ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:1807.008] HII-CHI-mistry_UV: Oxygen abundance and ionizionation parameters for ultraviolet emission lines

HII-CHI-mistry_UV derives oxygen and carbon abundances using the ultraviolet (UV) lines emitted by the gas phase ionized by massive stars. The code first fixes C/O using ratios of appropriate emission lines and, in a second step, calculates O/H and the ionization parameter from carbon lines in the UV. An optical version of this Python code, HII-CHI-mistry (ascl:1807.007), is also available.

[ascl:1807.007] HII-CHI-mistry: Oxygen abundance and ionizionation parameters for optical emission lines

HII-CHI-mistry calculates the oxygen abundance for gaseous nebulae ionized by massive stars using optical collisionally excited emission lines. This code takes the extinction-corrected emission line fluxes and, based on a Χ2 minimization on a photoionization models grid, determines chemical-abundances (O/H, N/O) and ionization parameters. An ultraviolet version of this Python code, HII-CHI-mistry-UV (ascl:1807.008), is also available.

[ascl:1807.006] pyqz: Emission line code

pyqz computes the values of log(Q) [the ionization parameter] and 12+log(O/H) [the oxygen abundance, either total or in the gas phase] for a given set of strong emission lines fluxes from HII regions. The log(Q) and 12+log(O/H) values are interpolated from a finite set of diagnostic line ratio grids computed with the MAPPINGS V code (ascl:1807.005). The grids used by pyqz are chosen to be flat, without wraps, to decouple the influence of log(Q) and 12+log(O/H) on the emission line ratios.

[ascl:1807.005] MAPPINGS V: Astrophysical plasma modeling code

MAPPINGS V is a update of the MAPPINGS code (ascl:1306.008) and provides new cooling function computations for optically thin plasmas based on the greatly expanded atomic data of the CHIANTI 8 database. The number of cooling and recombination lines has been expanded from ~2000 to over 80,000, and temperature-dependent spline-based collisional data have been adopted for the majority of transitions. The expanded atomic data set provides improved modeling of both thermally ionized and photoionized plasmas; the code is now capable of predicting detailed X-ray spectra of nonequilibrium plasmas over the full nonrelativistic temperature range, increasing its utility in cosmological simulations, in modeling cooling flows, and in generating accurate models for the X-ray emission from shocks in supernova remnants.

[ascl:1807.004] ARKCoS: Radial kernel convolution on the sphere

ARKCoS (Accelerated radial kernel convolution on the sphere) efficiently convolves pixelated maps on the sphere with radially symmetric kernels with compact support. It performs the convolution along isolatitude rings in Fourier space and integrates in longitudinal direction in pixel space. The computational costs scale linearly with the kernel support, making the method most beneficial for convolution with compact kernels. Typical applications include CMB beam smoothing, symmetric wavelet analyses, and point-source filtering operations. The software is written in C++/CUDA and provides two independent code paths to do the necessary computation either on conventional hardware (CPUs), or on graphics processing units (GPUs).

[ascl:1807.003] PyAutoLens: Strong lens modeling

PyAutoLens models and analyzes galaxy-scale strong gravitational lenses. This automated module suite simultaneously models the lens galaxy's light and mass while reconstructing the extended source galaxy on an adaptive pixel-grid. Source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing PyAutoLens to cleanly deblend its light from the source. Bayesian model comparison is used to automatically chose the complexity of the light and mass models. PyAutoLens provides accurate light, mass, and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.

[ascl:1807.002] Warpfield: Winds And Radiation Pressure: Feedback Induced Expansion, colLapse and Dissolution

Warpfield (Winds And Radiation Pressure: Feedback Induced Expansion, colLapse and Dissolution) calculates shell dynamics and shell structure simultaneously for isolated massive clouds (≥105 M). This semi-analytic 1D feedback model scans a large range of physical parameters (gas density, star formation efficiency, and metallicity) to estimate escape fractions of ionizing radiation fesc, I, the minimum star formation efficiency ∊min required to drive an outflow, and recollapse time-scales for clouds that are not destroyed by feedback.

[ascl:1807.001] POLARIS: POLArized RadIation Simulator

POLARIS (POLArized RadIation Simulator) simulates the intensity and polarization of light emerging from analytical astrophysical models as well as complex magneto-hydrodynamic simulations on various grids. This 3D Monte-Carlo continuum radiative transfer code is written in C++ and is capable of performing dust heating, dust grain alignment, line radiative transfer, and synchrotron simulations to calculate synthetic intensity and polarization maps. The code makes use of a full set of physical quantities (density, temperature, velocity, magnetic field distribution, and dust grain properties as well as different sources of radiation) as input.

