Results 601-650 of 3615 (3521 ASCL, 94 submitted)

[ascl:2211.011]
fastSHT: Fast Spherical Harmonic Transforms

fastSHT performs spherical harmonic transforms on a large number of spherical maps. It converts massive SHT operations to a BLAS level 3 problem and uses the highly optimized matrix multiplication toolkit to accelerate the computation. GPU acceleration is supported and can be very effective. The core code is written in Fortran, but a Python wrapper is provided and recommended.

[ascl:2211.010]
BlackJAX: Library of samplers for JAX

BlackJAX is a sampling library designed for ease of use, speed, and modularity and works on CPU as well as GPU. It is not a probabilistic programming library (PLL), though it integrates well with PPLs as long as they can provide a (potentially unnormalized) log-probability density function compatible with JAX. BlackJAX is written in pure Python and depends on XLA via JAX (ascl:2111.002). It can be used by those who have a logpdf and need a sampler or need more than a general-purpose sampler. It is also useful for building a sample on GPU and for users who want to learn how sampling algorithms work.

[ascl:2211.009]
ovejero: Bayesian neural network inference of strong gravitational lenses

Wagner-Carena, Sebastian; Park, Ji Won; Birrer, Simon; Marshall, Philip J.; Roodman, Aaron; Wechsler, Risa H.

ovejero conducts hierarchical inference of strongly-lensed systems with Bayesian neural networks. It requires lenstronomy (ascl:1804.012) and fastell (ascl:9910.003) to run lens models with elliptical mass distributions. The code trains Bayesian Neural Networks (BNNs) to predict posteriors on strong gravitational lensing images and can integrate with forward modeling tools in lenstronomy to allow comparison between BNN outputs and more traditional methods. ovejero also provides hierarchical inference tools to generate population parameter estimates and unbiased posteriors on independent test sets.

[ascl:2211.008]
pmclib: Population Monte Carlo library

Benabed, Karim; Cappé, Olivier; Cardoso, Jean-François; Fort, Gersende; Kilbinger, Martin; Prunet, Simon; Robert, Christian P.; Wraith, Darren

The Population Monte-Carlo (PMC) sampling code pmclib performs fast end efficient parallel iterative importance sampling to compute integrals over the posterior including the Bayesian evidence.

[ascl:2211.007]
mgcnn: Standard and modified gravity (MG) cosmological models classifier

mgcnn is a Convolutional Neural Network (CNN) architecture for classifying standard and modified gravity (MG) cosmological models based on the weak-lensing convergence maps they produce. It is implemented in Keras using TensorFlow as the backend. The code offers three options for the noise flag, which correspond to noise standard deviations, and additional options for the number of training iterations and epochs. Confusion matrices and evaluation metrics (loss function and validation accuracy) are saved as numpy arrays in the generated output/ directory after each iteration.

[ascl:2211.006]
baobab: Training data generator for hierarchically modeling strong lenses with Bayesian neural networks

Park, Ji Won; Wagner-Carena, Sebastian; Birrer, Simon; Marshall, Philip J.; Lin, Joshua Yao-Yu; Roodman, Aaron

baobab generates images of strongly-lensed systems, given some configurable prior distributions over the parameters of the lens and light profiles as well as configurable assumptions about the instrument and observation conditions. Wrapped around lenstronomy (ascl:1804.012), baobab supports prior distributions ranging from artificially simple to empirical. A major use case for baobab is the generation of training and test sets for hierarchical inference using Bayesian neural networks (BNNs); the code can generate the training and test sets using different priors.

[ascl:2211.005]
unTimely_Catalog_explorer: A search and visualization tool for the unTimely Catalog

unTimely Catalog Explorer searches for and visualizes detections in the unTimely Catalog, a full-sky, time-domain catalog of detections based on WISE and NEOWISE image data acquired between 2010 and 2020. The tool searches the catalog by coordinates to create finder charts for each epoch with overplotted catalog positions and light curves using the unTimely photometry, to overplot these light curves with AllWISE multi-epoch and NEOWISE-R single exposure (L1b) photometry, and to create image blinks with overlaid catalog positions in GIF format.

