Results 601-650 of 3572 (3481 ASCL, 91 submitted)

[ascl:1303.017]
CADRE: CArma Data REduction pipeline

CADRE, the Combined Array for Millimeter-wave Astronomy (CARMA) data reduction pipeline, gives investigators a first look at a fully reduced set of their data. It runs automatically on all data produced by the telescope as they arrive in the data archive. The pipeline is written in python and uses python wrappers for MIRIAD subroutines for direct access to the data. It applies passband, gain and flux calibration to the data sets and produces a set of continuum and spectral line maps in both MIRIAD and FITS format.

[ascl:1303.018]
Galactus: Modeling and fitting of galaxies from neutral hydrogen (HI) cubes

Galactus, written in python, is an astronomical software tool for the modeling and fitting of galaxies from neutral hydrogen (HI) cubes. Galactus uses a uniform medium to generate a cube. Galactus can perform the full-radiative transfer for the HI, so can model self-absorption in the galaxy.

[ascl:1303.019]
GBTIDL: Reduction and Analysis of GBT Spectral Line Data

GBTIDL is an interactive package for reduction and analysis of spectral line data taken with the Robert C. Byrd Green Bank Telescope (GBT). The package, written entirely in IDL, consists of straightforward yet flexible calibration, averaging, and analysis procedures (the "GUIDE layer") modeled after the UniPOPS and CLASS data reduction philosophies, a customized plotter with many built-in visualization features, and Data I/O and toolbox functionality that can be used for more advanced tasks. GBTIDL makes use of data structures which can also be used to store intermediate results. The package consumes and produces data in GBT SDFITS format. GBTIDL can be run online and have access to the most recent data coming off the telescope, or can be run offline on preprocessed SDFITS files.

[ascl:1303.020]
Ginga: Flexible FITS viewer

Ginga is a viewer for astronomical data FITS (Flexible Image Transport System) files; the viewer centers around a FITS display widget which supports zooming and panning, color and intensity mapping, a choice of several automatic cut levels algorithms and canvases for plotting scalable geometric forms. In addition to this widget, the FITS viewer provides a flexible plugin framework for extending the viewer with many different features. A fairly complete set of "standard" plugins are provided for expected features of a modern viewer: panning and zooming windows, star catalog access, cuts, star pick/fwhm, thumbnails, and others. This viewer was written by software engineers at Subaru Telescope, National Astronomical Observatory of Japan, and is in use at that facility.

[ascl:1303.021]
Xmatch: GPU Enhanced Astronomic Catalog Cross-Matching

Xmatch is a cross-platform, multi-GPU tool which allows for extremely fast cross-matching between two Astronomic catalogs. It is capable of asyncronously managing multiple GPUs, ideal for workstation and cluster environments.

[ascl:1303.022]
ionFR: Ionospheric Faraday rotation

Sotomayor-Beltran, C.; Sobey, C.; Hessels, J. W. T.; de Bruyn, G.; Noutsos, A.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Beck, R.; Bell, M. E.; Bell, M. R.; Bentum, M. J.; Bernardi, G.; Best, P.; Birzan, L.; Bonafede, A.; Breitling, F.; Broderick, J.; Brouw, W. N.; Brueggen, M.; Ciardi, B.; de Gasperin, F.; Dettmar, R.-J.; van Duin, A.; Duscha, S.; Eisloeffel, J.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Griessmeier, J.; Grit, T.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Keane, E.; Kohler, J.; Kramer, M.; Kondratiev, V. I.; Koopmans, L. V. E.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Macario, G.; Markoff, S.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pilia, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Roettgering, H.; Serylak, M.; Sluman, J.; Stappers, B. W.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Vermeulen, R.; van Weeren, R. J.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

ionFR calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. The code uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. ionFR can be used for the calibration of radio polarimetric observations; its accuracy had been demonstrated using LOFAR pulsar observations.

