ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:2112.016] TESSreduce: Transient focused reduction for TESS data

TESSreduce builds on lightkurve (ascl:1812.013) to reduce TESS data while preserving transient signals. It takes a TPF as input (supplied or constructed with TESScut (https://mast.stsci.edu/tesscut/). The background subtraction accounts for the smooth background and detector straps. In addition to background subtraction, TESSreduce also aligns images, performs difference imaging, detects transient events, and by using PS1 data, can calibrate TESS counts to physical flux or AB magnitudes.

[ascl:2112.015] SAPHIRES: Stellar Analysis in Python for HIgh REsolution Spectroscopy

The SAPHIRES (Stellar Analysis in Python for HIgh REsolution Spectroscopy) suite contains functions for analyzing high-resolution stellar spectra. Though most of its functionality is aimed at deriving radial velocities (RVs), the suite also includes capabilities to measure projected rotational velocities (vsini) and determine spectroscopic flux ratios in double-lined binary systems (SB2s). These measurements are made primarily by computing spectral-line broadening functions. More traditional techniques such as Fourier cross-correlation, and two-dimensional cross-correlation (TODCOR) are also included.

[ascl:2112.014] Qwind3: Modeling UV line-driven winds originating from accretion discs

Qwind3 models radiation-driven winds originating from accretion discs. An improvement over Qwind (ascl:2112.013), it derives the wind initial conditions and has significantly improved ray-tracing to calculate the wind absorption self consistently given the extended nature of the UV emission. It also corrects the radiation flux for relativistic effects, and assesses the impact of this on the wind velocity.

[ascl:2112.013] Qwind: Non-hydrodynamical model for AGN line-drive winds

Qwind simulates the launching and acceleration phase of line-driven winds in the context of AGN accretion discs. The wind is modeled as a set of streamlines originating on the surface of the AGN accretion disc, and evolved following their equation of motion, given by the balance between radiative and gravitational force.

[ascl:2112.012] DiracVsMajorana: Statistical discrimination of sub-GeV Majorana and Dirac dark matter

DiracVsMajorana determines the statistical significance with which a successful electron scattering experiment could reject the Majorana hypothesis -- that dark matter (DM) particles are their own anti-particles, a so-called Majorana fermion -- using the likelihood ratio test in favor of the hypothesis of Dirac DM. The code assumes that the DM interacts with the photon via higher-order electromagnetic moments. It requires tabulated atomic response functions, which can be computed with DarkARC (ascl:2112.011), to compute ionization spectra and predictions for signal event rates.

[ascl:2112.011] DarkARC: Dark Matter-induced Atomic Response Code

DarkARC computes and tabulates atomic response functions for direct sub-GeV dark matter (DM) searches. The tabulation of the atomic response functions is separated into two steps: 1.) the computation and tabulation of three radial integrals, and 2.) their combination into the response function tables. The computations are performed in parallel using the multiprocessing library.

[ascl:2112.010] WIMpy_NREFT: Dark Matter direct detection rates detector

WIMpy_NREFT (also known as WIMpy) calculates Dark Matter-Nucleus scattering rates in the framework of non-relativistic effective field theory (NREFT). It currently supports operators O1 to O11, as well as millicharged and magnetic dipole Dark Matter. It can be used to generate spectra for Xenon, Argon, Carbon, Germanium, Iodine and Fluorine targets. WIMpy_NREFT also includes functionality to calculate directional recoil spectra, as well as signals from coherent neutrino-nucleus scattering (including fluxes from the Sun, atmosphere and diffuse supernovae).

[ascl:2112.009] AsteroGaP: Asteroid Gaussian Processes

The Bayesian-based Gaussian Process model AsteroGaP (Asteroid Gaussian Processes) fits sparsely-sampled asteroid light curves. By utilizing a more flexible Gaussian Process framework for modeling asteroid light curves, it is able to represent light curves in a periodic but non-sinusoidal manner.

