Results 2301-2350 of 3598 (3503 ASCL, 95 submitted)
The parallel one-dimensional moving-mesh hydrodynamics code RT1D reproduces the multidimensional dynamics from Rayleigh-Taylor instability in supernova remnants.
SOPIE (Sequential Off-Pulse Interval Estimation) provides functions to non-parametrically estimate the off-pulse interval of a source function originating from a pulsar. The technique is based on a sequential application of P-values obtained from goodness-of-fit tests for the uniform distribution, such as the Kolmogorov-Smirnov, Cramér-von Mises, Anderson-Darling and Rayleigh goodness-of-fit tests.
The fully parallelized and vectorized software package Kālī models time series data using various stochastic processes such as continuous-time ARMA (C-ARMA) processes and uses Bayesian Markov Chain Monte-Carlo (MCMC) for inferencing a stochastic light curve. Kālī is written in c++ with Python language bindings for ease of use. Kālī is named jointly after the Hindu goddess of time, change, and power and also as an acronym for KArma LIbrary.
ZASPE (Zonal Atmospheric Stellar Parameters Estimator) computes the atmospheric stellar parameters (Teff, log(g), [Fe/H] and vsin(i)) from echelle spectra via least squares minimization with a pre-computed library of synthetic spectra. The minimization is performed only in the most sensitive spectral zones to changes in the atmospheric parameters. The uncertainities and covariances computed by ZASPE assume that the principal source of error is the systematic missmatch between the observed spectrum and the sythetic one that produces the best fit. ZASPE requires a grid of synthetic spectra and can use any pre-computed library minor modifications.
HfS fits the hyperfine structure of spectral lines, with multiple velocity components. The HfS_nh3 procedures included in HfS fit simultaneously the hyperfine structure of the NH3 (J,K)= (1,1) and (2,2) inversion transitions, and perform a standard analysis to derive the NH3 column density, rotational temperature Trot, and kinetic temperature Tk. HfS uses a Monte Carlo approach for fitting the line parameters, with special attention to the derivation of the parameter uncertainties. HfS includes procedures that make use of parallel computing for fitting spectra from a data cube.
PICsar simulates the magnetosphere of an aligned axisymmetric pulsar and can be used to simulate other arbitrary electromagnetics problems in axisymmetry. Written in Fortran, this special relativistic, electromagnetic, charge conservative particle in cell code features stretchable body-fitted coordinates that follow the surface of a sphere, simplifying the application of boundary conditions in the case of the aligned pulsar; a radiation absorbing outer boundary, which allows a steady state to be set up dynamically and maintained indefinitely from transient initial conditions; and algorithms for injection of charged particles into the simulation domain. PICsar is parallelized using MPI and has been used on research problems with ~1000 CPUs.
K2PS is an Oxford K2 planet search pipeline. Written in Python, it searches for transit-like signals from the k2sc-detrended light curves.
BLS (Box-fitting Least Squares) is a box-fitting algorithm that analyzes stellar photometric time series to search for periodic transits of extrasolar planets. It searches for signals characterized by a periodic alternation between two discrete levels, with much less time spent at the lower level.
JUDE (Jayant's UVIT Data Explorer) converts the Level 1 data (FITS binary table) from the Ultraviolet Imaging Telescope (UVIT) on ASTROSAT into three output files: a photon event list as a function of frame number (FITS binary table); a FITS image file with two extensions; and a PNG file created from the FITS image file with an automated scaling.
Cholla (Computational Hydrodynamics On ParaLLel Architectures) models the Euler equations on a static mesh and evolves the fluid properties of thousands of cells simultaneously using GPUs. It can update over ten million cells per GPU-second while using an exact Riemann solver and PPM reconstruction, allowing computation of astrophysical simulations with physically interesting grid resolutions (>256^3) on a single device; calculations can be extended onto multiple devices with nearly ideal scaling beyond 64 GPUs.
Given two planets P1 and P2 with arbitrary orbits, planetary3br calculates all possible semimajor axes that a third planet P0 can have in order for the system to be in a three body resonance; these are identified by the combination k0*P0 + k1*P1 + k2*P2. P1 and P2 are assumed to be not in an exact two-body resonance. The program also calculates three "strengths" of the resonance, one for each planet, which are only indicators of the dynamical relevance of the resonance on each planet. Sample input data are available along with the Fortran77 source code.