[ascl:1303.023]
pysynphot: Synthetic photometry software package

pysynphot is a synthetic photometry software package suitable for either library or interactive use. Intended as a modern-language successor to the IRAF/STSDAS synphot package, it provides improved algorithms that address known shortcomings in synphot, and its object-oriented design is more easily extensible than synphot's task-oriented approach. It runs under PyRAF (ascl:1207.011), and a backwards compatibility mode is provided that recognizes all spectral and throughput tables, obsmodes, and spectral expressions used by synphot, to facilitate the transition for legacy code.

[ascl:1303.024]
ATLAS12: Opacity sampling model atmosphere program

ATLAS12 is an opacity sampling model atmosphere program to allow computation of models with individual abundances using line data. ATLAS12 is able to compute the same models as ATLAS9 which uses pretabulated opacities, plus models with arbitrary abundances. ATLAS12 sampled fluxes are quite accurate for predicting the total flux except in the intermediate or narrow bandpass intervals because the sample size is too small.

[ascl:1303.025]
DPUSER: Interactive language for image analysis

DPUSER is an interactive language capable of handling numbers (both real and complex), strings, and matrices. Its main aim is to do astronomical image analysis, for which it provides a comprehensive set of functions, but it can also be used for many other applications.

[ascl:1303.026]
ACORNS-ADI: Algorithms for Calibration, Optimized Registration and Nulling the Star in Angular Differential Imaging

ACORNS-ADI, written in python, is a parallelized software package which reduces high-contrast imaging data. Originally written for imaging data from Subaru/HiCIAO, it requires minimal modification to reduce data from other instruments. It is efficient, open-source, and includes several optional features which may improve performance.

[ascl:1303.027]
GaPP: Gaussian Processes in Python

The algorithm Gaussian processes can reconstruct a function from a sample of data without assuming a parameterization of the function. The GaPP code can be used on any dataset to reconstruct a function. It handles individual error bars on the data and can be used to determine the derivatives of the reconstructed function. The data sample can consist of observations of the function and of its first derivative.

[ascl:1303.028]
Stellarics: Inverse Compton scattering from stellar heliospheres

Cosmic ray electrons scatter on the photon fields around stars, including the sun, to create gamma rays by the inverse Compton effect. Stellarics computes the spectrum and angular distribution of this emission. The software also includes general-purpose routines for inverse Compton scattering on a given electron spectrum, for example for interstellar or astrophysical source modelling.

[ascl:1303.029]
iSAP: Interactive Sparse Astronomical Data Analysis Packages

iSAP consists of three programs, written in IDL, which together are useful for spherical data analysis. MR/S (MultiResolution on the Sphere) contains routines for wavelet, ridgelet and curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and Independent Component Analysis on the Sphere. MR/S has been designed for the PLANCK project, but can be used for many other applications. SparsePol (Polarized Spherical Wavelets and Curvelets) has routines for polarized wavelet, polarized ridgelet and polarized curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and blind source separation on the Sphere. SparsePol has been designed for the PLANCK project. MS-VSTS (Multi-Scale Variance Stabilizing Transform on the Sphere), designed initially for the FERMI project, is useful for spherical mono-channel and multi-channel data analysis when the data are contaminated by a Poisson noise. It contains routines for wavelet/curvelet denoising, wavelet deconvolution, multichannel wavelet denoising and deconvolution.

[ascl:1303.030]
Sunrise: Radiation transfer through interstellar dust

Sunrise is a Monte Carlo radiation transfer code for calculating absorption and scattering of light to study the effects of dust in hydrodynamic simulations of interacting galaxies. It uses an adaptive mesh refinement grid to describe arbitrary geometries of emitting and absorbing/scattering media, with spatial dynamical range exceeding 10^{4}; it can efficiently generate images of the emerging radiation at arbitrary points in space and spectral energy distributions of simulated galaxies run with the Gadget (ascl:0003.001), Gasoline (ascl:1710.019), Arepo (ascl:1909.010), Enzo (ascl:1010.072) or ART codes. In addition to the monochromatic radiative transfer typically used by Monte Carlo codes, Sunrise can propagate a range of wavelengths simultaneously. This "polychromatic" algorithm gives significant improvements in efficiency and accuracy when spectral features are calculated.

