Results 651-700 of 3615 (3521 ASCL, 94 submitted)
The time dependent Monte-Carlo code URILIGHT, written in Fortran 90, assumes homologous expansion. Energy deposition resulting from the decay of radioactive isotopes is calculated by a Monte-Carlo solution of the γ-ray transport, for which interaction with matter is included through Compton scattering and photoelectric absorption. The temperature is iteratively solved for in each cell by requiring that the total emissivity equals the total absorbed energy.
GaLight (Galaxy shapes of Light) performs two-dimensional model fitting of optical and near-infrared images to characterize the light distribution of galaxies with components including a disk, bulge, bar and quasar. Light is decomposes into PSF and Sersic, and the fitting is based on lenstronomy (ascl:1804.01). GaLight's automated features including searching PSF stars in the FOV, automatically estimating the background noise level, and cutting out the target object galaxies (QSOs) and preparing the materials to model the data. It can also detect objects in the cutout stamp and quickly create Sersic keywords to model them, and model QSOs and galaxies using 2D Sersic profile and scaled point source.
HyPhy maps from dark matter only simulations to full hydrodynamical physics models. It uses a fully convolutional variational auto-encoder (VAE) to synthesize hydrodynamic fields conditioned on dark matter fields from N-body simulations. After training, HyPhy can probabilistically map new dark matter only simulations to corresponding full hydrodynamical outputs and generate posterior samples for studying the variance of the mapping. This conditional deep generative model is implemented in TensorFlow.
GRUMPY (Galaxy formation with RegUlator Model in PYthon) models the formation of dwarf galaxies. When coupled with realistic mass accretion histories of halos from simulations and reasonable choices for model parameter values, this simple regulator-type framework reproduces a broad range of observed properties of dwarf galaxies over seven orders of magnitude in stellar mass. GRUMPY matches observational constraints on the stellar mass--halo mass relation and observed relations between stellar mass and gas phase and stellar metallicities, gas mass, size, and star formation rate. It also models the general form and diversity of star formation histories (SFHs) of observed dwarf galaxies. The software can be used to predict photometric properties of dwarf galaxies hosted by dark matter haloes in N-body simulations, such as colors, surface brightnesses, and mass-to-light ratios and to forward model observations of dwarf galaxies.
PINION (Physics-Informed neural Network for reIONization) predicts the complete 4-D hydrogen fraction evolution from the smoothed gas and mass density fields from pre-computed N-body simulations. Trained on C2-Ray simulation outputs with a physics constraint on the reionization chemistry equation, PINION accurately predicts the entire reionization history between z = 6 and 12 with only five redshift snapshots and a propagation mask as a simplistic approximation of the ionizing photon mean free path. The network's predictions are in good agreement with simulation to redshift z > 7, though the oversimplified propagation mask degrades the network's accuracy for z < 7.
AMBER (Apertif Monitor for Bursts Encountered in Real-time) detects single-pulse radio phenomena, such as pulsars and fast radio bursts, in real time. It is a fully auto-tuned pipeline that offloads compute-intensive kernels to many-core accelerators; the software automatically tunes these kernels to achieve high performance on different platforms.
KaRMMa (Kappa Reconstruction for Mass MApping) performs curved-sky mass map reconstruction using a lognormal prior from weak-lensing surveys. It uses a fully Bayesian approach with a physically motivated lognormal prior to sample from the posterior distribution of convergence maps. The posterior distribution of KaRMMa maps are nearly unbiased in one-point and two-point functions and peak/void counts. KaRMMa successfully captures the non-Gaussian nature of the distribution of κ values in the simulated maps, and KaRMMa posteriors correctly characterize the uncertainty in summary statistics.
The Shape COnstraint REstoration algorithm (SCORE) is a proximal algorithm based on sparsity and shape constraints to restore images. Its main purpose is to restore images while preserving their shape information. It can, for example, denoise a galaxy image by instanciating SCORE and using its denoise method and then visualize the results, and can deconvolve multiple images with different parameter values.
Cluster Toolkit calculates weak lensing signals from galaxy clusters and cluster cosmology. It offers 3D density and correlation functions, halo bias models, projected density and differential profiles, and radially averaged profiles. It also calculates halo mass functions, mass-concentration relations, Sunyaev-Zel’dovich (SZ) cluster signals, and cluster magnification. Cluster Toolkit consists of a Python front end wrapped around a well optimized back end in C.