[ascl:2211.004]
PAHDecomp: Decomposing the mid-IR spectra of extremely obscured galaxies

PAHDecomp models mid-infrared spectra of galaxies; it is based on the popular PAHFIT code (ascl:1210.009). In contrast to PAHFIT, this model decomposes the continuum into a star-forming component and an obscured nuclear component based on Bayesian priors on the shape of the star-forming component (using templates + prior on extinction), making this tool ideally suited for modeling the spectra of heavily obscured galaxies. PAHDecomp successfully recovers properties of Compact Obscured Nuclei (CONs) where the inferred nuclear optical depth strongly correlates with the surface brightness of HCN-vib emission in the millimeter. This is currently set up to run on the short low modules of Spitzer IRS data (5.2 - 14.2 microns) but will be ideal for JWST/MIRI MRS data in the future.

[ascl:2211.003]
AMBER: Abundance Matching Box for the Epoch of Reionization

AMBER (Abundance Matching Box for the Epoch of Reionization) models the cosmic dawn. The semi-numerical code allows users to directly specify the reionization history through the redshift midpoint, duration, and asymmetry input parameters. The reionization process is further controlled through the minimum halo mass for galaxy formation and the radiation mean free path for radiative transfer. The parallelized code is over four orders of magnitude faster than radiative transfer simulations and will efficiently enable large-volume models, full-sky mock observations, and parameter-space studies.

[ascl:2211.002]
KC: Analytical propagator with collision detection for Keplerian systems

The analytic propagator Kepler-Collisions calculates collisions for Keplerian systems. The algorithm maintains a list of collision possibilities and jumps from one collision to the next; since collisions are rare in astronomical scales, jumping from collision to collision and calculating each one is more efficient than calculating all the time steps that are between collisions.

[ascl:2211.001]
PTAfast: PTA correlations from stochastic gravitational wave background

PTAfast calculates the overlap reduction function in Pulsar Timing Array produced by the stochastic gravitational wave background for arbitrary polarizations, propagation velocities, and pulsar distances.

[ascl:2210.030]
cuvarbase: fast period finding utilities for GPUs

cuvarbase provides a Python library for performing period finding (Lomb-Scargle, Phase Dispersion Minimization, Conditional Entropy, Box-least squares) on astronomical time-series datasets. Speedups over CPU implementations depend on the algorithm, dataset, and GPU capabilities but are typically ~1-2 orders of magnitude and are especially high for BLS and Lomb-Scargle.

[ascl:2210.029]
paltas: Simulation-based inference on strong gravitational lensing systems

Wagner-Carena, Sebastian; Aalbers, Jelle; Birrer, Simon; Nadler, Ethan O.; Darragh-Ford, Elise; Marshall, Philip J.; Wechsler, Risa H.

paltas conducts simulation-based inference on strong gravitational lensing images. It builds on lenstronomy (ascl:1804.012) to create large datasets of strong lensing images with realistic low-mass halos, Hubble Space Telescope (HST) observational effects, and galaxy light from HST's COSMOS field. paltas also includes the capability to easily train neural posterior estimators of the parameters of the lensing system and to run hierarchical inference on test populations.

[ascl:2210.028]
CK: Cloud modeling and removal

Teinturier, Lucas; Vieira, Nicholas; Jacquet, Elisa; Geoffrion, Juliette; Bestavros, Youssef; Keating, Dylan; Cowan, Nicolas B.

Cloud Killer recovers surface albedo maps by using reflected light photometry to map the clouds and surface of unresolved exoplanets. For light curves with negligible photometric uncertainties, the minimal top-of-atmosphere albedo at a location is a good estimate of its surface albedo. On synthetic data, it shows little bias, good precision, and accuracy, but slightly underestimated uncertainties; exoplanets with large, changing cloud structures observed near quadrature phases are good candidates for Cloud Killer cloud removal.

[ascl:2210.027]
LensingETC: Lensing Exposure Time Calculator

Shajib, Anowar J.; Glazebrook, Karl; Barone, Tania; Lewis, Geraint F.; Jones, Tucker; Tran, Kim-Vy H.; Buckley-Geer, Elizabeth; Collett, Thomas E.; Frieman, Joshua; Jacobs, Colin

LensingETC optimizes observing strategies for multi-filter imaging campaigns of galaxy-scale strong lensing systems. It uses the lens modelling software lenstronomy (ascl:1804.012) to simulate and model mock imaging data, forecasts the lens model parameter uncertainties, and optimizes observing strategies.