[ascl:1304.001]
PEC: Period Error Calculator

The PEC (Period Error Calculator) algorithm estimates the period error for eclipsing binaries observed by the Kepler Mission. The algorithm is based on propagation of error theory and assumes that observation of every light curve peak/minimum in a long time-series observation can be unambiguously identified. A simple C implementation of the PEC algorithm is available.

[ascl:1304.002]
Astropy: Community Python library for astronomy

Greenfield, Perry; Robitaille, Thomas; Tollerud, Erik; Aldcroft, Tom; Barbary, Kyle; Barrett, Paul; Bray, Erik; Crighton, Neil; Conley, Alex; Conseil, Simon; Davis, Matt; Deil, Christoph; Dencheva, Nadia; Droettboom, Michael; Ferguson, Henry; Ginsburg, Adam; Grollier, Frédéric; Moritz Günther, Hans; Hanley, Chris; Hsu, J. C.; Kerzendorf, Wolfgang; Kramer, Roban; Lian Lim, Pey; Muna, Demitri; Nair, Prasanth; Price-Whelan, Adrian; Shiga, David; Singer, Leo; Taylor, James; Turner, James; Woillez, Julien; Zabalza, Victor

Astropy provides a common framework, core package of code, and affiliated packages for astronomy in Python. Development is actively ongoing, with major packages such as PyFITS, PyWCS, vo, and asciitable already merged in. Astropy is intended to contain much of the core functionality and some common tools needed for performing astronomy and astrophysics with Python.

[ascl:1304.003]
GALSVM: Automated Morphology Classification

GALSVM is IDL software for automated morphology classification. It was specially designed for high redshift data but can be used at low redshift as well. It analyzes morphologies of galaxies based on a particular family of learning machines called support vector machines. The method can be seen as a generalization of the classical CAS classification but with an unlimited number of dimensions and non-linear boundaries between decision regions. It is fully automated and consequently well adapted to large cosmological surveys.

[ascl:1304.004]
Wqed: Lightcurve Analysis Suite

Wqed (pronounced "Wicked") is a set of tools developed by the Delaware Asteroseismic Research Center (DARC) to simplify the process of reducing time-series CCD data on variable stars. It does not provide tools to measure the brightness of stars in individual frames, focusing instead on what comes next:

- - selecting and removing data lost to cloud,

- removing the effects of light cloud and seeing variations,

- keeping track of what star a given data set refers to, and when that data was taken, and

- performing barycentric corrections to data.

[ascl:1304.005]
VOBOZ/ZOBOV: Halo-finding and Void-finding algorithms

VOBOZ (VOronoi BOund Zones) is an algorithm to find haloes in an N-body dark matter simulation which has little dependence on free parameters.

ZOBOV (ZOnes Bordering On Voidness) is an algorithm that finds density depressions in a set of points without any free parameters or assumptions about shape. It uses the Voronoi tessellation to estimate densities to find both voids and subvoids. It also measures probabilities that each void or subvoid arises from Poisson fluctuations.

[ascl:1304.006]
CosmicEmuLog: Cosmological Power Spectra Emulator

CosmicEmuLog is a simple Python emulator for cosmological power spectra. In addition to the power spectrum of the conventional overdensity field, it emulates the power spectra of the log-density as well as the Gaussianized density. It models fluctuations in the power spectrum at each k as a linear combination of contributions from fluctuations in each cosmological parameter. The data it uses for emulation consist of ASCII files of the mean power spectrum, together with derivatives of the power spectrum with respect to the five cosmological parameters in the space spanned by the Coyote Universe suite. This data can also be used for Fisher matrix analysis. At present, CosmicEmuLog is restricted to redshift 0.

[ascl:1304.007]
DESPOTIC: Derive the Energetics and SPectra of Optically Thick Interstellar Clouds

DESPOTIC (Derive the Energetics and SPectra of Optically Thick Interstellar Clouds), written in Python, represents optically thick interstellar clouds using a one-zone model and calculates line luminosities, line cooling rates, and in restricted cases line profiles using an escape probability formalism. DESPOTIC calculates clouds' equilibrium gas and dust temperatures and their time-dependent thermal evolution. The code allows rapid and interactive calculation of clouds' characteristic temperatures, identification of their dominant heating and cooling mechanisms, and prediction of their observable spectra across a wide range of interstellar environments.