DeepMass infers dark matter maps from weak gravitational lensing measurements and uses deep learning to reconstruct cosmological maps. The code can also be incorporated into a Moment Network to enable high-dimensional likelihood-free inference.
Herculens models imaging data of strong gravitational lenses. The package supports various degrees of model complexity, ranging from standard smooth analytical profiles to pixelated models and machine learning approaches. In particular, it implements multiscale pixelated models regularized with sparsity constraints and wavelet decomposition, for modeling both the source light distribution and the lens potential. The code is fully differentiable - based on JAX (ascl:2111.002) - which enables fast convergence to the solution, access to the parameters covariance matrix, efficient exploration of the parameter space including the sampling of posterior distributions using variational inference or Hamiltonian Monte-Carlo methods.
A-SLOTH (Ancient Stars and Local Observables by Tracing Halos) connects the formation of the first stars and galaxies to observables. The model is based on dark matter merger trees, on which A-SLOTH applies analytical recipes for baryonic physics to model the formation of both metal-free and metal-poor stars and the transition between them. The software samples individual stars and includes radiative, chemical, and mechanical feedback. A-SLOTH has versatile applications with moderate computational requirements. It can be used to constrain the properties of the first stars and high-z galaxies based on local observables, predicts properties of the oldest and most metal-poor stars in the Milky Way, can serve as a subgrid model for larger cosmological simulations, and predicts next-generation observables of the early Universe, such as supernova rates or gravitational wave events.
YONDER uses singular value decomposition to perform low-rank data denoising and reconstruction. It takes a tabular data matrix and an error matrix as input and returns a denoised version of the original dataset as output. The approach enables a more accurate data analysis in the presence of uncertainties. Consequently, this package can be used as a simple toolbox to perform astronomical data cleaning.
The toise framework estimates the sensitivity of natural-medium neutrino detectors such as IceCube-Gen2 to sources of high-energy astrophysical neutrinos. It uses parameterizations of a detector's fiducial area or volume, selection efficiency, energy resolution, angular resolution, and event classification efficiency to convert (surface) neutrino fluxes into mean event rates in bins of observable space. These are then used to estimate statistical quantities of interest, e.g., the median sensitivity to some flux (i.e., 90% upper limit assuming the true flux is zero) or the median discovery potential (i.e., the flux level at which the null hypothesis would be rejected at 5 sigma in 50% of realizations).
Cubefit is an OXY class that performs spectral fitting with spatial regularization in a spectro-imaging context. The 3D model is based on a 1D model and 2D parameter maps; the 2D maps are regularized using an L1L2 regularization by default. The estimator is a compound of a chi^2 based on the 1D model, a regularization term based of the 2D regularization of the various 2D parameter maps, and an optional decorrelation term based on the cross-correlation of specific pairs of parameter maps.
PyNAPLE (PYthon Nac Automated Pair Lunar Evaluator) detects changes and new impact craters on the lunar surface using Lunar Reconnaissance Orbiter Narrow Angle Camera (LRO NAC) images. The code enables large scale analyses of sub-kilometer scale cratering rates and refinement of both scaling laws and the luminous efficiency.
GSSP (Grid Search in Stellar Parameters) is based on a grid search in the fundamental atmospheric parameters and (optionally) individual chemical abundances of the star (or binary stellar components) in question. It uses atmosphere models and spectrum synthesis, which assumes a comparison of the observations with each theoretical spectrum from the grid. The code can optimize five stellar parameters at a time (effective temperature, surface gravity, metallicity, microturbulent velocity, and projected rotational velocity of the star) and synthetic spectra can be computed in any number of wavelength ranges. GSSP builds the grid of theoretical spectra from all possible combinations of the above mentioned parameters, and delivers the set of best fit parameters, the corresponding synthetic spectrum, and the ASCII file containing the individual parameter values for all grid points and the corresponding chi-square values.
GStokes performs simple multipolar fits to circular polarization data to provide information about the field strength and geometry. It provides forward calculation of the disc-integrated Stokes parameter profiles as well as magnetic inversions under several widely used simplifying approximations of the polarized line formation. GStokes implements the Unno–Rachkovsky analytical solution of the polarized radiative transfer equation and the weak-field approximation with the Gaussian local profiles. The magnetic field geometry is described with one of the common low-order multipolar field parametrizations. Written in IDL, GStokes provides a user-friendly graphical front-end.