[ascl:2112.008] MISTTBORN: MCMC Interface for Synthesis of Transits, Tomography, Binaries, and Others of a Relevant Nature

MISTTBORN can simultaneously fit multiple types of data within an MCMC framework. It handles photometric transit/eclipse, radial velocity, Doppler tomographic, or individual line profile data, for an arbitrary number of datasets in an arbitrary number of photometric bands for an arbitrary number of planets and allows the use of Gaussian process regression to handle correlated noise in photometric or Doppler tomographic data. The code can include dilution due to a nearby unresolved star in the transit fits, and an additional line component due to another star or scattered sun/moonlight in Doppler tomographic or line profile fits. It can also be used for eclipsing binary fits, including a secondary eclipse and radial velocities for both stars. MISTTBORN produces diagnostic plots showing the data and best-fit models and the associated code MISTTBORNPLOTTER produces publication-quality plots and tables.

[ascl:2112.007] NeutrinoFog: Neutrino fog and floor for direct dark matter searches

NeutrinoFog calculates the neutrino floor based on the derivative of a hypothetical experimental discovery limit as a function of exposure, and leads to a neutrino floor that is only influenced by the systematic uncertainties on the neutrino flux normalizations.

[ascl:2112.006] STDPipe: Simple Transient Detection Pipeline

STDPipe is a set of Python routines for astrometry, photometry and transient detection related tasks, intended for quick and easy implementation of custom pipelines, as well as for interactive data analysis. It is implemented as a library of routines covering most common tasks and operates on standard Python objects, including NumPy arrays for images and Astropy (ascl:1304.002) tables for catalogs and object lists. The pipeline does not re-implement code already implemented in other Python packages; instead, it transparently wraps external codes, such as SExtractor (ascl:1010.064), SCAMP (ascl:1010.063), PSFEx (ascl:1301.001), HOTPANTS (ascl:1504.004), and Astrometry.Net (ascl:1208.001), that do not have their own Python interfaces. STDPipe operates on temporary files, keeping nothing after the run unless something is explicitly requested.

[ascl:2112.005] Interferopy: Analyzing datacubes from radio-to-submm observations

Interferopy analyzes datacubes from radio-to-submm observations. It provides a homogenous interface to common tasks, making it easy to go from reduced datacubes to essential measurements and publication-quality plots. Its core functionalities are widely applicable and have been successfully tested on (but are not limited to) ALMA, NOEMA, VLA and JCMT data.

[ascl:2112.004] Defringe: Fringe artifact correction

Defringe corrects fringe artifacts in near-infrared astronomical images taken with old generation CCD cameras. It essentially solves a robust PCA problem, masking out astrophysical sources, and models the contaminants as a linear superposition of (unknown) modes, with (unknown) projection coefficients. The problem uses nuclear norm regularization, which acts as a convex proxy for rank minimization. The code is written in python, using cupy for GPU acceleration, but will also work on CPUs.

[ascl:2112.003] SCORPIO: Sky COllector of galaxy Pairs and Image Output

The Python package SCORPIO retrieves images and associated data of galaxy pairs based on their position, facilitating visual analysis and data collation of multiple archetypal systems. The code ingests information from SDSS, 2MASS and WISE surveys based on the available bands and is designed for studies of galaxy pairs as natural laboratories of multiple astrophysical phenomena for, among other things, tidal force deformation of galaxies, pressure gradient induced star formation regions, and morphological transformation.

[ascl:2112.002] QUESTFIT: Fitter for mid-infrared galaxy spectra

QUESTFIT fit the Spitzer mid-infrared spectra of the QUEST (Quasar ULIRG and Evolution STudy) sample. It uses two PAH templates atop an extincted and absorbed continuum model to fit the mid-IR spectra of galaxies that are heavily-absorbed. It also fits AGN with silicate models. The current version of QUESTFIT is optimized for processing spectra from the CASSIS (Combined Atlas of Sources with Spitzer IRS Spectra) portal to produce PAH fluxes for heavily absorbed sources.