For a massless test particle and given a planetary system, atlas3bgeneral calculates all three body resonances in a given range of semimajor axes with all the planets taken by pairs. Planets are assumed in fixed circular and coplanar orbits and the test particle with arbitrary orbit. A sample input data file to calculate the three-body resonances is available for use with the Fortran77 source code.
For a massless test particle and given a planetary system, Atlas2bgeneral calculates all resonances in a given range of semimajor axes with all the planets taken one by one. Planets are assumed in fixed circular and coplanar orbits and the test particle with arbitrary orbit. A sample input data file to calculate the two-body resonances is available for use with the Fortran77 source code.
DICE models initial conditions of idealized galaxies to study their secular evolution or their more complex interactions such as mergers or compact groups using N-Body/hydro codes. The code can set up a large number of components modeling distinct parts of the galaxy, and creates 3D distributions of particles using a N-try MCMC algorithm which does not require a prior knowledge of the distribution function. The gravitational potential is then computed on a multi-level Cartesian mesh by solving the Poisson equation in the Fourier space. Finally, the dynamical equilibrium of each component is computed by integrating the Jeans equations for each particles. Several galaxies can be generated in a row and be placed on Keplerian orbits to model interactions. DICE writes the initial conditions in the Gadget1 or Gadget2 (ascl:0003.001) format and is fully compatible with Ramses (ascl:1011.007).
AGNfitter is a fully Bayesian MCMC method to fit the spectral energy distributions (SEDs) of active galactic nuclei (AGN) and galaxies from the sub-mm to the UV; it enables robust disentanglement of the physical processes responsible for the emission of sources. Written in Python, AGNfitter makes use of a large library of theoretical, empirical, and semi-empirical models to characterize both the nuclear and host galaxy emission simultaneously. The model consists of four physical emission components: an accretion disk, a torus of AGN heated dust, stellar populations, and cold dust in star forming regions. AGNfitter determines the posterior distributions of numerous parameters that govern the physics of AGN with a fully Bayesian treatment of errors and parameter degeneracies, allowing one to infer integrated luminosities, dust attenuation parameters, stellar masses, and star formation rates.
FLASK (Full-sky Lognormal Astro-fields Simulation Kit) makes tomographic realizations on the sphere of an arbitrary number of correlated lognormal or Gaussian random fields; it can create joint simulations of clustering and lensing with sub-per-cent accuracy over relevant angular scales and redshift ranges. It is C++ code parallelized with OpenMP; FLASK generates fast full-sky simulations of cosmological large-scale structure observables such as multiple matter density tracers (galaxies, quasars, dark matter haloes), CMB temperature anisotropies and weak lensing convergence and shear fields. The mutiple fields can be generated tomographically in an arbitrary number of redshift slices and all their statistical properties (including cross-correlations) are determined by the angular power spectra supplied as input and the multivariate lognormal (or Gaussian) distribution assumed for the fields. Effects like redshift space distortions, doppler distortions, magnification biases, evolution and intrinsic aligments can be introduced in the simulations via the input power spectra which must be supplied by the user.
Lmfit provides a high-level interface to non-linear optimization and curve fitting problems for Python. Lmfit builds on and extends many of the optimization algorithm of scipy.optimize, especially the Levenberg-Marquardt method from optimize.leastsq. Its enhancements to optimization and data fitting problems include using Parameter objects instead of plain floats as variables, the ability to easily change fitting algorithms, and improved estimation of confidence intervals and curve-fitting with the Model class. Lmfit includes many pre-built models for common lineshapes.
Pulse Portraiture is a wideband pulsar timing code written in python. It uses an extension of the FFTFIT algorithm (Taylor 1992) to simultaneously measure a phase (TOA) and dispersion measure (DM). The code includes a Gaussian-component-based portrait modeling routine. The code uses the python interface to the pulsar data analysis package PSRCHIVE (ascl:1105.014) and also requires the non-linear least-squares minimization package lmfit (ascl:1606.014).
KMDWARFPARAM estimates the physical parameters of a star with mass M < 0.8 M_sun given one or more observational constraints. The code runs a Markov-Chain Monte Carlo procedure to estimate the parameter values and their uncertainties.