[ascl:1304.008]
Diffusion.f: Diffusion of elements in stars

Diffusion.f is an exportable subroutine to calculate the diffusion of elements in stars. The routine solves exactly the Burgers equations and can include any number of elements as variables. The code has been used successfully by a number of different groups; applications include diffusion in the sun and diffusion in globular cluster stars. There are many other possible applications to main sequence and to evolved stars. The associated README file explains how to use the subroutine.

[ascl:1304.009]
Sérsic: Exact deprojection of Sérsic surface brightness profiles

Sérsic is an implementation of the exact deprojection of Sérsic surface brightness profiles described in Baes and Gentile (2011). This code depends on the mpmath python library for an implementation of the Meijer G function required by the Baes and Gentile (hereafter B+G) formulas for rational values of the Sérsic index. Sérsic requires rational Sérsic indices, but any irrational number can be approximated arbitrarily well by some rational number. The code also depends on scipy, but the dependence is mostly for testing. The implementation of the formulas and the formulas themselves have undergone comprehensive testing.

[ascl:1304.011]
TPZ: Trees for Photo-Z

TPZ, a parallel code written in python, produces robust and accurate photometric redshift PDFs by using prediction tree and random forests. The code also produces ancillary information about the sample used, such as prior unbiased errors estimations (giving an estimation of performance) and a ranking of importance of variables as well as a map of performance indicating where extra training data is needed to improve overall performance. It is designed to be easy to use and a tutorial is available.

[ascl:1304.012]
ORIGAMI: Structure-finding routine in N-body simulation

ORIGAMI is a dynamical method of determining the morphology of particles in a cosmological simulation by checking for whether, and in how many dimensions, a particle has undergone shell-crossing. The code is written in C and makes use of the Delaunay tessellation calculation routines from the VOBOZ package (which relies on the Qhull package).

[ascl:1304.013]
SFH: Star Formation History

SFH is an efficient IDL tool that quickly computes accurate predictions for the baryon budget history in a galactic halo.

[ascl:1304.014]
MPgrafic: A parallel MPI version of Grafic-1

MPgrafic is a parallel MPI version of Grafic-1 (ascl:9910.004) which can produce large cosmological initial conditions on a cluster without requiring shared memory. The real Fourier transforms are carried in place using fftw while minimizing the amount of used memory (at the expense of performance) in the spirit of Grafic-1. The writing of the output file is also carried in parallel. In addition to the technical parallelization, it provides three extensions over Grafic-1:

- it can produce power spectra with baryon wiggles (DJ Eisenstein and W. Hu, Ap. J. 496);
- it has the optional ability to load a lower resolution noise map corresponding to the low frequency component which will fix the larger scale modes of the simulation (extra flag 0/1 at the end of the input process) in the spirit of Grafic-2 (ascl:1106.008);
- it can be used in conjunction with constrfield, which generates initial conditions phases from a list of local constraints on density, tidal field density gradient and velocity.

[ascl:1304.015]
TVD: Total Variation Diminishing code

TVD solves the magnetohydrodynamic (MHD) equations by updating the fluid variables along each direction using the flux-conservative, second-order, total variation diminishing (TVD), upwind scheme of Jin & Xin. The magnetic field is updated separately in two-dimensional advection-constraint steps. The electromotive force (EMF) is computed in the advection step using the TVD scheme, and this same EMF is used immediately in the constraint step in order to preserve ∇˙B=0 without the need to store intermediate fluxes. The code is extended to three dimensions using operator splitting, and Runge-Kutta is used to get second-order accuracy in time. TVD offers high-resolution per grid cell, second-order accuracy in space and time, and enforcement of the ∇˙B=0 constraint to machine precision. Written in Fortran, It has no memory overhead and is fast. It is also available in a fully scalable message-passing parallel MPI implementation.

