosetta: Platform for resource-intensive, interactive data analysis

Rosetta runs tasks for resource-intensive, interactive data analysis as software containers. The code's architecture frames user tasks as microservices – independent and self-contained units – which fully support custom and user-defined software packages, libraries and environments. These include complete remote desktop and GUI applications, common analysis environments such as the Jupyter Notebooks. Rosetta relies on Open Container Initiative containers, allowing for safe, effective and reproducible code execution. It can use a number of container engines and runtimes and seamlessly supports several workload management systems, thus enabling containerized workloads on a wide range of computing resources.

[ascl:2301.012]
XGA: Efficient analysis of XMM observations

XGA (X-ray: Generate and Analyse) analyzes X-ray sources observed by the XMM-Newton Space telescope. It is based around declaring different types of source and sample objects which correspond to real X-ray sources, finding all available data, and then insulating the user from the tedious generation and basic analysis of X-ray data products. XGA generates photometric products and spectra for individual sources, or whole samples, with just a few lines of code. Though not a pipeline, pipelines for complex analysis can be built on top of it. XGA provides an easy to use (and parallelized) Python interface with XMM's Science Analysis System (ascl:1404.004), as well as with XSPEC (ascl:9910.005). All XMM products and fit results are read into an XGA source storage structure, thus avoiding the need to leave a Python environment at any point during the analysis. This module also supports more complex analyses for specific object types such as the easy generation of scaling relations, the measurement of gas masses for galaxy clusters, and the PSF correction of images.

[ascl:2301.013]
pyExoRaMa: An interactive tool to investigate the radius-mass diagram for exoplanets

pyExoRaMa visualizes and manipulates data related to exoplanets and their host stars in a multi-dimensional parameter space. It enables statistical studies based on the large and constantly increasing number of detected exoplanets, identifies possible interdependence among several physical parameters, and compares observables with theoretical models describing the exoplanet composition and structure.

[ascl:2301.014]
LBL: Line-by-line velocity measurements

Artigau, Étienne; Cadieux, Charles; Cook, Neil J.; Doyon, René; Vandal, Thomas; Donati, Jean-François; Moutou, Claire; Delfosse, Xavier; Fouqué, Pascal; Martioli, Eder; Bouchy, François; Parsons, Jasmine; Carmona, Andres; Dumusque, Xavier; Astudillo-Defru, Nicola; Bonfils, Xavier; Mignon, Lucille

LBL derives velocity measurements from high-resolution (R>50 000) datasets by accounting for outliers in the spectra data. It is tailored for fiber-fed multi-order spectrographs, both in optical and near-infrared (up to 2.5µm) domains. The domain is split into individual units (lines) and the velocity and its associated uncertainty are measured within each line and combined through a mixture model to allow for the presence of spurious values. In addition to the velocity, other quantities are also derived, the most important being a value (dW) that can be understood (for a Gaussian line) as a change in the line FWHM. These values provide useful stellar activity indicators. LBL works on data from a variety of instruments, including SPIRou, NIRPS, HARPS, and ESPRESSO. The code's output is an rdb table that can be uploaded to the online DACE pRV analysis tool.

[ascl:2301.015]
SOAP-GPU: Spectral time series simulations with GPU

SOAP-GPU is a revision of SOAP 2 (ascl:1504.021), which simulates spectral time series with the effect of active regions (spot, faculae or both). In addition to the traditional outputs of SOAP 2.0 (the cross-correlation function and extracted parameters: radial velocity, bisector span, full width at half maximum), SOAP-GPU generates the integrated spectra at each phase for given input spectra and spectral resolution. Additional capabilities include fast spectral simulation of stellar activity due to GPU acceleration, simulation of more complicated active region structures with superposition between active regions, and more realistic line bisectors, based on solar observations, that varies as function of mu angle for both quiet and active regions. In addition, SOAP-GPU accepts any input high resolution observed spectra. The PHOENIX synthetic spectral library are already implemented at the code level which allows users to simulate stellar activity for stars other than the Sun. Furthermore, SOAP-GPU simulates realistic spectral time series with either spot number/SDO image as additional inputs. The code is written in C and provides python scripts for input pre-processing and output post-processing.