[ascl:2112.001] pycelp: Python package for Coronal Emission Line Polarization

pyCELP (aka "pi-KELP") calculates Coronal Emission Line Polarization. It forward synthesizes the polarized emission of ionized atoms formed in the solar corona and calculates the atomic density matrix elements for a single ion under coronal equilibrium conditions and excited by a prescribed radiation field and thermal collisions. pyCELP solves a set of statistical equilibrium equations in the spherical statistical tensor representation for a multi-level atom for the no-coherence case. This approximation is useful in the case of forbidden line emission by visible and infrared lines, such as Fe XIII 1074.7 nm and Si X 3934 nm.

[submitted] DIPol-UF: Remote control software for DIPol-UF polarimeter

DIPol-UF provides tools for remote control and operation of DIPol-UF, an optical (BVR) imaging CCD polarimeter. The project contains libraries that handle low-level interoperation with ANDOR SDK (provided by the CCD manufacturer), communication with stepper motors (which perform plate rotations), FITS file serialization/deserialization, over-network communication between different system components (each CCD is connected to a standalone PC), as well as provide GUI (built with WPF).

[submitted] forecaster-plus

An internally overhauled but fundamentally similar version of Forecaster by Jingjing Chen and David Kipping, originally presented in arXiv:1603.08614 and hosted at https://github.com/chenjj2/forecaster.

The model itself has not changed- no new data was included and the hyperparameter file was not regenerated. All functions were rewritten to take advantage of Numpy vectorization and some additional user features were added. Now able to be installed via pip.

[submitted] Caustic Mass Estimator for Galaxy Clusters

The caustic technique is a powerful method to infer cluster mass profiles to clustrocentric distances well beyond the virial radius. It relies in the measure of the escape velocity of the sistem using only galaxy redshift information. This method was introduced by Diaferio & Geller (1997) and Diaferio (1999). This code allows the caustic mass estimation for galaxy clusters, as well as outlier identification as a side effect. However, a pre-cleaning of interlopers is recommended, using e.g., the shifting-gapper technique.

[ascl:2111.018] GWToolbox: Gravitational wave observation simulator

GWToolbox simulates gravitational wave observations for various detectors. The package is composed of three modules, namely the ground-based detectors (and their targets), the space-borne detectors (and their targets) and pulsar timing arrays (PTA). These three modules work independently and have different dependencies on other packages and libraries; failed dependencies met in one module will not influence the usage of another module. GWToolbox can accessed with a web interface (gw-universe.org) or as a python package (https://bitbucket.org/radboudradiolab/gwtoolbox).

[ascl:2111.017] pySYD: Measuring global asteroseismic parameters

pySYD detects solar-like oscillations and measures global asteroseismic parameters. The code is a python-based implementation of the IDL-based SYD pipeline by Huber et al. (2009), which was extensively used to measure asteroseismic parameters for Kepler stars, and adapts the well-tested methodology from SYD and also improves these existing analyses. It also provides additional capabilities, including an automated best-fit background model selection, parallel processing, the ability to samples for further analyses, and an accessible and command-line friendly interface. PySYD provides best-fit values and uncertainties for the granulation background, frequency of maximum power, large frequency separation, and mean oscillation amplitudes.

[ascl:2111.016] SteParSyn: Stellar atmospheric parameters using the spectral synthesis method

SteParSyn infers stellar atmospheric parameters (Teff, log g, [Fe/H], and Vbroad) of FGKM-type stars using the spectral synthesis method. The code uses the MCMC sampler emcee (ascl:1303.002) in conjunction with an spectral emulator that can interpolate spectra down to a precision < 1%. A grid of synthetic spectra that allow the user to characterize the spectra of FGKM-type stars with parameters in the range of 3500 to 7000 K in Teff, 0.0 to 5.5 dex in log g, and −2.0 to 1.0 dex in [Fe/H] is also provided.