[ascl:1304.016]
Qhull: Quickhull algorithm for computing the convex hull

Qhull computes the convex hull, Delaunay triangulation, Voronoi diagram, halfspace intersection about a point, furthest-site Delaunay triangulation, and furthest-site Voronoi diagram. The source code runs in 2-d, 3-d, 4-d, and higher dimensions. Qhull implements the Quickhull algorithm for computing the convex hull. It handles roundoff errors from floating point arithmetic. It computes volumes, surface areas, and approximations to the convex hull.

[ascl:1304.017]
CosmoRec: Cosmological Recombination code

CosmoRec solves the recombination problem including recombinations to highly excited states, corrections to the 2s-1s two-photon channel, HI Lyn-feedback, n>2 two-photon profile corrections, and n≥2 Raman-processes. The code can solve the radiative transfer equation of the Lyman-series photon field to obtain the required modifications to the rate equations of the resolved levels, and handles electron scattering, the effect of HeI intercombination transitions, and absorption of helium photons by hydrogen. It also allows accounting for dark matter annihilation and optionally includes detailed helium radiative transfer effects.

[ascl:1304.018]
SZpack: Computation of Sunyaev-Zeldovich (SZ) signals

SZpack is a numerical library which allows fast and precise computation of the Sunyaev-Zeldovich (SZ) signal for hot, moving clusters of galaxies. Both explicit numerical integration as well as approximate representation of the SZ signals can be obtained. Variations of the electron temperature and bulk velocity along the line-of-sight can be included. SZpack allows very fast and precise (<~0.001% at frequencies h nu <~ 30kT_g and electron temperature kTe ~ 75 keV) computation and its accuracy practically eliminates uncertainties related to more expensive numerical evaluation of the Boltzmann collision term. It furthermore cleanly separates kinematic corrections from scattering physics, effects that previously have not been clarified.

[ascl:1304.019]
IFrIT: Ionization FRont Interactive Tool

IFrIT (Ionization FRont Interactive Tool) is a powerful general purpose visualization tool that can be used to visualize 3-dimensional data sets. IFrIT is written in C++ and is based on the Visualization ToolKit (VTK) and, optionally, uses a GUI toolkit Qt. IFrIT can visualize scalar, vector field, tensor, and particle data. Several visualization windows can exist at the same time, each one having a full set of visualization objects. Some visualization windows can share the data between them, while other windows can be fully independent. Images from several visualization windows can be combined into one image file on the disk, tiling some windows together, and inserting reduced versions of some windows into larger other windows. A large array of features is also available, including highly advanced animation capabilities, a complex set of lights, markers to label various points in space, and a capability to "pick" a point in the scene and retrieve information about the data at this location.

[ascl:1304.020]
pyCloudy: Tools to manage astronomical Cloudy photoionization code

PyCloudy is a Python library that handles input and output files of the Cloudy photoionization code (Gary Ferland). It can also generate 3D nebula from various runs of the 1D Cloudy code. pyCloudy allows you to:

- define and write input file(s) for Cloudy code. As you can have it in a code, you may generate automatically sets of input files, changing parameters from one to the other.<

- read the Cloudy output files and play with the data: you will be able to plot line emissivity ratio vs. the radius of the nebula, the electron temperature, or any Cloudy output.

- build pseudo-3D models, a la Cloudy_3D, by running a set of models, changing parameters (e.g. inner radius, density) following angular laws, reading the outputs of the set of models and interpolating the results (Te, ne, line emissivities) in a 3D cube.

[ascl:1304.021]
PyNeb: Analysis of emission lines

PyNeb (previously PyNebular) is an update and expansion of the IRAF package NEBULAR; rewritten in Python, it is designed to be more user-friendly and powerful, increasing the speed, easiness of use, and graphic visualization of emission lines analysis. In PyNeb, the atom is represented as an n-level atom. For given density and temperature, PyNeb solves the equilibrium equations and determines the level populations. PyNeb can compute physical conditions from suitable diagnostic line ratios and level populations, critical densities and line emissivities, and can compute and display emissivity grids as a function of Te and Ne. It can also deredden line intensities, read and manage observational data, and plot and compare atomic data from different publications, and compute ionic abundances from line intensities and physical conditions and elemental abundances from ionic abundances and icfs.