[ascl:2301.016]
FERRE: Match physical models to measurements

FERRE matches physical models to observed data, taking a set of observations and identifying the model parameters that best reproduce the data, in a chi-squared sense. It solves the common problem of having numerical parametric models that are costly to evaluate and need to be used to interpret large data sets. FERRE provides flexibility to search for all model parameters, or hold constant some of them while searching for others. The code is written to be truly N-dimensional and fast. Model predictions are to be given as an array whose values are a function of the model parameters, *i.e.*, numerically. FERRE holds this array in memory, or in a direct-access binary file, and interpolates in it. The code returns, in addition to the optimal set of parameters, their error covariance, and the corresponding model prediction. The code is written in FORTRAN90.

[ascl:2301.017]
ReACT: Calculation of non-linear power spectra from non-standard physics

ReACT extends the Copter (ascl:1304.022) and MG-Copter packages, which calculate redshift and real space large scale structure observables for a wide class of gravity and dark energy models. Additions to Copter include spherical collapse in modified gravity, halo model power spectrum for general theories, and real and redshift space LSS 2 point statistics for modified gravity and dark energy. ReACT also includes numerical perturbation theory kernel solvers, real space bispectra in modified gravity, and a numerical perturbation theory kernel solver up to 4th order for 1-loop bispectrum.

[ascl:2301.018]
kderp: Keck Cosmic Web Imager Data Extraction and Reduction Pipeline in IDL

kderp (KCWI Data Extraction and Reduction Pipeline) reduces data for the Keck Cosmic Web Imager. Written in IDL, it performs basic CCD reduction on raw images to produce bias and overscan subtracted, gain-corrected, trimmed and cosmic ray removed images; it can also subtract the sky. It defines the geometric transformations required to map each pixel in the 2d image into slice, postion, and wavelength, and performs flat field and illumination corrections. It generates cubes, applying the transformations previously solved to the object intensity, variance and mask images output from any of the previous stages, and uses a standard star observation to generate an inverse sensitivity curve which is applied to the corresponding observations to flux calibrate them.

This pipeline has been superseded by KCWI_DRP (ascl:2301.019).

[ascl:2301.019]
KCWI_DRP: Keck Cosmic Web Imager Data Reduction Pipeline in Python

KCWI_DRP, written in Python and based on kderp (ascl:2301.018), is the official DRP for the Keck Cosmic Web Imager at the W. M. Keck Observatory. It provides all of the functionality of the older pipeline and has three execution modes: multi-threading for CPU intensive tasks such as wavelength calibration, and multi-processing for large datasets. It offers vacuum to air and heliocentric or barycentric correction and the ability to use KOA file names or original file names. KCWI_DRP also improves the provenance and traceability of DRP versions and execution steps in the headers over kderp, and has versatile sky subtraction modes including using external sky frames and ability of masking regions.

[ascl:2301.020]
VDA: Void Dwarf Analyzer

de los Reyes, Mithi A. C.; Kirby, Evan N.; Zhuang, Zhuyun; Steidel, Charles C.; Chen, Yuguang; Wheeler, Coral

void-dwarf-analysis analyzes Keck Cosmic Web Imager datacubes to produce maps of kinematic properties (velocity and velocity dispersion), emission line fluxes, and gas-phase metallicities of void dwarf galaxies.

[ascl:2301.021]
WALDO: Waveform AnomaLy DetectOr

WALDO (Waveform AnomaLy DetectOr) flags possible anomalous Gravitational Waves from Numerical Relativity catalogs using deep learning. It uses a U-Net architecture to learn the waveform features of a dataset. After computing the mismatch between those waveforms and the neural predictions, WALDO isolates high mismatch evaluations for anomaly search.