[ascl:2210.026]
PGOPHER: Rotational, vibrational, and electronic spectra simulator

PGOPHER simulates and fits rotational, vibrational, and electronic spectra. It handles linear molecules and symmetric and asymmetric tops, including effects due to unpaired electrons and nuclear spin, with a separate mode for vibrational structure. The code performs many sorts of transitions, including Raman, multiphoton, and forbidden transitions. It can simulate multiple species and states simultaneously, including special effects such as perturbations and state dependent predissociation. Fitting can be to line positions, intensities, or band contours. PGOPHER uses a standard graphical user interface and makes comparison with, and fitting to, spectra from various sources easy. In addition to overlaying numerical spectra, it is also possible to overlay pictures from pdf files and even plate spectra to assist in checking that published constants are being used correctly.

[ascl:2210.025]
tvguide: Observability by TESS

tvguide determines whether stars and galaxies are observable by TESS. It uses an object's right ascension and declination and estimates the pointing of TESS's cameras using predicted spacecraft ephemerides to determine whether and for how long the object is observable with TESS. tvguide returns a file with two columns, the first the minimum number of sectors the target is observable for and the second the maximum.

[ascl:2210.024]
Faiss: Similarity search and clustering of dense vectors library

The Faiss library performs efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning. Faiss is written in C++ with complete wrappers for Python/numpy. Some of the most useful algorithms are implemented on the GPU.

[ascl:2210.023]
BornRaytrace: Weak gravitational lensing effects simulator

BornRaytrace uses neural data compression of weak lensing map summary statistics to simulate weak gravitational lensing effects. It can raytrace through overdensity Healpix maps to return a convergence map, include shear-kappa transformation on the full sphere, and also include intrinsic alignments (NLA model).

[ascl:2210.022]
MCCD: Multi-CCD Point Spread Function Modelling

MCCD (Multi-CCD) generates a Point Spread Function (PSF) model based on stars observations in the field of view. After defining the MCCD model parameters and running and validating the training, the model can recover the PSF at any position in the field of view. Written in Python, MCCD also calculates various statistics and can plot a random test star and its model reconstruction.

[ascl:2210.021]
SHEEP: Machine Learning pipeline for astronomy classification

The photometric redshift-aided classification pipeline SHEEP uses ensemble learning to classify astronomical sources into galaxies, quasars and stars. It uses tabular data and also allows the use of sparse data. The approach uses SDSS and WISE photometry, but SHEEP can also be used with other types of tabular data, such as radio fluxes or magnitudes.

[ascl:2210.020]
ixpeobssim: Imaging X-ray Polarimetry Explorer simulator and analyzer

Baldini, Luca; Bucciantini, Niccolò; Lalla, Niccolò Di; Ehlert, Steven; Manfreda, Alberto; Negro, Michela; Omodei, Nicola; Pesce-Rollins, Melissa; Sgrò, Carmelo; Silvestri, Stefano

The simulation and analysis framework ixpeobssim was specifically developed for the Imaging X-ray Polarimetry Explorer (IXPE). It produces realistic simulated observations, in the form of event lists in FITS format, that also contain a strict superset of the information included in the publicly released IXPE data products. The framework's core simulation capabilities are complemented by post-processing applications that support the spatial, spectral, and temporal models needed for analysis of typical polarized X-ray sources, allowing implementation of complex, polarization-aware analysis pipelines. Where applicable, the data formats are consistent with the common display and analysis tools used by the community, *e.g.*, the binned count spectra can be fed into XSPEC (ascl:9910.005), along with the corresponding response functions, for doing standard spectral analysis. All ixpeobssim simulation and analysis tools are fully configurable via the command line.