[ascl:2111.015] gCMCRT: 3D Monte Carlo Radiative Transfer for exoplanet atmospheres using GPUs

gCMCRT globally processes 3D atmospheric data, and as a fully 3D model, it avoids the biases and assumptions present when using 1D models to process 3D structures. It is well suited to performing the post-processing of large parameter GCM model grids, and provides simple pipelines that convert the 3D GCM structures from many well used GCMs in the community to the gCMCRT format, interpolating chemical abundances (if needed) and performing the required spectra calculation. The high-resolution spectra modes of gCMCRT provide an additional highly useful capability for 3D modellers to directly compare output to high-resolution spectral data.

[ascl:2111.014] UniMAP: Unicorn Multi-window Anomaly Detection Pipeline

The data analysis UniMAP (Unicorn Multi-window Anomaly Detection Pipeline) leverages the Temporal Outlier Factor (TOF) method to find anomalies in LVC data. The pipeline requires a target detector and a start and stop GPS time describing a time interval to analyze, and has three outputs: 1.) an array of GPS times corresponding to TOF detections; 2.) a long q-transform of the entire data interval with visualizations of the TOF detections in the time series; and 3.) q-transforms of the data windows that triggered TOF detections.

[ascl:2111.013] Astrosat: Satellite transit calculator

Astrosat calculates which satellites can be seen by a given observer in a given field of view at a given observation time and observation duration. This includes the geometry of the satellite and observer but also estimates the expected apparent brightness of the satellite to aid astronomers in assessing the impact on their observations.

[ascl:2111.012] flatstar: Make 2d intensity maps of limb-darkened stars

flatstar is an open-source Python tool for drawing stellar disks as numpy.ndarray objects with scientifically-rigorous limb darkening. Each pixel has an accurate fractional intensity in relation to the total stellar intensity of 1.0. It is ideal for ray-tracing simulations of stars and planetary transits. The code is fast, has the most well-known limb-darkening laws, including linear, quadratic, square-root, logarithmic, and exponential, and allows the user to implement custom limb-darkening laws. flatstar also offers supersampling for situations where both coarse arrays and precision in stellar disk intensity (i.e., no hard pixel boundaries) is desired, and upscaling to save on computation time when high-resolution intensity maps are needed, though there is some precision loss in intensities.

[ascl:2111.011] p-winds: Python implementation of Parker wind models for planetary atmospheres

p-winds produces simplified, 1-D models of the upper atmosphere of a planet and performs radiative transfer to calculate observable spectral signatures. The scalable implementation of 1D models allows for atmospheric retrievals to calculate atmospheric escape rates and temperatures. In addition, the modular implementation allows for a smooth plugging-in of more complex descriptions to forward model their corresponding spectral signatures (e.g., self-consistent or 3D models).

[ascl:2111.010] Nii: Multidimensional posterior distributions framework

Nii implements an automatic parallel tempering Markov chain Monte Carlo (APT-MCMC) framework for sampling multidimensional posterior distributions and provides an observation simulation platform for the differential astrometric measurement of exoplanets. Although this code specifically focuses on the orbital parameter retrieval problem of differential astrometry, Nii can be applied to other scientific problems with different posterior distributions and offers many control parameters in the APT part to facilitate the adjustment of the MCMC sampling strategy; these include the number of parallel chains, the β values of different chains, the dynamic range of the sampling step sizes, and frequency of adjusting the step sizes.

[ascl:2111.009] CoLoRe: Cosmological Lofty Realization

CoLoRe (Cosmological Lofty Realization) generates fast mock realizations of a given galaxy sample using a lognormal model or LPT for the matter density. Tt can simulate a variety of cosmological tracers, including photometric and spectroscopic galaxies, weak lensing, and intensity mapping. CoLoRe is a parallel C code, and its behavior is controlled primarily by the input param file.