[ascl:2301.022]
GalCEM: GALactic Chemical Evolution Model

Gjergo, Eda; Sorokin, Aleksei G.; Ruth, Anthony; Spitoni, Emanuele; Matteucci, Francesca; Fan, Xilong; Liang, Jinning; Limongi, Marco; Yamazaki, Yuta; Kusakabe, Motohiko; Kajino, Toshitaka

GalCEM (GALactic Chemical Evolution Model) tracks isotope masses as a function of time in a given galaxy. The list of tracked isotopes automatically adapts to the complete set provided by the input yields. The prescription includes massive stars, low-to-intermediate mass stars, and Type Ia supernovae as enrichment channels. Multi-dimensional interpolation curves are extracted from the input yield tables with a preprocessing tool; these interpolation curves improve the computation speeds of the full convolution integrals, which are computed for each isotope and for each enrichment channel. GalCEM also provides tools to track the mass rate change of individual isotopes on a typical spiral galaxy with a final baryonic mass of 5×1010M⊙.

[ascl:2301.023]
PoWR: Potsdam Wolf-Rayet Models

Hamann, W. R.; Gräfener, G.; Koesterke, L.; Sander, A.; Shenar, T.; Hainich, R.; Gímenez-García, A.; Todt, H.

PoWR (Potsdam Wolf-Rayet Models) calculates synthetic spectra for Wolf-Rayet and OB stars from model atmospheres which account for Non-LTE, spherical expansion and metal line blanketing. The model data is provided through a web interface and includes Spectral Energy Distribution, line spectrum in high resolution for different wavelength bands, and atmosphere stratification. For Wolf-Rayet stars of the nitrogen subclass, there are grids of hydrogen-free models and of models with a specified mass fraction of hydrogen. The iron-group and total CNO mass fractions correspond to the metallicity of the Galaxy, the Large Magellanic Cloud, or the Small Magellanic Cloud, respectively. The source code is available as a tarball on the same web interface.

[ascl:2301.024]
SOXS: Simulated Observations of X-ray Sources

ZuHone, John A.; Vikhlinin, Alexey; Tremblay, Grant R.; Randall, Scott W.; Andrade-Santos, Felipe; Bourdin, Herve

SOXS creates simulated X-ray observations of astrophysical sources. The package provides a comprehensive set of tools to design source models and convolve them with simulated models of X-ray observatories. In particular, SOXS is the primary simulation tool for simulations of Lynx and Line Emission Mapper observations. SOXS provides facilities for creating spectral models, simple spatial models for sources, astrophysical background and foreground models, as well as a Python implementation of the SIMPUT file format.

[submitted]
nFITSview: A simple and user-friendly FITS image viewer

nFITSview is a simple, user-friendly and open-source FITS image viewer available for Linux and Windows. One of the main concepts of nFITSview is to provide an intuitive user interface which may be helpful both for scientists and for amateur astronomers. nFITSview has different color mapping and manipulation schemes, supports different formats of FITS data files as well as exporting them to different popular image formats. It also supports command-line exporting (with some restrictions) of FITS files to other image formats.

The application is written in C++/Qt for achieving better performance, and with every next version the performance aspect is taken into account.

nFITSview uses its own libnfits library (can be used separately as well) for parsing the FITS files.