[ascl:2210.019]
POSYDON: Single and binary star population synthesis code

Fragos, Tassos; Andrews, Jeff J.; Bavera, Simone S.; Berry, Christopher P. L.; Coughlin, Scott; Dotter, Aaron; Giri, Prabin; Kalogera, Vicky; Katsaggelos, Aggelos; Kovlakas, Konstantinos; Lalvani, Shamal; Misra, Devina; Srivastava, Philipp M.; Qin, Ying; Rocha, Kyle A.; Roman-Garza, Jaime; Serra, Juan Gabriel; Stahle, Petter; Sun, Meng; Teng, Xu; Trajcevski, Goce; Hai Tran, Nam; Xing, Zepei; Zapartas, Emmanouil; Zevin, Michael

POSYDON (POpulation SYnthesis with Detailed binary-evolution simulatiONs) incorporates full stellar structure and evolution modeling for single and binary-star population synthesis. The code is modular and allows the user to specify initial population properties and adopt choices that determine how stellar evolution proceeds. Populations are simulated with the use of MESA (ascl:1010.083) evolutionary tracks for single, non-interacting, and interacting binaries organized in grids. Machine-learning methods are incorporated and applied on the grids for classification and various interpolation calculations, and the development of irregular grids guided by active learning, for computational efficiency.

[ascl:2210.018]
LavAtmos: Gas-melt equilibrium calculations for a given temperature and melt composition

LavAtmos performs gas-melt equilibrium calculations for a given temperature and melt composition. The thermodynamics of the melt are modeled by the MELTS code as presented in the Thermoengine package (ascl:2208.006). In combination with atmospheric chemistry codes, LavAtmos enables the characterization of interior compositions through atmospheric signatures.

[ascl:2210.017]
PySME: Spectroscopy Made Easy reimplemented with Python

PySME is a partial reimplementation of Spectroscopy Made Easy (SME, ascl:1202.013), which fits an observed spectrum of a star with a model spectrum. The IDL routines of SME used to call a dynamically linked library of compiled C++ and Fortran programs have been rewritten in Python. In addition, an object oriented paradigm and continuous integration practices, including build automation, self-testing, and frequent builds, have been added.

[ascl:2210.016]
PETSc: Portable, Extensible Toolkit for Scientific Computation

Balay, Satish; Abhyankar, Shrirang; Adams, Mark F.; Benson, Steven; Brown, Jed; Brune, Peter; Buschelman, Kris; Constantinescu, Emil; Dalcin, Lisandro; Dener, Alp; Eijkhout, Victor; Faibussowitsch, Jacob; Gropp, William D.; Hapla, Vaclav; Isaac, Tobin; Jolivet, Pierre; Karpeev, Dmitry; Kaushik, Dinesh; Knepley, Matthew G.; Kong, Fande; Kruger, Scott; May, Dave A.; McInnes, Lois Curfman; Mills, Richard Tran; Mitchell, Lawrence; Munson, Todd; Roman, Jose E.; Rupp, Karl; Sanan, Patrick; Sarich, Jason; Smith, Barry F.; Zampini, Stefano; Zhang, Hong; Zhang, Junchao

PETSc (Portable, Extensible Toolkit for Scientific Computation) provides a suite of data structures and routines for the scalable (parallel) solution of scientific applications modeled by partial differential equations, and is intended for use in large-scale application projects. The toolkit includes a large suite of parallel linear, nonlinear equation solvers and ODE integrators that are easily used in application codes written in C, C++, Fortran and Python. PETSc provides many of the mechanisms needed within parallel application codes, such as simple parallel matrix and vector assembly routines that allow the overlap of communication and computation. In addition, PETSc (pronounced PET-see) includes support for managing parallel PDE discretizations.

[ascl:2210.015]
Solar-MACH: Multi-spacecraft longitudinal configuration plotter

Gieseler, Jan; Dresing, Nina; Palmroos, Christian; von Forstner, Johan L. Freiherr; Price, Daniel J.; Vainio, Rami; Kouloumvakos, Athanasios; Rodríguez-García, Laura; Trotta, Domenico; Génot, Vincent; Masson, Arnaud; Roth, Markus; Veronig, Astrid

Solar-MACH (Solar MAgnetic Connection HAUS) derives and visualizes the spatial configuration and solar magnetic connection of different observers (*i.e.*, spacecraft or planets) in the heliosphere at different times. It provides publication-ready figures for analyzing Solar Energetic Particle events (SEPs) or solar transients such as Coronal Mass Ejections (CMEs). Solar-MACH is available as a Python package; a Streamlit-enabled tool that runs in a browser is also available (solar-mach.github.io)

[ascl:2210.014]
Blacklight: GR ray tracing code for post-processing Athena++ simulations

Blacklight postprocesses general-relativistic magnetohydrodynamic simulation data and produces outputs for analyzing data sets, including maps of auxiliary quantities and false-color renderings. The code can use Athena++ (ascl:1912.005) outputs directly, and also supports files in HARM (ascl:1209.005) and iHARM3d (ascl:2210.013) format. Written in C++, Blacklight offers support for adaptive mesh refinement input, slow-light calculations, and adaptive ray tracing.