[ascl:1304.022]
Copter: Cosmological perturbation theory

Copter is a software package for doing calculations in cosmological perturbation theory. Specifically, Copter includes code for computing statistical observables in the large-scale structure of matter using various forms of perturbation theory, including linear theory, standard perturbation theory, renormalized perturbation theory, and many others. Copter is written in C++ and makes use of the Boost C++ library headers.

[ascl:1305.001]
ESTER: Evolution STEllaire en Rotation

The ESTER code computes the steady state of an isolated star of mass larger than two solar masses. The only convective region computed as such is the core where isentropy is assumed. ESTER provides solutions of the partial differential equations, for the pressure, density, temperature, angular velocity and meridional velocity for the whole volume. The angular velocity (differential rotation) and meridional circulation are computed consistently with the structure and are driven by the baroclinic torque. The code uses spectral methods, both radially and horizontally, with spherical harmonics and Chebyshev polynomials. The iterations follow Newton's algorithm. The code is object-oriented and is written in C++; a python suite allows an easy visualization of the results. While running, PGPLOT graphs are displayed to show evolution of the iterations.

[ascl:1305.002]
pynbody: N-Body/SPH analysis for python

Pynbody is a lightweight, portable, format-transparent analysis package for astrophysical N-body and smooth particle hydrodynamic simulations supporting PKDGRAV/Gasoline, Gadget, N-Chilada, and RAMSES AMR outputs. Written in python, the core tools are accompanied by a library of publication-level analysis routines.

[ascl:1305.003]
TPM: Tree-Particle-Mesh code

TPM carries out collisionless (dark matter) cosmological N-body simulations, evolving a system of N particles as they move under their mutual gravitational interaction. It combines aspects of both Tree and Particle-Mesh algorithms. After the global PM forces are calculated, spatially distinct regions above a given density contrast are located; the tree code calculates the gravitational interactions inside these denser objects at higher spatial and temporal resolution. The code is parallel and uses MPI for message passing.

[ascl:1305.004]
AdaptaHOP: Subclump finder

AdaptaHOP is a structure and substructure detector. It reads an input particle distribution file and can compute the mean square distance between each particle and its nearest neighbors or the SPH density associated to each particle + the list of its nearest neighbors. It can also read an input particle distribution and a neighbors file (output from a previous run) and output the tree of the structures in structures.

[ascl:1305.005]
PkdGRAV2: Parallel fast-multipole cosmological code

PkdGRAV2 is a high performance N-body treecode for self-gravitating astrophysical simulations. It is designed to run efficiently in serial and on a wide variety of parallel computers including both shared memory and message passing architectures. It can spatially adapt to large ranges in particle densities, and temporally adapt to large ranges in dynamical timescales. The code uses a non-standard data structure for efficiently calculating the gravitational forces, a variant on the k-D tree, and a novel method for treating periodic boundary conditions.

[ascl:1305.006]
Pressure-Entropy SPH: Pressure-entropy smooth-particle hydrodynamics

Pressure-Entropy SPH, a modified version of GADGET-2, uses the Lagrangian “Pressure-Entropy” formulation of the SPH equations. This removes the spurious “surface tension” force substantially improving the treatment of fluid mixing and contact discontinuities. Pressure-Entropy SPH shows good performance in mixing experiments (e.g. Kelvin-Helmholtz & blob tests), with conservation maintained even in strong shock/blastwave tests, where formulations without manifest conservation produce large errors. This improves the treatment of sub-sonic turbulence and lessens the need for large kernel particle numbers.

[ascl:1305.007]
PINOCCHIO: PINpointing Orbit-Crossing Collapsed HIerarchical Objects

PINOCCHIO generates catalogues of cosmological dark matter halos with known mass, position, velocity and merger history. It is able to reproduce, with very good accuracy, the hierarchical formation of dark matter halos from a realization of an initial (linear) density perturbation field, given on a 3D grid. Its setup is similar to that of a conventional N-body simulation, but it is based on the powerful Lagrangian Perturbation Theory. It runs in just a small fraction of the computing time taken by an equivalent N-body simulation, producing promptly the merging histories of all halos in the catalog.

