Results 1251-1300 of 3595 (3502 ASCL, 93 submitted)

[ascl:2011.010]
ARES: Accelerated Reionization Era Simulations

The Accelerated Reionization Era Simulations (ARES) code rapidly generates models for the global 21-cm signal. It can also be used as a 1-D radiative transfer code, stand-alone non-equilibrium chemistry solver, or global radiation background calculator.

[ascl:2011.009]
HaloGen: Modular halo model code

HaloGen computes all auto and cross spectra and halo model trispectrum in simple configurations. This modular halo model code computes 3d power spectra, and the corresponding projected 2d power spectra in the Limber and flat sky approximations. The observables include matter density, galaxy lensing, CMB lensing, thermal Sunyaev-Zel'dovich, cosmic infrared background, tracers with any dn/dz, b(z) and HOD.

[ascl:2011.008]
GOTHIC: Double nuclei galaxy detector

GOTHIC (Graph-bOosTed iterated HIll Climbing) detects whether a given image of a galaxy has characteristic features of a double nuclei galaxy (DNG). Galaxy interactions and mergers play a crucial role in the hierarchical growth of structure in the universe; galaxy mergers can lead to the formation of elliptical galaxies and larger disk galaxies, as well as drive galaxy evolution through star formation and nuclear activity. During mergers, the nuclei of the individual galaxies come closer and finally form a double nuclei galaxy. Although mergers are common, the detection of double-nuclei galaxies (DNGs) is rare and fairly serendipitous. Their properties can help us understand the formation of supermassive black hole (SMBH) binaries, dual active galactic nuclei (DAGN) and the associated feedback effects. GOTHIC provides an automatic and systematic way to survey data for the discovery of double nuclei galaxies.

[ascl:2011.007]
DYNAMITE: DYnamics, Age and Metallicity Indicators Tracing Evolution

DYNAMITE (DYnamics, Age and Metallicity Indicators Tracing Evolution) is a triaxial dynamical modeling code for stellar systems and is based on existing codes for Schwarzschild modeling in triaxial systems. DYNAMITE provides an easy-to-use object oriented Python wrapper that extends the scope of pre-existing triaxial Schwarzschild codes with a number of new features, including discrete kinematics, more flexible descriptions of line-of-sight velocity distributions, and modeling of stellar population information. It also offers more efficient steps through parameter space, and can use GPU acceleration.

[ascl:2011.006]
tlpipe: Data processing pipeline for the Tianlai experiment

tlpipe processes the drift scan survey data from the Tianlai experiment; the Tainlai project is a 21cm intensity mapping experiment aimed at detecting dark energy by measuring the baryon acoustic oscillation (BAO) features in the large scale structure power spectrum. tlpipe performs offline data processing tasks such as radio frequency interference (RFI) flagging, array calibration, binning, and map-making, in addition to other tasks. It includes utility functions needed for the data analysis, such as data selection, transformation, visualization and others. tlpipe implements a number of new algorithms are implemented, including the eigenvector decomposition method for array calibration and the Tikhnov regularization for m-mode analysis.

[ascl:2011.005]
DarkCapPy: Dark Matter Capture and Annihilation

DarkCapPy calculates rates associated with dark matter capture in the Earth, annihilation into light mediators, and observable decay of the light mediators near the surface of the Earth. This Python/Jupyter package can calculate the Sommerfeld enhancement at the center of the Earth and the timescale for capture-annihilation equilibrium, and can be modified for other compact astronomical objects and mediator spins.

[ascl:2011.004]
MCMCDiagnostics: Markov Chain Monte Carlo convergence diagnostics

MCMCDiagnostics contains two diagnostics, written in Julia, for Markov Chain Monte Carlo. The first is potential_scale_reduction(chains...), which estimates the potential scale reduction factor, also known as Rhat, for multiple scalar chains . The second, effective_sample_size(chain), calculates the effective sample size for scalar chains. These diagnostics are intended as building blocks for use by other libraries.

[ascl:2011.003]
Kalkayotl: Inferring distances to stellar clusters from Gaia parallaxes

Olivares, J.; Sarro, L. M.; Bouy, H.; Miret-Roig, N.; Casamiquela, L.; Galli, P. A. B.; Berihuete, A.; Tarricq, Y.

Kalkayotl obtains samples of the joint posterior distribution of cluster parameters and distances to the cluster stars from Gaia parallaxes using Bayesian inference. The code is designed to deal with the parallax spatial correlations of Gaia data, and can accommodate different values of parallax zero point and spatial correlation functions.