RadioLensfit measures star-forming galaxy ellipticities using a Bayesian model fitting approach. The software uses an analytical exponential Sersic model and works in the visibility domain avoiding Fourier Transform. It also simulates visibilities of observed SF galaxies given a source catalog and Measurement Sets containing the description of the radio interferometer and of the observation. It provides both serial and MPI versions.
EstrellaNueva calculates expected rates of supernova neutrinos in detectors. It provides a link between supernova simulations and the expected events in detectors by calculating fluences and event rates in order to ease any comparison between theory and observation. The software is a standalone tool for exploring many physics scenarios, and offers an option to add analytical cross sections and define any target material.
HOCHUNK3D is an updated version of the HOCHUNK radiative equilibrium code (ascl:1711.013); the code has been converted to Fortran 95, which allows a specification of one-dimensional (1D), 2D, or 3D grids at runtime. The code is parallelized so it can be run on multiple processors on one machine, or on multiple machines in a network. It includes 3-D functionality and several other additional geometries and features. The code calculates radiative equilibrium temperature solution, thermal and PAH/vsg emission, scattering and polarization in protostellar geometries. HOCHUNK3D also computes spectral energy distributions (SEDs), polarization spectra, and images.
CRPropa3, an improved version of CRPropa2 (ascl:1412.013), provides a simulation framework to study the propagation of ultra-high-energy nuclei up to iron on their voyage through an (extra)galactic environment. It takes into account pion production, photodisintegration, and energy losses by pair production of all relevant isotopes in the ambient low-energy photon fields, as well as nuclear decay. CRPropa3 can model the deflection in (inter)galactic magnetic fields, the propagation of secondary electromagnetic cascades, and neutrinos for a multitude of scenarios for different source distributions and magnetic environments. It enables the user to predict the spectra of UHECR (and of their secondaries), their composition and arrival direction distribution. Additionally, the low-energy Galactic propagation can be simulated by solving the transport equation using stochastic differential equations. CRPropa3 features a very flexible simulation setup with python steering and shared-memory parallelization.
J-comb combines high-resolution data with large-scale missing information with low-resolution data containing the short spacing. Based on uvcombine (ascl:2208.014), it takes as input FITS files of low- and high-resolution images, the angular resolution of the input images, and the pixel size of the input images, and outputs a FITS file of the combined image.
uvcombine combines single-dish and interferometric data. It can combine high-resolution images that are missing large angular scales (Fourier-domain short-spacings) with low-resolution images containing the short/zero spacing. uvcombine includes the "feathering" technique for interferometry data, implementing a similar approach to CASA’s (ascl:1107.013) feather task but with additional options. Also included are consistency tests for the flux calibration and single-dish scale by comparing the data in the uv-overlap range.
SPAMMS (Spectroscopic PAtch Model for Massive Stars), designed with geometrically deformed systems in mind, combines the eclipsing binary modelling code PHOEBE 2 (ascl:1106.002) and the NLTE radiative transfer code FASTWIND to produce synthetic spectra for systems at given phases, orientations and geometries. SPAMMS reproduces the morphology of observed spectral line profiles for overcontact systems and the Rossiter-Mclaughlin and Struve-Sahade effects.
DELIGHT (Deep Learning Identification of Galaxy Hosts of Transients) automatically identifies host galaxies of transient candidates using multi-resolution images and a convolutional neural network. This library has a class with several methods to get the most likely host coordinates starting from given transient coordinates. In order to do this, the DELIGHT object needs a list of object identifiers and coordinates (oid, ra, dec). With this information, it downloads PanSTARRS images centered around the position of the transients (2 arcmin x 2 arcmin), gets their WCS solutions, creates the multi-resolution images, does some extra preprocessing of the data, and finally predicts the position of the hosts using a multi-resolution image and a convolutional neural network. DELIGHT can also estimate the host's semi-major axis if requested, taking advantage of the multi-resolution images.
POIS (Python Optical Interferometry Simulation) provides the building blocks to simulate the operation of a ground-based optical interferometer perturbed by atmospheric seeing perturbations. The package includes functions to generate simulated atmospheric turbulent wavefront perturbations, correct these perturbations using adaptive optics, and combine beams from an arbitrary number of telescopes, with or without spatial filtering, to provide complex fringe visibility measurements.
FFD (Flare Frequency Distribution) fits power-laws to FFDs. FFDs relate the frequency (i.e., occurrence rate) of flares to their energy, peak flux, photometric equivalent width, or other parameters. This module was created to handle disparate datasets between which the flare detection limit varies; in essence, the number of flares detected is treated as following a Poisson distribution while the flare energies are treated as following a power law.