[ascl:2111.008] COCOPLOT: COlor COllapsed PLOTting software

The COCOPLOT (COlor COllapsed PLOTting) quick-look and context image code conveys spectral profile information from all of the spatial pixels in a 3D datacube as a single image using color. It can also identify and expose temporal behavior and display and highlight solar features. COCOPLOT thus aids in identifying regions of interest quickly. The software is available in Python and IDL, and can be used as a standalone package or integrated into other software.

[ascl:2111.007] LEGWORK: LISA Evolution and Gravitational Wave ORbit Kit

LEGWORK (LISA Evolution and Gravitational Wave ORbit Kit) is a simple package for gravitational wave calculations. It evolves binaries and computes signal-to-noise ratios for binary systems potentially observable with LISA; it also visualizes the results. LEGWORK can also compare different detector sensitivity curves, compute the horizon distance for a collection of sources, and tracks signal-to-noise evolution over time.

[ascl:2111.006] prose: FITS images processing pipeline

prose provides pipelines for performing common tasks, such as automated calibration, reduction and photometry, and makes building custom pipelines easy. The prose framework is instrument-agnostic and makes constructing pipelines easy. It offers a wide range of implemented building blocks and also allows users to define their own.

[ascl:2111.005] CEvNS: Calculate Coherent Elastic Neutrino-Nucleus Scattering cross sections and recoil spectra

CEvNS calculates Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) cross sections and recoil spectra. It includes (among other things) the Standard Model contribution to the CEvNS cross section, along with the contribution from Simplified Models with new vector or scalar mediators. It also covers neutrino magnetic moments and non-standard contact neutrino interactions (NSI).

[ascl:2111.004] NLopt: Nonlinear optimization library

The library NLopt performs nonlinear local and global optimization for functions with and without gradient information. It provides a simple, unified interface and wraps many algorithms for global and local, constrained or unconstrained, optimization, and provides interfaces for many other languages, including C++, Fortran, Python, Matlab or GNU Octave, OCaml, GNU Guile, GNU R, Lua, Rust, and Julia.

[ascl:2111.003] PSwarm: Global optimization solver for bound and linear constrained problems

PSwarm is a global optimization solver for bound and linear constrained problems (for which the derivatives of the objective function are unavailable, inaccurate or expensive). The algorithm combines pattern search and particle swarm. Basically, it applies a directional direct search in the poll step (coordinate search in the pure simple bounds case) and particle swarm in the search step. PSwarm makes no use of derivative information of the objective function. It has been shown to be efficient and robust for smooth and nonsmooth problems, both in serial and in parallel.

[ascl:2111.002] JAX: Autograd and XLA

JAX brings Autograd and XLA together for high-performance machine learning research. It can automatically differentiate native Python and NumPy functions. The code can differentiate through loops, branches, recursion, and closures, and it can take derivatives of derivatives of derivatives. JAX supports reverse-mode differentiation (a.k.a. backpropagation) via grad as well as forward-mode differentiation, and the two can be composed arbitrarily to any order.

[ascl:2111.001] astroDDPM: Realistic galaxy simulation via score-based generative models

astroDDPM uses a denoising diffusion probabilistic model (DDPM) to synthesize galaxies that are qualitatively and physically indistinguishable from the real thing. The similarity of the synthesized images to real galaxies from the Photometry and Rotation curve OBservations from Extragalactic Surveys (PROBES) sample and from the Sloan Digital Sky Survey is quantified using the Fréchet Inception Distance to test for subjective and morphological similarity. The emergent physical properties (such as total magnitude, color, and half light radius) of a ground truth parent and synthesized child dataset are also compared to generate a Synthetic Galaxy Distance metric. The DDPM approach produces sharper and more realistic images than other generative methods such as Adversarial Networks (with the downside of more costly inference), and could be used to produce large samples of synthetic observations tailored to a specific imaging survey. Potential uses of the DDPM include accurate in-painting of occluded data, such as satellite trails, and domain transfer, where new input images can be processed to mimic the properties of the DDPM training set.