[ascl:2210.013]
iharm3D: Hybrid MPI/OpenMP 3D HARM with vectorization

Prather, Ben; Wong, George; Dhruv, Vedant; Ryan, Benjamin; Dolence, Joshua; Ressler, Sean; Gammie, Charles

iharm3D implements the HARM algorithm (ascl:1209.005) with modifications and enables a second-order, conservative, shock-capturing scheme for general-relativistic magnetohydrodynamics (GRMHD). Written in C, it simulates black hole accretion systems in arbitrary stationary spacetimes.

[ascl:2210.012]
pixmappy: Python interface to gbdes astrometry solutions

pixmappy provides a Python interface to gbdes pixel map (astrometry) solutions. It reads the YAML format astrometry solutions produced by gbdes (ascl:2210.011) and issues a PixelMap instance, which is a map from one 2d coordinate system ("pixel") to another ("world") 2d system. A PixelMap instance can be used as a function mapping one (or many) coordinate pairs. An inverse method does reverse mapping, and the local jacobian of the map is available also. The type of mapping that can be expressed is very flexible, and PixelMaps can be compounded into chains of tranformations.

[ascl:2210.011]
gbdes: DECam instrumental signature fitting and processing programs

gbdes derives photometric and astrometric calibration solutions for complex multi-detector astronomical imagers. The package includes routines to filter catalogs down to useful stellar objects, collect metadata from the catalogs and create a config file holding FITS binary tables describing exposures, instruments, fields, and other available information in the data, and uses a friends-of-friends matching algorithm to link together all detections of common objects found in distinct exposures. gbdes also calculates airmasses and parallactic angles for each exposure, calculates and saves the expected differential chromatic refraction (DCR) needed for precision astrometry, optimizes the parameters of a photometric model to maximize agreement between magnitudes measured in different exposures of the same source, and optimizing the parameters of an astrometric model to maximize agreement among the exposures and any reference catalogs, and performs other tasks. The solutions derived and used by gbdes are stored in YAML format; gbdes uses the Python code pixmappy (ascl:2210.012) to read the astrometric solution files and execute specified transformations.

[ascl:2210.010]
TSRecon: Time series reconstruction method of massive astronomical catalogs

The time series reconstruction method of massive astronomical catalogs reconstructs all celestial objects' time series data for astronomical catalogs with great accuracy. In addition, the program, which requires a Spark cluster, solves the boundary source leakage problem on the premise of ensuring accuracy, and the user can set different parameters for different data sets to filter the error records in the catalogs.

[ascl:2210.009]
NEMESIS: Non-linear optimal estimator for multivariate spectral analysis

Irwin, P. G. J.; Teanby, N. A.; de Kok, R.; Fletcher, L. N.; Howett, C. J. A.; Tsang, C. C. C.; Wilson, C. F.; Calcutt, S. B.; Nixon, C. A.; Parrish, P. D.

NEMESIS (Non-linear optimal Estimator for MultivariatE spectral analySIS) is the general purpose correlated-k/LBL retrieval code developed from the RADTRAN project (ascl:2210.008). Originally based on the correlated-k approximation, NEMESIS also works in line-by-line (LBL) mode. It has been designed to be generally applicable to any planet and with any observing mode and so is suitable for both solar-system studies and also exoplanetary studies.

[ascl:2210.008]
RADTRAN: General purpose planetary radiative transfer model

RADTRAN calculates the transmission, absorption or emission spectra emitted by planetary atmospheres using either line-by-line integration, spectral band models, or 'correlated-K' approaches. Part of the NEMESIS project (ascl:2210.009), the code also incorporates both multiple scattering and single scattering calculations. RADTRAN is general purpose and not hard-wired to any specific planet.

[ascl:2210.007]
COMET: Emulated predictions of large-scale structure observables

Eggemeier, Alexander; Camacho-Quevedo, Benjamin; Pezzotta, Andrea; Crocce, Martin; Scoccimarro, Román; Sánchez, Ariel G.