LeXInt (Leja interpolation for eXponential Integrators) is a temporal exponential integration package using the method of polynomial interpolation at Leja points. Exponential Rosenbrock (EXPRB) and Exponential Propagation Iterative Runge-Kutta (EPIRK) methods use the Leja interpolation method to compute the functions. For linear PDEs, one can get the exact solution (in time) by directly computing the matrix exponential.
RJ-plots uses a moments of inertia method to disentangle a 2D structure's elongation from its centrally over/under-density, thus providing a means for the automated and objective classification of such structures. It may be applied to any 2D pixelated image such as column density maps or moment zero maps of molecular lines. This method is a further development of J-plots (ascl:2009.007).
VapoRock calculates the equilibrium partial pressures of metal-bearing gas species of specific elements above the magma ocean surface to determine the metal-bearing composition of the atmosphere as a function of temperature and the bulk composition of the magma ocean. It utilizes ENKI's ThermoEngine (ascl:2208.006) and combines estimates for element activities in silicate melts with thermodynamic data for metal and metal oxide vapor species.
ThermoEngine estimates the thermodynamic properties of minerals, fluids, and melts, and calculates phase equilibriums. The Equilibrate module of ThermoEngine provides Python functions and classes for computing equilibrium phase assemblages with focus on MELTS calculations. The Phases module includes Python functions and classes for computing standard thermodynamic calculations utilizing the Berman, Holland and Powell, or Stixrude-Lithgow-Bertelloni endmember databases, and calculations based on solution properties utilized by MELTS. There are many helper functions available in this module that assist in the calculation of pseudosections, univariant equilibria and the construction of phase diagrams.
Asymmetric Uncertainty implements and provides an object class for dealing with uncertainties for physical quantities that are not symmetric. Instances of the class behave appropriately with other numeric objects under most mathematical operations, and the associated errors propagate accordingly. The class also provides utilities such as methods for evaluating and plotting probability density functions, as well as capabilities for handling arrays of such objects. Standard and symmetric uncertainties are also supported.
The TOM Toolkit combines a flexible, searchable database of all information related to a scientific research project, with an observation and data analysis control system, and communication and data visualization tools. This Toolkit includes a fully operational TOM (Target and Observation Manager) system in addition to a range of optional tools for specific tasks, including interfaces to widely-used observing facilities and data archives and data visualization tools. With TOM Toolkit, project teams can develop and customize a system for their own science goals, without needing specialist expertise in databasing.
Scatfit models observed burst signals of impulsive time domain radio signals ( e.g., Fast Radio Bursts (FRBs) or pulsars pulses), which usually are convolution products of various effects, and fits them to the experimental data. It includes several models for scattering and instrumental effects. The code loads the experimental time domain radio data, cleans them, fits an aggregate scattering model to the data, and robustly estimates the model parameters and their uncertainties. Additionally, scatfit determines the scaling of the scattering time with frequency, i.e. the scattering index, and the scattering-corrected dispersion measure of the burst or pulse.
qrpca uses QR-decomposition for fast principal component analysis. The software is particularly suited for large dimensional matrices. It makes use of torch for internal matrix computations and enables GPU acceleration, when available. Written in both R and python languages, qrpca provides functionalities similar to the prcomp (R) and sklearn (python) packages.
BlaST (Blazar Synchrotron Tool) estimates the synchrotron peak of blazars given their spectral energy distribution. It uses a machine-learning algorithm that simplifies the estimation and also provides a reliable uncertainty estimation. The package naturally accounts for additional SED components from the host galaxy and the disk emission. BlaST also supports bulk estimation, e.g. estimating a whole catalog, by providing a directory or zip file containing the seds as well as an output file in which to write the results.
Eidein interactively visualizes a data sample for the selection of an informative (contains data with high predictive uncertainty, is diverse, but not redundant) data subsample for deep active learning. The data sample is projected to 2-D with a dimensionality reduction technique. It is visualized in an interactive scatter plot that allows a human expert to select and annotate the data subsample.
BMarXiv scans new (i.e., since the last time checked) submissions from arXiv, ranks submissions based on keyword matches, and produces an HTML page as an output.
The keywords are looked for (with regex capabilities) in the title, abstract, but also the author list, so it is possible to look for people too. The score is calculated for each specific entry but additional (and optional) scoring is performed using the first author recent submissions and/or the other authors' recent submissions.
