Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Alvey, James'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:2306.009] Albatross: Stellar stream parameter inference with neural ratio estimation

Albatross analyzes Milky Way stellar streams. This Simulation-Based Inference (SBI) library is built on top of swyft (ascl:2302.016), which implements neural ratio estimation to efficiently access marginal posteriors for all parameters of interest. Using swyft for its internal Truncated Marginal Neural Ratio Estimation (TMNRE) algorithm and sstrax (ascl:2306.008) for fast simulation and modeling, Albatross provides a modular inference pipeline to support parameter inference on all relevant parts of stellar stream models.

[ascl:2306.008] sstrax: Fast stellar stream modelling in JAX

sstrax provides fast simulations of Milky Way stellar stream formation. Using JAX (ascl:2111.002) acceleration to support code compilation, sstrax forward models all aspects of stream formation, including evolution in gravitational potentials, tidal disruption and observational models, in a fully modular way. Although sstrax is a standalone python package, it was also developed to integrate directly with the Albatross (ascl:2306.009) inference pipeline, which performs inference on all relevant aspects of the stream model.

[ascl:2309.016] PEREGRINE: Gravitational wave parameter inference with neural ration estimation

PEREGRINE performs full parameter estimation on gravitational wave signals. Using an internal Truncated Marginal Neural Ratio Estimation (TMNRE) algorithm and building upon the swyft (ascl:2302.016) code to efficiently access marginal posteriors, PEREGRINE conducts a sequential simulation-based inference approach to support the analysis of both transient and continuous gravitational wave sources. The code can fully reconstruct the posterior distributions for all parameters of spinning, precessing compact binary mergers using waveform approximants.