[ascl:2301.025]
desitarget: Selecting DESI targets from photometric catalogs

Myers, Adam D.; Moustakas, John; Bailey, Stephen; Weaver, Benjamin A.; Cooper, Andrew P.; Forero-Romero, Jaime E.; Abolfathi, Bela; Alexander, David M.; Brooks, David; Chaussidon, Edmond; Chuang, Chia-Hsun; Dawson, Kyle; Dey, Arjun; Dey, Biprateep; Dhungana, Govinda; Doel, Peter; Fanning, Kevin; Gaztañaga, Enrique; A Gontcho, Satya Gontcho; Gonzalez-Morales, Alma X.; Hahn, ChangHoon; Herrera-Alcantar, Hiram K.; Honscheid, Klaus; Ishak, Mustapha; Karim, Tanveer; Kirkby, David; Kisner, Theodore; Koposov, Sergey E.; Kremin, Anthony; Lan, Ting-Wen; Landriau, Martin; Lang, Dustin; Levi, Michael E.; Magneville, Christophe; Napolitano, Lucas; Martini, Paul; Meisner, Aaron; Newman, Jeffrey A.; Palanque-Delabrouille, Nathalie; Percival, Will; Poppett, Claire; Prada, Francisco; Raichoor, Anand; Ross, Ashley J.; Schlafly, Edward F.; Schlegel, David; Schubnell, Michael; Tan, Ting; Tarle, Gregory; Wilson, Michael J.; Yèche, Christophe; Zhou, Rongpu; Zhou, Zhimin; Zou, Hu

desitarget selects targets for spectroscopic follow-up by Dark Energy Spectroscopic Instrument (DESI). The pipeline uses bitmasks to record that a specific source has been selected by a particular targeting algorithm, setting bit-values in output data files in a number of different columns that indicate whether a particular target meets specific selection criteria. desitarget also outputs a unique TARGETID that allows each target to be tracked throughout the DESI survey. This TARGETID encodes information about each DESI target, such as the catalog the target was selected from, whether a target is a sky location or part of a random catalog, and whether a target is part of a secondary program.

[ascl:2301.026]
MGwave: Detect kinematic moving groups in astronomical data

The 2-D wavelet transformation code MGwave detects kinematic moving groups in astronomical data; it can also investigate underdensities which can eventually provide further information about the MW's non-axisymmetric features. The code creates a histogram of the input data, then performs the wavelet transformation at the specified scales, returning the wavelet coefficients across the entire histogram in addition to information about the detected extrema. MGwave can also run Monte Carlo simulations to propagate uncertainties. It runs the wavelet transformation on simulated data (pulled from Gaussian distributions) many times and tracks the percentage of the simulations in which a given extrema is detected. This quantifies whether a detected overdensity or underdensity is robust to variations of the data within the provided errors.

[ascl:2301.027]
Puri-Psi: Radio interferometric imaging

Puri-Psi addresses radio interferometric imaging problems using state-of-the-art optimization algorithms and deep learning. It performs scalable monochromatic, wide-band, and polarized imaging. It also provide joint calibration and imaging, and scalable uncertainty quantification. A scalable framework for wide-field monochromatic intensity imaging is also available, which encompasses a pure optimization algorithm, as well as an AI-based method in the form of a plug-and-play algorithm propelled by Deep Neural Network denoisers.

[ascl:2301.028]
special: SPEctral Characterization of directly ImAged Low-mass companions

special (SPEctral Characterization of directly ImAged Low-mass companions) characterizes low-mass (M, L, T) dwarfs down to giant planets at optical/IR wavelengths. It can also be used more generally to characterize any type of object with a measured spectrum, provided a relevant input model grid, regardless of the observational method used to obtain the spectrum (direct imaging or not) and regardless of the format of the spectra (multi-band photometry, low-resolution or medium-resolution spectrum, or a combination thereof). It analyzes measured spectra, calculating the spectral correlation between channels of an IFS datacube and empirical spectral indices for MLT-dwarfs. It fits input spectra to either photo-/atmospheric model grids or a blackbody model, including additional parameters such as (extra) black body component(s), extinction and total-to-selective extinction ratio, and can use emcee (ascl:1303.002), nestle (ascl:2103.022), or UltraNest (ascl:1611.001) samplers infer posterior distributions on spectral model parameters in a Bayesian framework, among other tasks.