[ascl:1806.032] pwv_kpno: Modeling atmospheric absorption

pwv_kpno provides models for the atmospheric transmission due to precipitable water vapor (PWV) at user specified sites. Atmospheric transmission in the optical and near-infrared is highly dependent on the PWV column density along the line of sight. The pwv_kpno package uses published SuomiNet data in conjunction with MODTRAN models to determine the modeled, time-dependent atmospheric transmission between 3,000 and 12,000 Å. By default, models are provided for Kitt Peak National Observatory (KPNO). Additional locations can be added by the user for any of the hundreds of SuomiNet locations worldwide.

[ascl:1806.031] ASPIC: Accurate Slow-roll Predictions for Inflationary Cosmology

Aspic, written in modern Fortran, computes various observable quantities used in cosmology from definite single field inflationary models. It provides an efficient, extendable, and accurate way of comparing theoretical inflationary predictions with cosmological data and supports many (~70) models of inflation. The Hubble flow functions, observable quantities up to second order in the slow-roll approximation, are in direct correspondence with the spectral index, the tensor-to-scalar ratio and the running of the primordial power spectrum. The ASPIC library also provides the field potential, its first and second derivatives, the energy density at the end of inflation, the energy density at the end of reheating, and the field value (or e-fold value) at which the pivot scale crossed the Hubble radius during inflation. All these quantities are computed in a way which is consistent with the existence of a reheating phase.

[ascl:1806.030] foxi: Forecast Observations and their eXpected Information

Using information theory and Bayesian inference, the foxi Python package computes a suite of expected utilities given futuristic observations in a flexible and user-friendly way. foxi requires a set of n-dim prior samples for each model and one set of n-dim samples from the current data, and can calculate the expected ln-Bayes factor between models, decisiveness between models and its maximum-likelihood averaged equivalent, the decisivity, and the expected Kullback-Leibler divergence (i.e., the expected information gain of the futuristic dataset). The package offers flexible inputs and is designed for all-in-one script calculation or an initial cluster run then local machine post-processing, which should make large jobs quite manageable subject to resources and includes features such as LaTeX tables and plot-making for post-data analysis visuals and convenience of presentation.

[ascl:1806.029] EXO-NAILER: EXOplanet traNsits and rAdIal veLocity fittER

EXO-NAILER (EXOplanet traNsits and rAdIal veLocity fittER) efficiently fits exoplanet transit lightcurves, radial velocities (RVs) or both. The code handles data taken with different instruments. For RVs, a different center-of-mass velocity can be fitted for each instrument to account for offsets between them; if jitter is included, a different jitter term can also fitted for each instrument. For transits, a different photometric jitter can be fitted to each instrument as can different limb-darkening coefficients and different transit depths. In addition to general options that need to be set, EXO-NAILER also requires that photometry and radial velocity options be defined for each instrument.

[ascl:1806.028] PyMUSE: VLT/MUSE data analyzer

PyMUSE analyzes VLT/MUSE datacubes. The package is optimized to extract 1-D spectra of arbitrary spatial regions within the cube and also for producing images using photometric filters and customized masks. It is intended to provide the user the tools required for a complete analysis of a MUSE data set.

[ascl:1806.027] fcmaker: Creating ESO-compliant finding charts for Observing Blocks on p2

fcmaker creates astronomical finding charts for Observing Blocks (OBs) on the p2 web server from the European Southern Observatory (ESO). It automates the creation of ESO-compliant finding charts for Service Mode and/or Visitor Mode OBs at the Very Large Telescope (VLT). The design of the fcmaker finding charts, based on an intimate knowledge of VLT observing procedures, is fine-tuned to best support night time operations. As an automated tool, fcmaker also allows observers to independently check visually, for the first time, the observing sequence coded inside an OB. This includes, for example, the signs of telescope and position angle offsets.

[ascl:1806.026] BWED: Brane-world extra dimensions

Braneworld-extra-dimensions places constraints on the size of the AdS5 radius of curvature within the Randall-Sundrum brane-world model in light of the near-simultaneous detection of the gravitational wave event GW170817 and its optical counterpart, the short γ-ray burst event GRB170817A. The code requires a (supplied) patch to the Montepython cosmological MCMC sampler (ascl:1805.027) to sample the posterior distribution of the 4-dimensional parameter space in VBV17 and obtain constraints on the parameters.