It is possible to include/exclude any arXiv categories (within astro-ph or not). New astronomical conferences (from CADC by default) and new codes (from ASCL.net) are also checked and can also be scanned for keywords.
A local bibliography file can be scanned to find frequent words/groups of words that could become scanned keywords.
massmappy recovers convergence mass maps on the celestial sphere from weak lensing cosmic shear observations. It relies on SSHT (ascl:2207.034) and HEALPix (ascl:1107.018) to handle sampled data on the sphere. The spherical Kaiser-Squires estimator is implemented.
SSHT performs fast and exact spin spherical harmonic transforms; functionality is also provided to perform fast and exact adjoint transforms, forward and inverse transforms, and spherical harmonic transforms for a number of alternative sampling schemes. The code can interface with DUCC (ascl:2008.023) and use it as a backend for spherical harmonic transforms and rotations.
piXedfit provides a self-contained set of tools for analyzing spatially resolved properties of galaxies using imaging data or a combination of imaging data and the integral field spectroscopy (IFS) data. piXedfit has six modules that can handle all tasks in the analysis of the spatially resolved SEDs of galaxies, including images processing, a spatial-matching between reduced broad-band images with an IFS data cube, pixel binning, performing SED fitting, and making visualization plots for the SED fitting results.
gwdet computes the probability of detecting a gravitational-wave signal from compact binaries averaging over sky-location and source inclination. The code has two classes, averageangles and detectability. averageangles computes the detection probability, averaged over all angles (such as sky location, polarization, and inclination), as a function of the projection parameter. detectability computes the detection probability of a non-spinning compact binary.
BANZAI (Beautiful Algorithms to Normalize Zillions of Astronomical Images) processes raw data taken from Las Cumbres Observatory and produces science quality data products. It is capable of reducing single or multi-extension fits files. For historical data, BANZAI can also reduce the data cubes that were produced by the Sinistro cameras.
This code analyzes a dipole axis in the distribution of galaxy spin directions. The code takes as input a list of galaxies, their equatorial coordinates, and their spin directions. It then determines the statistical significance of possible dipole axis at any point in the sky by comparing the cosine dependence of the spin directions to the mean and standard deviation of the cosine dependence after 2000 runs with random spin directions. A code to analyze the binomial distribution of the spin directions using Monte Carlo simulation is also available.
ParticleGridMapper.jl interpolates particle data onto either a Cartesian (uniform) grid or an adaptive mesh refinement (AMR) grid where each cell contains no more than one particle. The AMR grid can be trimmed with a user-defined maximum level of refinement. Three different interpolation schemes are supported: nearest grid point (NGP), smoothed-particle hydrodynamics (SPH), and Meshless finite mass (MFM). It is multi-threading parallel.
disksurf measures the height of optically thick emission or photosphere in moderately inclined protoplanetary disks. The package is dependent on AstroPy (ascl:1304.002) and uses GoFish (ascl:2011.016) to retrieve data from FITS data cubes and user-specified parameters to return a surface object containing the disk-centric coordinates of the surface and the gas temperature and rotation velocity at those locations. disksurf provides clipping, smoothing, and diagnostic functions as well.
ConeRot extracts velocity perturbations in protoplanetary disks from observed line centroids maps ν∘, by creating axially-symmetric centroid maps. It also derives 3D rotation curves in disk-centered cylindrical coordinates, and can estimate the disk orientation based on line data alone. It approximates the unit opacity surface of an axially symmetric disc by a series of cones whose orientations are fit to the observed velocity centroid in concentric radial domains, or regions, with the disc orientation and the rotation curve both optimized to fit ν∘ in each region. ConeRot extracts the perturbations directly from observations without strong assumptions about the underlying disk model and employs a reduced number of free parameters.
pdspy fits Monte Carlo radiative transfer models for protostellar/protoplanetary disks to ALMA continuum and spectral line datasets using Markov Chain Monte Carlo fitting. It contains two tools, one to fit ALMA continuum visibilities and broadband spectral energy distributions (SEDs) with full radiative transfer models, and another to fit ALMA spectral line visibilities with protoplanetary disk models that include a vertically isothermal, power law temperature distribution. No radiative equilibrium calculation is done.
casa_cube provides an interface to data cubes generated by CASA (ascl:1107.013) or Gildas (ascl:1305.010). It performs simple tasks such as plotting given channel maps, moment maps, and line profile in various units, and also corrects for cloud extinction, reconvolves with a beam taper, and permits quick and easy comparisons with models.
Would you like to view a random code?