[ascl:2301.029]
ALMA3: plAnetary Love nuMbers cAlculator

ALMA3 computes loading and tidal Love numbers for a spherically symmetric, radially stratified planet. Both real (time-domain) and complex (frequency-domain) Love numbers can be computed. The planetary structure can include an arbitrary number of layers, and each layer can have a different rheological law. ALMA3 can model numerous linear rheologies, including Elastic, Maxwell visco-elastic, Newtonian viscous fluid, Kelvin-Voigt solid, Burgers and Andrade transient rheologies.

[ascl:2301.030]
HIPP: HIgh-Performance Package for scientific computation

HIPP (HIgh-Performance Package for scientific computation) provides elegant interfaces for some well-known HPC libraries. Some libraries are wrapped with full-OOP interfaces, and many new extensions based on those raw-interfaces are also provided. This C++ toolkit for HPC can significantly reduce the length of your code, making programming more productive.

[submitted]
PREVIS: Python Request Engine for Virtual Interferometric Survey

PREVIS is a Python module that provides functions to help determine the observability of astronomical sources from long-baseline interferometers worldwide: VLTI (ESO, Chile) and CHARA (USA). PREVIS uses data from the Virtual Observatory (OV), such as magnitudes, Spectral Energy Distribution (SED), celestial coordinates or Gaia distances. Then, it compares the target brightness to the limiting magnitudes of each instrument to determine whether the target is observable with present performances. PREVIS includes main facilities at the VLTI with PIONIER (H band), GRAVITY (K band) and MATISSE (L, M, N bands), and at CHARA array with VEGA (V band), PAVO (R bands), MIRC (H band), CLIMB (K band) and CLASSIC (H, K bands). PREVIS also uses the V or G magnitudes to check the guiding restriction or the tip/tilt correction limit. For the VLTI: if the star is too faint in G mag, PREVIS will look for the list of stars around the target (57 arcsec) with the appropriate magnitude and give the list of celestial coordinates usable as the guiding star.

[ascl:2302.001]
nicaea: NumerIcal Cosmology And lEnsing cAlculations

nicaea calculates cosmology and weak-lensing quantities and functions from theoretical models of the large-scale structure. Written in C, it can compute the Hubble parameter, distances, and geometry for background cosmology, and linear perturbations, including growth factor, transfer function, cluster mass function, and linear 3D power spectra. It also calculates fitting formulae for non-linear power spectra, emulators, and halo model for Non-linear evolution, and the HOD model for galaxy clustering. In addition, nicaea can compute quantities for cosmic shear such as the convergence power spectrum, second-order correlation functions and derived second-order quantities, and third-order aperture mass moment; it can also calculate CMB anisotropies via CAMB (ascl:1102.026).

[ascl:2302.002]
deconfuser: Fast orbit fitting to directly imaged multi-planetary systems

Deconfuser performs fast orbit fitting to directly imaged multi-planetary systems. It quickly fits orbits to planet detections in 2D images and ensures that all orbits within a certain tolerance are found. The code also tests all groupings of detections by planets (which detection belongs to which planet), and ranks partitions of detections by planets by deciding which assignment of detection-to-planet best fits the data.

[ascl:2302.003]
PHOTOe: Monte Carlo model for simulating the slowing down of photoelectrons

PHOTOe simulates the slowing down of photoelectrons in a gas with arbitrary amounts of H, He and O atoms, and thermal electrons, making PHOTOe useful for investigating the atmospheres of exoplanets. The multi-score scheme used in this code differs from other Monte Carlo approaches in that it efficiently handles rare collisional channels, as in the case of low-abundance excited atoms that undergo superelastic and inelastic collisions. PHOTOe outputs include production and energy yields, steady-state photoelectron flux, and estimates of the 'relaxation' time required by the photoelectrons to slow down from the injection energy to the cutoff energy. The model can also estimate the pathlength travelled by the photoelectrons while relaxing.