FDIPS is a finite difference iterative potential-field solver that can generate the 3D potential magnetic field solution based on a magnetogram. It is offered as an alternative to the spherical harmonics approach, as when the number of spherical harmonics is increased, using the raw magnetogram data given on a grid that is uniform in the sine of the latitude coordinate can result in inaccurate and unreliable results, especially in the polar regions close to the Sun. FDIPS is written in Fortran 90 and uses the MPI library for parallel execution.
SimpLens illustrates some of the theoretical ideas important in gravitational lensing in an interactive way. After setting parameters for elliptical mass distribution and external mass, SimpLens displays the mass profile and source position, the lens potential and image locations, and indicate the image magnifications and contours of virtual light-travel time. A lens profile can be made shallower or steeper with little change in the image positions and with only total magnification affected.
Companion-Finder looks for planets and binary companions in time series spectra by searching for the spectral lines of stellar companions to other stars observed with high-precision radial-velocity surveys.
The s2 package can represent any arbitrary function defined on the sphere. Both real space map and harmonic space spherical harmonic representations are supported. Basic sky representations have been extended to simulate full sky noise distributions and Gaussian cosmic microwave background realisations. Support for the representation and convolution of beams is also provided. The code requires HEALPix (ascl:1107.018) and CFITSIO (ascl:1010.001).
COMB supports the simulation on the sphere of compact objects embedded in a stochastic background process of specified power spectrum. Support is provided to add additional white noise and convolve with beam functions. Functionality to support functions defined on the sphere is provided by the S2 code (ascl:1606.008); HEALPix (ascl:1107.018) and CFITSIO (ascl:1010.001) are also required.
Uvmcmcfit fits parametric models to interferometric data. It is ideally suited to extract the maximum amount of information from marginally resolved observations with interferometers like the Atacama Large Millimeter Array (ALMA), Submillimeter Array (SMA), and Plateau de Bure Interferometer (PdBI). uvmcmcfit uses emcee (ascl:1303.002) to do Markov Chain Monte Carlo (MCMC) and can measure the goodness of fit from visibilities rather than deconvolved images, an advantage when there is strong gravitational lensing and in other situations. uvmcmcfit includes a pure-Python adaptation of Miriad’s (ascl:1106.007) uvmodel task to generate simulated visibilities given observed visibilities and a model image and a simple ray-tracing routine that allows it to account for both strongly lensed systems (where multiple images of the lensed galaxy are detected) and weakly lensed systems (where only a single image of the lensed galaxy is detected).
PyMultiNest provides programmatic access to MultiNest (ascl:1109.006) and PyCuba, integration existing Python code (numpy, scipy), and enables writing Prior & LogLikelihood functions in Python. PyMultiNest can plot and visualize MultiNest's progress and allows easy plotting, visualization and summarization of MultiNest results. The plotting can be run on existing MultiNest output, and when not using PyMultiNest for running MultiNest.
HIBAYES implements fully-Bayesian extraction of the sky-averaged (global) 21-cm signal from the Cosmic Dawn and Epoch of Reionization in the presence of foreground emission. User-defined likelihood and prior functions are called by the sampler PyMultiNest (ascl:1606.005) in order to jointly explore the full (signal plus foreground) posterior probability distribution and evaluate the Bayesian evidence for a given model. Implemented models, for simulation and fitting, include gaussians (HI signal) and polynomials (foregrounds). Some simple plotting and analysis tools are supplied. The code can be extended to other models (physical or empirical), to incorporate data from other experiments, or to use alternative Monte-Carlo sampling engines as required.
The Python module Cygrid grids (resamples) data to any collection of spherical target coordinates, although its typical application involves FITS maps or data cubes. The module supports the FITS world coordinate system (WCS) standard; its underlying algorithm is based on the convolution of the original samples with a 2D Gaussian kernel. A lookup table scheme allows parallelization of the code and is combined with the HEALPix tessellation of the sphere for fast neighbor searches. Cygrid's runtime scales between O(n) and O(nlog n), with n being the number of input samples.
The PAL library is a partial re-implementation of Pat Wallace's popular SLALIB library written in C using a Gnu GPL license and layered on top of the IAU's SOFA library (or the BSD-licensed ERFA) where appropriate. PAL attempts to stick to the SLA C API where possible.