[ascl:1806.025] BRATS: Broadband Radio Astronomy ToolS

BRATS (Broadband Radio Astronomy ToolS) provides tools for the spectral analysis of broad-bandwidth radio data and legacy support for narrowband telescopes. It can fit models of spectral ageing on small spatial scales, offers automatic selection of regions based on user parameters (e.g. signal to noise), and automatic determination of the best-fitting injection index. It includes statistical testing, including Chi-squared, error maps, confidence levels and binning of model fits, and can map spectral index as a function of position. It also provides the ability to reconstruct sources at any frequency for a given model and parameter set, subtract any two FITS images and output residual maps, easily combine and scale FITS images in the image plane, and resize radio maps.

[ascl:1806.024] RMextract: Ionospheric Faraday Rotation calculator

RMextract calculates Ionospheric Faraday Rotation for a given epoch, location and line of sight. This Python code extracts TEC, vTEC, Earthmagnetic field and Rotation Measures from GPS and WMM data for radio interferometry observations.

[ascl:1806.023] Spheral++: Coupled hydrodynamical and gravitational numerical simulations

Spheral++ provides a steerable parallel environment for performing coupled hydrodynamical and gravitational numerical simulations. Hydrodynamics and gravity are modeled using particle-based methods (SPH and N-Body). It uses an Adaptive Smoothed Particle Hydrodynamics (ASPH) algorithm, provides a total energy conserving compatible hydro mode, and performs fluid and solid material modeling and damage and fracture modeling in solids.

[ascl:1806.022] Keras: The Python Deep Learning library

Keras is a high-level neural networks API written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It focuses on enabling fast experimentation.

[ascl:1806.021] LASR: Linear Algorithm for Significance Reduction

LASR removes stellar variability in the light curves of δ-Scuti and similar stars. It subtracts oscillations from a time series by minimizing their statistical significance in frequency space.

[ascl:1806.020] exoinformatics: Compute the entropy of a planetary system's size-ordering

exoinformatics computes the entropy of a planetary system's size ordering using three different entropy methods: tally-scores, integral path, and change points.

[ascl:1806.019] SYGMA: Modeling stellar yields for galactic modeling

SYGMA (Stellar Yields for Galactic Modeling Applications) follows the ejecta of simple stellar populations as a function of time to model the enrichment and feedback from simple stellar populations. It is the basic building block of the galaxy code One-zone Model for the Evolution of GAlaxies (OMEGA, ascl:1806.018) and is part of the NuGrid Python Chemical Evolution Environment (NuPyCEE, ascl:1610.015). Stellar yields of AGB and massive stars are calculated with the same nuclear physics and are provided by the NuGrid collaboration.

[ascl:1806.018] OMEGA: One-zone Model for the Evolution of GAlaxies

OMEGA (One-zone Model for the Evolution of GAlaxies) calculates the global chemical evolution trends of galaxies. From an input star formation history, it uses SYGMA to create as a function of time multiple simple stellar populations with different masses, ages, and initial compositions. OMEGA offers several prescriptions for modeling the star formation efficiency and the evolution of galactic inflows and outflows. OMEGA is part of the NuGrid (ascl:1610.015) chemical evolution package.

[ascl:1806.017] RadFil: Radial density profile builder for interstellar filaments

RadFil is a radial density profile building and fitting tool for interstellar filaments. The software uses an image array and (in most cases) a boolean mask array that delineates the boundary of the filament to build and fit a radial density profile for the filaments.

[ascl:1806.016] DirectDM-py: Dark matter direct detection

DirectDM, written in Python, takes the Wilson coefficients of relativistic operators that couple DM to the SM quarks, leptons, and gauge bosons and matches them onto a non-relativistic Galilean invariant EFT in order to calculate the direct detection scattering rates. A Mathematica implementation of DirectDM is also available (ascl:1806.015).

[ascl:1806.015] DirectDM-mma: Dark matter direct detection

The Mathematica code DirectDM takes the Wilson coefficients of relativistic operators that couple DM to the SM quarks, leptons, and gauge bosons and matches them onto a non-relativistic Galilean invariant EFT in order to calculate the direct detection scattering rates. A Python implementation of DirectDM is also available (ascl:1806.016).