[ascl:2302.004]
SFQEDtoolkit: Strong-field QED processes modeling for PIC and Monte Carlo codes

SFQEDtoolkit implements strong-field QED (SFQED) processes in existing particle-in-cell (PIC) and Monte Carlo codes to determine the dynamics of particles and plasmas in extreme electromagnetic fields, such as those present in the vicinity of compact astrophysical objects. The code uses advanced function approximation techniques to calculate high-energy photon emission and electron-positron pair creation probability rates and energy distributions within the locally-constant-field approximation (LCFA) as well as with more advanced models.

[ascl:2302.005]
celmech: Sandbox for celestial mechanics calculations

celmech provides a variety of analytical and semianalytical tools for celestial mechanics and dynamical astronomy. The package interfaces closely with the REBOUND N-body integrator (ascl:1110.016), thus facilitating comparisons between calculation results and direct N-body integrations. celmech can isolate the contribution of particular resonances to a system's dynamical evolution, and can develop simple analytical models with the minimum number of terms required to capture a particular dynamical phenomenon.

[ascl:2302.006]
RCR: Robust Chauvenet Outlier Rejection

RCR provides advanced outlier rejection that is easy to use. Both sigma clipping, the simplest form of outlier rejection, and traditional Chauvenet rejection make use of non-robust quantities, the mean and standard deviation, which are sensitive to the outliers that they are being used to reject. This limits such techniques to samples with small contaminants or small contamination fractions. RCR instead first makes use of robust replacements for the mean, such as the median and the half-sample mode, and similar robust replacements for the standard deviation. RCR has been carefully calibrated and can be applied to samples with both large contaminants and large contaminant fractions (sometimes in excess of 90% contaminated).

[ascl:2302.007]
AnalyticLC: Dynamical modeling of planetary systems

AnalyticLC generates an analytic light-curve, and optionally RV and astrometry data, from a set of initial (free) orbital elements and simultaneously fits these data. Written in MATLAB, the code is fast and efficient, and provides insight into the motion of the orbital elements, which is difficult to obtain from numerical integration. A Python wrapper for AnalyticLC is available separately.

[ascl:2302.008]
HawkingNet: Finding Hawking points in the Cosmic Microwave Background

HawkingNet searches for Hawking points in large Cosmic Microwave Background (CMB) data sets. It is based on the deep residual network ResNet18 and consists of eighteen neural layers. Written in Paython, HawkingNet inputs the CMB data, processes the data through its internal network trained for data classification, and outputs the result in a form of a classification score that indicates how confident it is that a Hawking point is contained in the image patch.

[ascl:2302.009]
EXOTIC: EXOplanet Transit Interpretation Code

Zellem, Robert T.; Pearson, Kyle A.; Blaser, Ethan; Fowler, Martin; Ciardi, David R.; Biferno, Anya; Massey, Bob; Marchis, Franck; Baer, Robert; Ball, Conley; Chasin, Mike; Conley, Mike; Dixon, Scott; Fletcher, Elizabeth; Hernandez, Saneyda; Nair, Sujay; Perian, Quinn; Sienkiewicz, Frank; Tock, Kalée; Vijayakumar, Vivek; Swain, Mark R.; Roudier, Gael M.; Bryden, Geoffrey; Conti, Dennis M.; Hill, Dolores H.; Hergenrother, Carl W.; Dussault, Mary; Kane, Stephen R.; Fitzgerald, Michael; Boyce, Pat; Peticolas, Laura; Gee, Wilfred; Cominsky, Lynn; Zimmerman-Brachman, Rachel; Smith, Denise; Creech-Eakman, Michelle J.; Engelke, John; Iturralde, Alexandra; Dragomir, Diana; Jovanovic, Nemanja; Lawton, Brandon; Arbouch, Emmanuel; Kuchner, Marc; Malvache, Arnaud

EXOTIC (EXOplanet Transit Interpretation Code) analyzes photometric data of transiting exoplanets into lightcurves and retrieves transit epochs and planetary radii. The software reduces images of a transiting exoplanet into a lightcurve, and fits a model to the data to extract planetary information crucial to increasing the efficiency of larger observational platforms. EXOTIC is written in Python and supports the citizen science project Exoplanet Watch. The software runs on Windows, Macintosh, and Linux/Unix computer, and can also be used via Google Colab.