SWOC (Spectral Wavelength Optimization Code) determines the wavelength ranges that provide the optimal amount of information to achieve the required science goals for a spectroscopic study. It computes a figure-of-merit for different spectral configurations using a user-defined list of spectral features, and, utilizing a set of flux-calibrated spectra, determines the spectral regions showing the largest differences among the spectra.
The Surprise is a measure for consistency between posterior distributions and operates in parameter space. It can be used to analyze either the compatibility of separately analyzed posteriors from two datasets, or the posteriors from a Bayesian update. The Surprise Calculator estimates relative entropy and Surprise between two samples, assuming they are Gaussian. The software requires the R package CompQuadForm to estimate the significance of the Surprise, and rpy2 to interface R with Python.
zeldovich-PLT generates Zel'dovich approximation (ZA) initial conditions (i.e. first-order Lagrangian perturbation theory) for cosmological N-body simulations, optionally applying particle linear theory (PLT) corrections.
The Search And Non-Destroy (SAND) is a VLBI data reduction pipeline composed of a set of Python programs based on the AIPS interface provided by ObitTalk. It is designed for the massive data reduction of multi-epoch VLBI monitoring research. It can automatically investigate calibrated visibility data, search all the radio emissions above a given noise floor and do the model fitting either on the CLEANed image or directly on the uv data. It then digests the model-fitting results, intelligently identifies the multi-epoch jet component correspondence, and recognizes the linear or non-linear proper motion patterns. The outputs including CLEANed image catalogue with polarization maps, animation cube, proper motion fitting and core light curves. For uncalibrated data, a user can easily add inline modules to do the calibration and self-calibration in a batch for a specific array.
Duo computes rotational, rovibrational and rovibronic spectra of diatomic molecules. The software, written in Fortran 2003, solves the Schrödinger equation for the motion of the nuclei for the simple case of uncoupled, isolated electronic states and also for the general case of an arbitrary number and type of couplings between electronic states. Possible couplings include spin–orbit, angular momenta, spin-rotational and spin–spin. Introducing the relevant couplings using so-called Born–Oppenheimer breakdown curves can correct non-adiabatic effects.
grtrans calculates ray tracing radiative transfer in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics, for comparing theoretical models of black hole accretion flows and jets with observations. The code is written in Fortran 90 and parallelizes with OpenMP; the full code and several components have Python interfaces. grtrans includes Geokerr (ascl:1011.015) and requires cfitsio (ascl:1010.001) and pyfits (ascl:1207.009).
K2SC (K2 Systematics Correction) models instrumental systematics and astrophysical variability in light curves from the K2 mission. It enables the user to remove both position-dependent systematics and time-dependent variability (e.g., for transit searches) or to remove systematics while preserving variability (for variability studies). K2SC automatically computes estimates of the period, amplitude and evolution timescale of the variability for periodic variables and can be run on ASCII and FITS light curve files. Written in Python, this pipeline requires NumPy, SciPy, MPI4Py, Astropy (ascl:1304.002), and George (ascl:1511.015).
DISCO evolves orbital fluid motion in two and three dimensions, especially at high Mach number, for studying astrophysical disks. The software uses a moving-mesh approach with a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas, thus removing diffusive advection errors and permitting longer timesteps than a static grid. DISCO uses an HLLD Riemann solver and a constrained transport scheme compatible with the mesh motion to implement magnetohydrodynamics.
TRIPPy (TRailed Image Photometry in Python) uses a pill-shaped aperture, a rectangle described by three parameters (trail length, angle, and radius) to improve photometry of moving sources over that done with circular apertures. It can generate accurate model and trailed point-spread functions from stationary background sources in sidereally tracked images. Appropriate aperture correction provides accurate, unbiased flux measurement. TRIPPy requires numpy, scipy, matplotlib, Astropy (ascl:1304.002), and stsci.numdisplay; emcee (ascl:1303.002) and SExtractor (ascl:1010.064) are optional.
ASTRiDE detects streaks in astronomical images using a "border" of each object (i.e. "boundary-tracing" or "contour-tracing") and their morphological parameters. Fast moving objects such as meteors, satellites, near-Earth objects (NEOs), or even cosmic rays can leave streak-like traces in the images; ASTRiDE can detect not only long streaks but also relatively short or curved streaks.