[submitted] Data modelling approaches to astronomical data - Mapping large spectral line data cubes to dimensional data models

As a new generation of large-scale telescopes are expected to produce single data products in the range of hundreds of GBs to multiple TBs, different approaches to I/O efficient data interaction and extraction need to be investigated and made available to researchers. This will become increasingly important as the downloading and distribution of TB scale data products will become unsustainable, and researchers will have to take their processing analysis to the data. We present a methodology to extract 3 dimensional spatial-spectral data from dimensionally modelled tables in Parquet format on a Hadoop system. The data is loaded into the Parquet tables from FITS cube files using a dedicated process. We compare the performance of extracting data using the Apache Spark parallel compute framework on top of the Parquet-Hadoop ecosystem with data extraction from the original source files on a shared file system. We have found that the Spark-Parquet-Hadoop solution provides significant performance benefits, particularly in a multi user environment. We present a detailed analysis of the single and multi-user experiments conducted and also discuss the benefits and limitations of the platform used for this study.

[ascl:2110.022] XookSuut: Model circular and noncircular flows on 2D velocity maps

XookSuut models circular and noncircular flows on resolved velocity maps. The code performs nonparametric fits to derive kinematic models without assuming analytical functions on the different velocity components of the models. It recovers the circular and radial motions in galaxies in dynamical equilibrium and can derive the noncircular motions induced by oval distortions, such as that produced by stellar bars. XookSuut explores the full space of parameters on a N-dimensional space to derive their mean values; this combined method efficiently recovers the constant parameters and the different kinematic components.

[ascl:2110.021] PT-REX: Point-to-point TRend EXtractor

PT-REX (Point-to-point TRend EXtractor) performs ptp analysis on every kind of extended radio source. The code exploits a set of different fitting methods to allow study of the spatial correlation, and is structured in a series of tasks to handle the individual steps of a ptp analysis independently, from defining a grid to sample the radio emission to accurately analyzing the data using several statistical methods. A major feature of PT-REX is the use of an automatic, randomly-generated sampling routine to combine several SMptp analysis into a Monte Carlo ptp (MCptp) analysis. By repeating several cycles of SMptp analysis with randomly-generated grids, PT-REX produces a distribution of values of k that describe its parameter space, thus allowing a reliably estimate of the trend (and its uncertainties).

[ascl:2110.020] BCES: Linear regression for data with measurement errors and intrinsic scatter

BCES performs robust linear regression on (X,Y) data points where both X and Y have measurement errors. The fitting method is the bivariate correlated errors and intrinsic scatter (BCES). Some of the advantages of BCES regression compared to ordinary least squares fitting are that it allows for measurement errors on both variables and permits the measurement errors for the two variables to be dependent. Further it permits the magnitudes of the measurement errors to depend on the measurements and other lines such as the bisector and the orthogonal regression can be constructed.

[ascl:2110.019] SELCIE: Screening Equations Linearly Constructed and Iteratively Evaluated

SELCIE (Screening Equations Linearly Constructed and Iteratively Evaluated) investigates the chameleon model that arises from screening a scalar field introduced in some modified gravity models that is coupled to matter. The code provides tools to construct user defined meshes by utilizing the GMSH mesh generation software. These tools include constructing shapes whose boundaries are defined by some function or by constructing it out of basis shapes such as circles, cones and cylinders. The mesh can also be separated into subdomains, each of which having its own refinement parameters. These meshes can then be converted into a format that is compatible with the finite element software FEniCS. SELCIE uses FEniCS (ascl:2110.018) with a nonlinear solving method (Picard or Newton method) to solve the chameleon equation of motion for some parameters and density distribution. These density distributions are constructed by having the density profile of each subdomain being set by a user defined function, allowing for extremely customizable setups that are easy to implement.