COMET (Clustering Observables Modelled by Emulated perturbation Theory) provides emulated predictions of large-scale structure observables from models that are based on perturbation theory. It substantially speeds up these analytic computations without any relevant sacrifice in accuracy, enabling an extremely efficient exploration of large-scale structure likelihoods. At its core, COMET exploits an evolution mapping approach which gives it a high degree of flexibility and allows it to cover a wide cosmology parameter space at continuous redshifts up to z∼3z \sim 3z∼3. Among others, COMET supports parameters for cold dark matter density (ωc\omega_cωc), baryon density (ωb\omega_bωb), Scalar spectral index (nsn_sns), Hubble expansion rate (hhh) and Curvature density (ΩK\Omega_KΩK). The code can obtain the real-space galaxy power spectrum at one-loop order multipoles (monopole, quadrupole, hexadecapole) of the redshift-space, power spectrum at one-loop order, the linear matter power spectrum (with and without infrared resummation), Gaussian covariance matrices for the real-space power spectrum, and redshift-space multipoles and χ2\chi^2χ2's for arbitrary combinations of multipoles. COMET provides an easy-to-use interface for all of these computations.

[ascl:2210.006]
ExoRad2: Generic point source radiometric model

ExoRad 2.0, a generic point source radiometric model, interfaces with any instrument to provide an estimate of several Payload performance metrics. For each target and for each photometric and spectroscopic channel, the code provides estimates of signals in pixels, saturation times, and read, photon, and dark current noise. ExoRad also provides estimates for the zodiacal background, inner sanctum, and sky foreground.

[ascl:2210.005]
PSFr: Point Spread Function reconstruction

PSFr empirically reconstructs an oversampled version of the point spread function (PSF) from astronomical imaging observations. The code provides a light-weighted API of a refined version of an algorithm originally implemented in lenstronomy (ascl:1804.012). It provides user support with different artifacts in the data and supports the masking of pixels, or the treatment of saturation levels. PSFr has been used to reconstruct the PSF from multiply imaged lensed quasar images observed by the Hubble Space Telescope in a crowded lensing environment and more recently with James Webb Space Telescope (JWST) imaging data for a wide dynamical flux range.

[ascl:2210.004]
Finder_charts: Create finder charts from image data of various sky surveys

Finder_charts creates multi-band finder charts from image data of various partial- and all-sky surveys such as DSS, 2MASS, WISE, UKIDSS, VHS, Pan-STARRS, and DES. It also creates a WISE time series of image data acquired between 2010 and 2021. All images are reprojected so that north is up and east is to the left. The resulting finder charts can be overplotted with corresponding catalog positions. All catalog entries within the specified field of view can be saved in a variety of formats, including ipac, csv, and tex, as can the finder charts in png, pdf, eps, and other common graphics formats. Finder_charts consists of a single Python module, which depends only on well-known packages, making it easy to install.

[ascl:2210.003]
NIRDust: Near Infrared Dust finder for Type2 AGN K-band spectra

NIRDust uses K-band (2.2 micrometers) spectra to measure the temperature of the dust heated by an Active Galactic Nuclei (AGN) accretion disk. The package provides several functionalities to pre-process spectra and fit the hot dust component of a AGN K-band spectrum with a blackbody function. NIRDust needs a minimum of two spectra to run: a target spectrum, where the dust temperature will be estimated, and a reference spectrum, where the emission is considered to be purely stellar. The reference spectrum will be used by NIRDust to model the stellar emission from the target spectrum.

[ascl:2210.002]
SPINspiral: Parameter estimation for analyzing gravitational-wave signals

SPINspiral analyzes gravitational-wave signals from stellar-mass binary inspirals detected by ground-based interferometers such as LIGO and Virgo. It performs parameter estimation on these signals using Markov-chain Monte-Carlo (MCMC) techniques. This analysis includes the spins of the binary components. Written in C, the package is modular; its main routine is as small as possible and calls other routines, which perform tasks such as reading input, choosing and setting (starting or injection) parameters, and handling noise. Other routines compute overlaps and likelihoods, contain the MCMC core, and manage more general support functions and third-party routines.