[ascl:2302.010]
SASHIMI-W: Semi-Analytical SubHalo Inference ModelIng for Warm Dark Matter

SASHIMI-W calculates various subhalo properties efficiently using semi-analytical models for warm dark matter (WDM); the code is based on the extended Press-Schechter formalism and subhalos' tidal evolution prescription. The calculated constraints are independent of physics of galaxy formation and free from numerical resolution and the Poisson noise, and its results are well in agreement with those from numerical N-body simulations.

[ascl:2302.011]
UniverseMachine: Empirical model for galaxy formation

The UniverseMachine applies simple empirical models of galaxy formation to dark matter halo merger trees. For each model, it generates an entire mock universe, which it then observes in the same way as the real Universe to calculate a likelihood function. It includes an advanced MCMC algorithm to explore the allowed parameter space of empirical models that are consistent with observations.

[ascl:2302.012]
Diffstar: Differentiable star formation histories

Diffstar fits the star formation history (SFH) of galaxies to a smooth parametric model. Diffstar differs from existing SFH models because the parameterization of the model is directly based on basic features of galaxy formation physics, including halo mass assembly history, accretion of gas into the dark matter halo, the fraction of gas that is converted into stars, the time scale over which star formation occurs, and the possibility of rejuvenated star formation. The SFHs of a large number of simulated galaxies can be fit in parallel using mpi4py.

[ascl:2302.013]
SASHIMI-C: Semi-Analytical SubHalo Inference ModelIng for Cold Dark Matter

SASHIMI-C calculates various subhalo properties efficiently using semi-analytical models for cold dark matter (CDM), providing a full catalog of dark matter subhalos in a host halo with arbitrary mass and redshift. Each subhalo is characterized by its mass and density profile both at accretion and at the redshift of interest, accretion redshift, and effective number (or weight) corresponding to that particular subhalo. SASHIMI-C computes the subhalo mass function without making any assumptions such as power-law functional forms; the only assumed power law is that for the primordial power spectrum predicted by inflation. The code is not limited to numerical resolution nor to Poisson shot noise, and its results are well in agreement with those from numerical N-body simulations.

[ascl:2302.014]
kima: Exoplanet detection in RVs with DNest4 and GPs

kima fits Keplerian curves to a set of RV measurements, using the Diffusive Nested Sampling (ascl:1010.029) algorithm to sample the posterior distribution for the model parameters. Additionally, the code can calculate the fully marginalized likelihood of a model with a given number of Keplerians and also infer the number of Keplerian signals detected in a given dataset. kima implements dedicated models for different analyses of a given dataset. The models share a common organization, but each has its own parameters (and thus priors) and settings.

[ascl:2302.015]
FCFC: C toolkit for computing correlation functions from pair counts

FCFC (Fast Correlation Function Calculator) computes correlation functions from pair counts. It supports the isotropic 2-point correlation function, anisotropic 2PCF, 2-D 2PCF, and 2PCF Legendre multipoles, among others. Written in C, FCFC takes advantage of three parallelisms that can be used simultaneously, distributed-memory processes via Message Passing Interface (MPI), shared-memory threads via Open Multi-Processing (OpenMP), and single instruction, multiple data (SIMD).

[ascl:2302.016]
swyft: Scientific simulation-based inference at scale

swyft implements Truncated Marginal Neural Radio Estimation (TMNRE), a Bayesian parameter inference technique for complex simulation data. The code improves performance by estimating low-dimensional marginal posteriors rather than the joint posteriors of distributions, while also targeting simulations to targets of observational interest via an indicator function. The use of local amortization permits statistical checks, enabling validation of parameters that cannot be performed using sampling-based methods. swyft is also based on stochastic simulations, mapping parameters to observational data, and incorporates a simulator manager.

Previous12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061**62**63646566676869707172Next

Would you like to view a random code?