[ascl:2110.018] FEniCS: Computing platform for solving partial differential equations

FEniCS solves partial differential equations (PDEs) and enables users to quickly translate scientific models into efficient finite element code. With the high-level Python and C++ interfaces to FEniCS, it is easy to get started, but FEniCS offers also powerful capabilities for more experienced programmers. FEniCS runs on a multitude of platforms ranging from laptops to high-performance clusters, and each component of the FEniCS platform has been fundamentally designed for parallel processing. This framework allows for rapid prototyping of finite element formulations and solvers on laptops and workstations, and the same code may then be deployed on large high-performance computers.

[ascl:2110.017] ThERESA: 3D Exoplanet Cartography

ThERESA retrieves three-dimensional maps of exoplanets. The code constructs 2-dimensional maps for each light given light curve, places those maps vertically in an atmosphere, and runs radiative transfer to calculate emission from the planet over a latitude/longitude grid. ThERESA then integrates over the grid (combined with the visibility function) to generate light curves. These light curves are compared against the input light curves behind MCMC to explore parameter space.

[ascl:2110.016] pyro: Deep universal probabilistic programming with Python and PyTorch

Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. It can represent any computable probability distribution and scales to large data sets with little overhead compared to hand-written code. The library is implemented with a small core of powerful, composable abstractions. Its high-level abstractions express generative and inference models, but also allows experts to customize inference.

[ascl:2110.015] Flux: Julia machine learning library

Flux provides an elegant approach to machine learning. Written in Julia, it provides lightweight abstractions on top of Julia's native GPU and AD support. It has many useful tools built in, but also lets you use the full power of the Julia language where you need it. Flux has relatively few explicit APIs for features like regularization or embeddings; instead, writing down the mathematical form works and is fast. The package works well with Julia libraries from data frames and images to differential equation solvers, so building complex data processing pipelines that integrate Flux models is straightforward.

[ascl:2110.014] swordfish: Information yield of counting experiments

Swordfish studies the information yield of counting experiments. It implements at its core a rather general version of a Poisson point process with background uncertainties described by a Gaussian random field, and provides easy access to its information geometrical properties. Based on this information, a number of common and less common tasks can be performed. Swordfish allows quick and accurate forecasts of experimental sensitivities without time-intensive Monte Carlos, mock data generation and likelihood maximization. It can:

- calculate the expected upper limit or discovery reach of an instrument;
- derive expected confidence contours for parameter reconstruction;
- visualize confidence contours as well as the underlying information metric field;
- calculate the information flux, an effective signal-to-noise ratio that accounts for background systematics and component degeneracies; and
- calculate the Euclideanized signal which approximately maps the signal to a new vector which can be used to calculate the Euclidean distance between points.

[ascl:2110.013] Nauyaca: N-body approach for determining planetary masses and orbital elements

Nauyaca infers planetary masses and orbits from mid-transit times fitting. The code requires transit ephemeris per planet and stellar mass and radius, and uses minimization routines and a Markov chain Monte Carlo method to find planet parameters that best reproduce the transit times based on numerical simulations. The code package provides customized plotting tools for analyzing the results.

[ascl:2110.012] GGCHEMPY: Gas-Grain CHEMical code for interstellar medium in Python3

GGCHEMPY is efficient for building 1-D, 2-D and 3-D simulations of physical parameters of Planck galactic cold clumps; it provides a graphical user interface and can also be invoked by a Python script. The code initializes the reaction network using input parameters, and then computes the reaction rate coefficients for all reactions. It uses the backward-differentiation formulas method to solve the ordinary differential equations for the integration. The modeled results are saved and can be directly passed to a Python dictionary for analysis and plotting.

[ascl:2110.011] GRASS: GRanulation and Spectrum Simulator

The Julia library GRASS produces realistic stellar spectra with time-variable granulation signatures. It is based on real observations of the Sun, and does not rely on magnetohydrodynamic simulations to produce its spectra. GRASS can also compute bisectors for absorption lines or CCF profiles, and provides two methods for calculating bisectors.

Would you like to view a random code?