[ascl:1806.014] pile-up: Monte Carlo simulations of star-disk torques on hot Jupiters

The pile-up gnuplot script generates a Monte Carlo simulation with a selectable number of randomized drawings (1000 by default, ~1min on a modern laptop). For each realization, the script calculates the torque acting on a hot Jupiter around a young, solar-type star as a function of the star-planet distance. The total torque on the planet is composed of the disk torque in the type II migration regime (that is, the planet is assumed to have opened up a gap in the disk) and of the stellar tidal torque. The model has four free parameters, which are drawn from a normal or lognormal distribution: (1) the disk's gas surface density at 1 astronomical unit, (2) the magnitude of tidal dissipation within the star, (3) the disk's alpha viscosity parameter, and (4) and the mean molecular weight of the gas in the disk midplane. For each realization, the total torque is screened for a distance at which it becomes zero. If present, then this distance would represent a tidal migration barrier to the planet. In other words, the planet would stop migrating. This location is added to a histogram on top of the main torque-over-distance panel and the realization is counted as one case that contributes to the overall survival rate of hot Jupiters. Finally, the script generates an output file (PDF by default) and prints the hot Jupiter survival rate for the assumed parameterization of the star-planet-disk system.

[ascl:1806.013] SpS: Single-pulse Searcher

The presence of human-made interference mimicking the behavior of celestial radio pulses is a major challenge when searching for radio pulses emitted on millisecond timescales by celestial radio sources such as pulsars and fast radio bursts due to the highly imbalanced samples. Single-pulse Searcher (SpS) reduces the presence of radio interference when processing standard output from radio single-pulse searches to produce diagnostic plots useful for selecting good candidates. The modular software allows modifications for specific search characteristics. LOTAAS Single-pulse Searcher (L-SpS) is an implementation of different features of the software (such as a machine-learning approach) developed for a particular study: the LOFAR Tied-Array All-Sky Survey (LOTAAS).

[ascl:1806.012] WDEC: White Dwarf Evolution Code

WDEC (White Dwarf Evolution Code), written in Fortran, offers a fast and fairly easy way to produce models of white dwarfs. The code evolves hot (~100,000 K) input models down to a chosen effective temperature by relaxing the models to be solutions of the equations of stellar structure. The code can also be used to obtain g-mode oscillation modes for the models.

[ascl:1806.011] P2DFFT: Parallelized technique for measuring galactic spiral arm pitch angles

P2DFFT is a parallelized version of 2DFFT (ascl:1608.015). It isolates and measures the spiral arm pitch angle of galaxies. The code allows direct input of FITS images, offers the option to output inverse Fourier transform FITS images, and generates idealized logarithmic spiral test images of a specified size that have 1 to 6 arms with pitch angles of -75 degrees to 75 degrees​​. Further, it can output Fourier amplitude versus inner radius and pitch angle versus inner radius for each Fourier component (m = 0 to m = 6), and calculates the Fourier amplitude weighted mean pitch angle across m = 1 to m = 6 versus inner radius.

[ascl:1806.010] SpaghettiLens: Web-based gravitational lens modeling tool

SpaghettiLens allows citizen scientists to model gravitational lenses collaboratively; the software should also be easily adaptable to any other, reasonably similar problem. It lets volunteers execute a computer intensive task that cannot be easily executed client side and relies on citizen scientists collaborating. SpaghettiLens makes survey data available to citizen scientists, manages the model configurations generated by the volunteers, stores the resulting model configuration, and delivers the actual model. A model can be shared and discussed with other volunteers and revised, and new child models can be created, resulting in a branching version tree of models that explore different possibilities. Scientists can choose a collection of models; discussion among volunteers and scientists prune the tree to determine which models will receive further analysis.

[ascl:1806.009] GLASS: Parallel, free-form gravitational lens modeling tool and framework

GLASS models strong gravitational lenses. It produces an ensemble of possible models that fit the observed input data and conform to certain constraints specified by the user. GLASS makes heavy use of the numerical routines provided by the numpy and scipy packages as well as the linear programming package GLPK. This latter package, and its Python interface, is provided with GLASS and installs automatically in the GLASS build directory.

[ascl:1806.008] gsf: galactic structure finder

gsf applies Gaussian Mixture Models in the stellar kinematic space of normalized angular momentum and binding energy on NIHAO high resolution galaxies to separate the stars into multiple components. The gsf analysis package assumes that the simulation snapshot has been pre-processed with a halo finder. It is based on pynbody (ascl:1305.002) and the scikit-learnpython package for Machine Learning; after loading, orienting, and transforming a simulation snapshot to physical units, it runs the clustering algorithm and performs the direct N-body gravity force using all the particles in the given halo.