PDT removes systematic trends in light curves. It finds clusters of light curves that are highly correlated using machine learning, constructs one master trend per cluster and detrends an individual light curve using the constructed master trends by minimizing residuals while constraining coefficients to be positive.
MUSCLE (MUltiscale Spherical ColLapse Evolution) produces low-redshift approximate N-body realizations accurate to few-Megaparsec scales. It applies a spherical-collapse prescription on multiple Gaussian-smoothed scales. It achieves higher accuracy than perturbative schemes (Zel'dovich and second-order Lagrangian perturbation theory - 2LPT), and by including the void-in-cloud process (voids in large-scale collapsing regions), solves problems with a single-scale spherical-collapse scheme.
CAMELOT facilitates the comparison of observational data and simulations of molecular clouds and/or star-forming regions. The central component of CAMELOT is a database summarizing the properties of observational data and simulations in the literature through pertinent metadata. The core functionality allows users to upload metadata, search and visualize the contents of the database to find and match observations/simulations over any range of parameter space.
To bridge the fundamental disconnect between inherently 2D observational data and 3D simulations, the code uses key physical properties that, in principle, are straightforward for both observers and simulators to measure — the surface density (Sigma), velocity dispersion (sigma) and radius (R). By determining these in a self-consistent way for all entries in the database, it should be possible to make robust comparisons.
The IDL package reduces and analyzes radio astronomy data. It translates SDFITS files into TMBIDL format, and can average and display spectra, remove baselines, and fit Gaussian models.
BACCHUS (Brussels Automatic Code for Characterizing High accUracy Spectra) derives stellar parameters (Teff, log g, metallicity, microturbulence velocity and rotational velocity), equivalent widths, and abundances. The code includes on the fly spectrum synthesis, local continuum normalization, estimation of local S/N, automatic line masking, four methods for abundance determinations, and a flagging system aiding line selection. BACCHUS relies on the grid of MARCS model atmospheres, Masseron's model atmosphere thermodynamic structure interpolator, and the radiative transfer code Turbospectrum (ascl:1205.004).
Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).
The cluster-lensing package calculates properties and weak lensing profiles of galaxy clusters. Implemented in Python, it includes cluster mass-richness and mass-concentration scaling relations, and NFW halo profiles for weak lensing shear, the differential surface mass density ΔΣ(r), and for magnification, Σ(r). Optionally the calculation will include the effects of cluster miscentering offsets.
MARZ analyzes objects and produces high quality spectroscopic redshift measurements. Spectra not matched correctly by the automatic algorithm can be redshifted manually by cycling automatic results, manual template comparison, or marking spectral features. The software has an intuitive interface and powerful automatic matching capabilities on spectra, and can be run interactively or from the command line, and runs as a Web application. MARZ can be run on a local server; it is also available for use on a public server.
TTVFaster implements analytic formulae for transit time variations (TTVs) that are accurate to first order in the planet–star mass ratios and in the orbital eccentricities; the implementations are available in several languages, including IDL, Julia, Python and C. These formulae compare well with more computationally expensive N-body integrations in the low-eccentricity, low mass-ratio regime when applied to simulated and to actual multi-transiting Kepler planet systems.
FDPS provides the necessary functions for efficient parallel execution of particle-based simulations as templates independent of the data structure of particles and the functional form of the interaction. It is used to develop particle-based simulation programs for large-scale distributed-memory parallel supercomputers. FDPS includes templates for domain decomposition, redistribution of particles, and gathering of particle information for interaction calculation. It uses algorithms such as Barnes-Hut tree method for long-range interactions; methods to limit the calculation to neighbor particles are used for short-range interactions. FDPS reduces the time and effort necessary to write a simple, sequential and unoptimized program of O(N^2) calculation cost, and produces compiled programs that will run efficiently on large-scale parallel supercomputers.
CCSNMultivar aids the analysis of core-collapse supernova gravitational waves. It includes multivariate regression of Fourier transformed or time domain waveforms, hypothesis testing for measuring the influence of physical parameters, and the Abdikamalov et. al. catalog for example use. CCSNMultivar can optionally incorporate additional uncertainty due to detector noise and approximate waveforms from anywhere within the parameter space.
Would you like to view a random code?