[ascl:2210.001]
PSS: Pulsar Survey Scraper

Pulsar Survey Scraper aggregates pulsar discoveries before they are included in the ATNF pulsar catalog and enables searching and filtering based on position and dispersion measure. This facilitates identifying new pulsar discoveries. Pulsar Survey Scraper can be downloaded or run online using the Pulsar Survey Scraper webform.

[submitted]
EleFits

EleFits is a modern C++ package to read and write FITS files which focuses on safety, user-friendliness, and performance.

[ascl:2209.020]
FastQSL: Quasi-separatrix Layers computation method

FastQSL calculate the squashing factor Q at the photosphere, a cross section, or a box volume, given a 3D magnetic field with Cartesian, uniform or stretched grids. It is available in IDL and in an optimized version using Fortran for calculations and field line tracing. Use of a GPU accelerates a step-size adaptive scheme for the most computationally intensive part, the field line tracing, making the code fast and efficient.

[ascl:2209.019]
SolTrack: Compute the position of the Sun in topocentric coordinates

SolTrack computes the position of the Sun, the rise and set times and azimuths, and transit times and altitudes. It includes corrections for aberration and parallax, and has a simple routine to correct for atmospheric refraction, taking into account local atmospheric conditions. SolTrack is derived from the Fortran library libTheSky (ascl:2209.018). The package can be used to track the Sun on a low-specs machine, such as a microcontroller or PLC, and can be used for (highly) concentrated (photovoltaic) solar power or accurate solar-energy modeling.

[ascl:2209.018]
libTheSky: Compute positions of celestial bodies and events

libTheSky compute the positions of celestial bodies, such as the Moon, planets, and stars, and events, including conjunctions and eclipses, with great accuracy. Written in Fortran, libTheSky can use different reference frames (heliocentric, geocentric, topocentric) and coordinate systems (ecliptic, equatorial, galactic; spherical, rectangular), and the user can choose low- or high-accuracy calculations, depending on need.

[ascl:2209.017]
SpectraPy: Extract and reduce astronomical spectral data

SpectraPy collects algorithms and methods for data reduction of astronomical spectra obtained by a through slits spectrograph. It produces two-dimensional wavelength calibrated spectra corrected by instrument distortions. The library is designed to be spectrograph independent and can be used on both longslit (LS) and multi object spectrograph (MOS) data. SpectraPy comes with a set of already configured spectrographs, but it can be easily configured to reduce data of other instruments.

[ascl:2209.016]
RAPOC: Rosseland and Planck mean opacities calculator

RAPOC (Rosseland and Planck Opacity Converter) uses molecular absorption measurements (*i.e.*, wavelength-dependent opacities) for a given temperature, pressure, and wavelength range to calculate Rosseland and Planck mean opacities for use in atmospheric modeling. The code interpolates between discrete data points and can use ExoMol and DACE data, or any user-defined data provided in a readable format. RAPOC is simple, straightforward, and easily incorporated into other codes.

[ascl:2209.015]
TauREx3: Tau Retrieval for Exoplanets

TauREx 3 (Tau Retrieval for Exoplanets) provides a fully Bayesian inverse atmospheric retrieval framework for exoplanetary atmosphere modeling and retrievals. It is fully customizable, allowing the user to mix and match atmospheric parameters and add additional ones. The framework builds forward models, simulates instruments, and performs retrievals, and provides a rich library of classes for building additional programs and using new atmospheric parameters.

[ascl:2209.014]
SyntheticISOs: Synthetic Population of Interstellar Objects

Synthetic Population of Interstellar Objects generates a synthetic population of interstellar objects (orbits and sizes) in arbitrary volume of space around the Sun. The only necessary assumption is that the population of ISOs in the interstellar space (far from any massive body) is homogeneous and isotropic. The assumed distribution of interstellar velocities of ISOs has to be provided as an input. This distribution can be defined analytically, but also in a discrete form. The algorithm, based on the multivariate inverse transform sampling method, is implemented in Python.

[ascl:2209.013]
wsynphot: Synthetic photometry package using quantities

wsynphot provides a broad set of filters, including observation facility, instrument, and wavelength range, and functions for imaging stars to produce a filter curve showing the transmission of light for each wavelength value. It can create a filter curve object, plot the curve, and allows the user to do calculations on the filter curve object.

Previous123456789101112**13**141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273Next

Would you like to view a random code?