[ascl:1806.007] PyAMOR: AMmOnia data Reduction

PyAMOR models spectra of low level ammonia transitions (between (J,K)=(1,1) and (5,5)) and derives parameters such as intrinsic linewidth, optical depth, and rotation temperature. For low S/N or low spectral resolution data, the code uses cross-correlation between a model and a regridded spectrum (e.g. 10 times smaller channel width) to find the velocity, then fixes it and runs the minimization process. For high S/N data, PyAMOR runs with the velocity as a free parameter.

[ascl:1806.006] QE: Quantum opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization

Quantum ESPRESSO (opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization) is an integrated suite of codes for electronic-structure calculations and materials modeling at the nanoscale. It is based on density-functional theory, plane waves, and pseudopotentials. QE performs ground-state calculations such as self-consistent total energies, forces, stresses and Kohn-Sham orbitals, Car-Parrinello and Born-Oppenheimer molecular dynamics, and quantum transport such as ballistic transport, coherent transport from maximally localized Wannier functions, and Kubo-Greenwood electrical conductivity. It can also determine spectroscopic properties and examine time-dependent density functional perturbations and electronic excitations, and has a wide range of other functions.

[ascl:1806.005] Indri: Pulsar population synthesis toolset

Indri models the population of single (not in binary or hierarchical systems) neutron stars. Given a starting distribution of parameters (birth place, velocity, magnetic field, and period), the code moves a set of stars through the time (by evolving spin period and magnetic field) and the space (by propagating through the Galactic potential). Upon completion of the evolution, a set of observables is computed (radio flux, position, dispersion measure) and compared with a radio survey such as the Parkes Multibeam Survey. The models' parameters are optimised by using the Markov Chain Monte Carlo technique.

[ascl:1806.004] WiseView: Visualizing motion and variability of faint WISE sources

WiseView renders image blinks of Wide-field Infrared Survey Explorer (WISE) coadds spanning a multi-year time baseline in a browser. The software allows for easy visual identification of motion and variability for sources far beyond the single-frame detection limit, a key threshold not surmounted by many studies. WiseView transparently gathers small image cutouts drawn from many terabytes of unWISE coadds, facilitating access to this large and unique dataset. Users need only input the coordinates of interest and can interactively tune parameters including the image stretch, colormap and blink rate. WiseView was developed in the context of the Backyard Worlds: Planet 9 citizen science project, and has enabled hundreds of brown dwarf candidate discoveries by citizen scientists and professional astronomers.

[ascl:1806.003] pyZELDA: Python code for Zernike wavefront sensors

pyZELDA analyzes data from Zernike wavefront sensors dedicated to high-contrast imaging applications. This modular software was originally designed to analyze data from the ZELDA wavefront sensor prototype installed in VLT/SPHERE; simple configuration files allow it to be extended to support several other instruments and testbeds. pyZELDA also includes simple simulation tools to measure the theoretical sensitivity of a sensor and to compare it to other sensors.

[ascl:1806.002] BHDD: Primordial black hole binaries code

BHDD (BlackHolesDarkDress) simulates primordial black hole (PBH) binaries that are clothed in dark matter (DM) halos. The software uses N-body simulations and analytical estimates to follow the evolution of PBH binaries formed in the early Universe.

[ascl:1806.001] feets: feATURE eXTRACTOR FOR tIME sERIES

feets characterizes and analyzes light-curves from astronomical photometric databases for modelling, classification, data cleaning, outlier detection and data analysis. It uses machine learning algorithms to determine the numerical descriptors that characterize and distinguish the different variability classes of light-curves; these range from basic statistical measures such as the mean or standard deviation to complex time-series characteristics such as the autocorrelation function. The library is not restricted to the astronomical field and could also be applied to any kind of time series. This project is a derivative work of FATS (ascl:1711.017).

[ascl:1805.032] PyCCF: Python Cross Correlation Function for reverberation mapping studies

PyCCF emulates a Fortran program written by B. Peterson for use with reverberation mapping. The code cross correlates two light curves that are unevenly sampled using linear interpolation and measures the peak and centroid of the cross-correlation function. In addition, it is possible to run Monto Carlo iterations using flux randomization and random subset selection (RSS) to produce cross-correlation centroid distributions to estimate the uncertainties in the cross correlation results.

[ascl:1805.031] CubiCal: Suite for fast radio interferometric calibration

CubiCal implements several accelerated gain solvers which exploit complex optimization for fast radio interferometric gain calibration. The code can be used for both direction-independent and direction-dependent self-calibration. CubiCal is implemented in Python and Cython, and multiprocessing is fully supported.