[ascl:1305.008]
YNOGK: Calculating null geodesics in the Kerr spacetime

YNOGK, written in Fortran, calculates the null geodesics in the Kerr spacetime. It uses Weierstrass' and Jacobi's elliptic functions to express all coordinates and affine parameters as analytical and numerical functions of a parameter $p$, which is an integral value along the geodesic. The information about the turning points do not need to be specified in advance by the user, allowing applications such as imaging, the calculation of line profiles or the observer-emitter problem to become root finding problems. Elliptic integrations are computed by Carlson's elliptic integral method, which allows fast computation.

[ascl:1305.009]
GaussFit: Solving least squares and robust estimation problems

GaussFit solves least squares and robust estimation problems; written originally for reduction of NASA Hubble Space Telescope data, it includes a complete programming language designed especially to formulate estimation problems, a built-in compiler and interpreter to support the programming language, and a built-in algebraic manipulator for calculating the required partial derivatives analytically. The code can handle nonlinear models, exact constraints, correlated observations, and models where the equations of condition contain more than one observed quantity. Written in C, GaussFit includes an experimental robust estimation capability so data sets contaminated by outliers can be handled simply and efficiently.

[ascl:1305.010]
GILDAS: Grenoble Image and Line Data Analysis Software

GILDAS is a collection of software oriented toward (sub-)millimeter radioastronomical applications (either single-dish or interferometer). It has been adopted as the IRAM standard data reduction package and is jointly maintained by IRAM & CNRS. GILDAS contains many facilities, most of which are oriented towards spectral line mapping and many kinds of 3-dimensional data. The code, written in Fortran-90 with a few parts in C/C++ (mainly keyboard interaction, plotting, widgets), is easily extensible.

[ascl:1305.011]
FITDisk: Cataclysmic Variable Accretion Disk Demonstration Tool

FITDisk models accretion disk phenomena using a fully three-dimensional hydrodynamics calculation, and data can either be visualized as they are computed or stored to hard drive for later playback at a fast frame rate. Simulations are visualized using OpenGL graphics and the viewing angle can be changed interactively. Pseudo light curves of simulated systems can be plotted along with the associated Fourier amplitude spectrum. It provides an easy to use graphical user interface as well as 3-D interactive graphics. The code computes the evolution of a CV accretion disk, visualizes results in real time, records and plays back simulations, and generates and plots pseudo light curves and associated power spectra. FITDisk is the Windows executable form of this software; its Fortran source code is also available as DiskSim (ascl:1811.013).

[ascl:1305.012]
MapCUMBA: Multi-grid map-making algorithm for CMB experiments

The MapCUMBA package applies a multigrid fast iterative Jacobi algorithm for map-making in the context of CMB experiments.

[ascl:1305.013]
Non-Gaussian Realisations

Non-Gaussian Realisations provides code based on a spectral distortion/quantile transformation that generates a realization of a field on a cubic grid that has a specified probability distribution function and a specified power spectrum.

[ascl:1305.014]
TAU: 1D radiative transfer code for transmission spectroscopy of extrasolar planet atmospheres

TAU is a 1D line-by-line radiative transfer code for modeling transmission spectra of close-in extrasolar planets. The code calculates the optical path through the planetary atmosphere of the radiation from the host star and quantifies the absorption due to the modeled composition in a transmission spectrum of transit depth as a function of wavelength. The code is written in C++ and is parallelized using OpenMP.

[ascl:1305.015]
Merger Trees: Formation history of dark matter haloes

Merger Trees uses a Monte Carlo algorithm to generate merger trees describing the formation history of dark matter haloes; the algorithm is implemented in Fortran. The algorithm is a modification of the algorithm of Cole et al. used in the GALFORM semi-analytic galaxy formation model (ascl:1510.005) based on the Extended Press–Schechter theory. It should be applicable to hierarchical models with a wide range of power spectra and cosmological models. It is tuned to be in accurate agreement with the conditional mass functions found in the analysis of merger trees extracted from the Λ cold dark matter Millennium N-body simulation. The code should be a useful tool for semi-analytic models of galaxy formation and for modelling hierarchical structure formation in general.

Previous123456789101112**13**1415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172Next

Would you like to view a random code?