A successor to CubiCal, QuartiCal (ascl:2305.006), is available.

[ascl:1805.030] PyCBC: Gravitational-wave data analysis toolkit

PyCBC analyzes data from gravitational-wave laser interferometer detectors, finds signals, and studies their parameters. It contains algorithms that can detect coalescing compact binaries and measure the astrophysical parameters of detected sources. PyCBC was used in the first direct detection of gravitational waves by LIGO and is used in the ongoing analysis of LIGO and Virgo data.

[ascl:1805.029] DeepMoon: Convolutional neural network trainer to identify moon craters

DeepMoon trains a convolutional neural net using data derived from a global digital elevation map (DEM) and catalog of craters to recognize craters on the Moon. The TensorFlow-based pipeline code is divided into three parts. The first generates a set images of the Moon randomly cropped from the DEM, with corresponding crater positions and radii. The second trains a convnet using this data, and the third validates the convnet's predictions.

[ascl:1805.028] SP_Ace: Stellar Parameters And Chemical abundances Estimator

SP_Ace (Stellar Parameters And Chemical abundances Estimator) estimates the stellar parameters Teff, log g, [M/H], and elemental abundances. It employs 1D stellar atmosphere models in Local Thermodynamic Equilibrium (LTE). The code is highly automated and suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). A web service for calculating these values with the software is also available.

[ascl:1805.027] MontePython 3: Parameter inference code for cosmology

MontePython 3 provides numerous ways to explore parameter space using Monte Carlo Markov Chain (MCMC) sampling, including Metropolis-Hastings, Nested Sampling, Cosmo Hammer, and a Fisher sampling method. This improved version of the Monte Python (ascl:1307.002) parameter inference code for cosmology offers new ingredients that improve the performance of Metropolis-Hastings sampling, speeding up convergence and offering significant time improvement in difficult runs. Additional likelihoods and plotting options are available, as are post-processing algorithms such as Importance Sampling and Adding Derived Parameter.

[ascl:1805.026] PySE: Python Source Extractor for radio astronomical images

PySE finds and measures sources in radio telescope images. It is run with several options, such as the detection threshold (a multiple of the local noise), grid size, and the forced clean beam fit, followed by a list of input image files in standard FITS or CASA format. From these, PySe provides a list of found sources; information such as the calculated background image, source list in different formats (e.g. text, region files importable in DS9), and other data may be saved. PySe can be integrated into a pipeline; it was originally written as part of the LOFAR Transient Detection Pipeline (TraP, ascl:1412.011).

[ascl:1805.025] GLACiAR: GaLAxy survey Completeness AlgoRithm

GLACiAR (GaLAxy survey Completeness AlgoRithm) estimates the completeness and selection functions in galaxy surveys. Tailored for multiband imaging surveys aimed at searching for high-redshift galaxies through the Lyman Break technique, the code can nevertheless be applied broadly. GLACiAR generates artificial galaxies that follow Sérsic profiles with different indexes and with customizable size, redshift and spectral energy distribution properties, adds them to input images, and measures the recovery rate.

[ascl:1805.024] ASTROPOP: ASTROnomical Polarimetry and Photometry pipeline

AstroPoP reduces almost any CCD photometry and image polarimetry data. For photometry reduction, the code performs source finding, aperture and PSF photometry, astrometry calibration using different automated and non-automated methods and automated source identification and magnitude calibration based on online and local catalogs. For polarimetry, the code resolves linear and circular Stokes parameters produced by image beam splitter or polarizer polarimeters. In addition to the modular functions, ready-to-use pipelines based in configuration files and header keys are also provided with the code. AstroPOP was initially developed to reduce the IAGPOL polarimeter data installed at Observatório Pico dos Dias (Brazil).

[ascl:1805.023] PROM7: 1D modeler of solar filaments or prominences

PROM7 is an update of PROM4 (ascl:1306.004) and computes simple models of solar prominences and filaments using Partial Radiative Distribution (PRD). The models consist of plane-parallel slabs standing vertically above the solar surface. Each model is defined by 5 parameters: temperature, density, geometrical thickness, microturbulent velocity and height above the solar surface. It solves the equations of radiative transfer, statistical equilibrium, ionization and pressure equilibria, and computes electron and hydrogen level population and hydrogen line profiles. Moreover, the code treats calcium atom which is reduced to 3 ionization states (Ca I, Ca II, CA III). Ca II ion has 5 levels which are useful for computing 2 resonance lines (H and K) and infrared triplet (to 8500 A).

Would you like to view a random code?