[ascl:2011.002]
CAPTURE: Interferometric pipeline for image creation from GMRT data

CAPTURE (CAsa Pipeline-cum-Toolkit for Upgraded Giant Metrewave Radio Telescope data REduction) produces continuum images from radio interferometric data. Written in Python, it uses CASA (ascl:1107.013) tasks to analyze data obtained by the GMRT. It can produce self-calibrated images in a fully automatic mode or can run in steps to allow the data to be inspected throughout processing.

[ascl:2011.001]
AdaMet: Adaptive Metropolis for Bayesian analysis

AdaMet (Adaptive Metropolis) performs efficient Bayesian analysis. The user-friendly Python package is an implementation of the Adaptive Metropolis algorithm. In many real-world applications, it is more efficient and robust than emcee (ascl:1303.002), which warm-up phase scales linearly with the number of walkers. For this reason, and because of its didactic value, the AdaMet code is provided as an alternative.

[ascl:2010.015]
relxill: Reflection models of black hole accretion disks

Dauser, T.; García, J.; Parker, M. L.; Fabian, A. C.; Wilms, J.; Lohfink, A.; Kallman, T. R.; Steiner, J. F.; McClintock, J. E.; Brenneman, L.; Eikmann, W.; Reynolds, C. S.; Tombesi, F.

relxill self-consistently connects an angle-dependent reflection model constructed with XILLVER (http://www.srl.caltech.edu/personnel/javier/xillver/index.html) with the relativistic blurring code RELLINE (ascl:1505.021). It calculates the proper emission angle of the radiation at each point on the accretion disk and then takes the corresponding reflection spectrum into account.

[ascl:2010.014]
Pix2Prof: Deep learning for textraction of useful sequential information from galaxy imagery

Pix2Prof produces a surface brightness profile from an unprocessed galaxy image from the SDSS in either the g, r, or i bands. It is fast, and given suitable training data, Pix2Prof can be retrained to produce any galaxy profile from any galaxy image.

[ascl:2010.013]
Legolas: Large Eigensystem Generator for One-dimensional pLASmas

Legolas (Large Eigensystem Generator for One-dimensional pLASmas) is a finite element code for MHD spectroscopy of 1D Cartesian/cylindrical equilibria with flow that balance pressure gradients, enriched with various non-adiabatic effects. The code's capabilities range from full spectrum calculations to eigenfunctions of specific modes to full-on parametric studies of various equilibrium configurations in different geometries.

[ascl:2010.012]
Astronomaly: Flexible framework for anomaly detection in astronomy

Astronomaly actively detects anomalies in astronomical data. A python back-end runs anomaly detection based on machine learning; a JavaScript front-end provides data viewing and labeling. The package works on many common astronomy data types, including one-dimensional data and images, and offering extendable techniques for preprocessing, feature extraction, and machine learning.

[ascl:2010.011]
ROGER: Automatic classification of galaxies using phase-space information

de los Rios, Martín; Julián Martínez, Héctor; Coenda, Valeria; Muriel, Hernán; Nicolás Ruiz, Andrés; Vega-Martínez, Cristian Antonio; Cora, Sofia Alejandra

ROGER (Reconstructing Orbits of Galaxies in Extreme Regions) predicts the dynamical properties of galaxies using the projected phase-space information. Written in R, it offers a choice of machine learning methods to classify the dynamical properties of galaxies. An interface for online use of the software is available at https://mdelosrios.shinyapps.io/roger_shiny/.

[ascl:2010.010]
lenspyx: Curved-sky python lensed CMB maps simulation package

lenspyx creates curved-sky python lensed CMB maps simulations; the software allows those familiar with healpy (ascl:2008.022) to build very easily lensed CMB simulations. Parallelization is done with openmp. The numerical cost is approximately that of an high-res harmonic transform. lenspyx provides two methods to build a simulation; one method computes a deflected spin-0 healpix map from its alm and deflection field alm, and the other computes a deflected spin-weight Healpix map from its gradient and curl modes and deflection field alm. lenspyx can be used in conjunction with the Planck 2018 CMB lensing pipeline plancklens (ascl:2010.009) to reproduce the published map and band-powers.

[ascl:2010.009]
plancklens: Planck 2018 lensing pipeline

plancklens contains most of Planck 2018 CMB lensing pipeline and makes it possible to reproduce the published map and band-powers. Some numerical parts are written in Fortran, and portions of it (structure and code) have been directly adapted from pre-existing work by Duncan Hanson. The lensed CMB skies is produced by the stand-alone package lenspyx (ascl:2010.010).

[ascl:2010.008]
Exo-DMC: Exoplanet Detection Map Calculator

The Exoplanet Detection Map Calculator (Exo-DMC) performs statistical analysis of exoplanet surveys results using Monte Carlo methods. Written in Python, it is the latest rendition of the MESS (Multi-purpose Exoplanet Simulation System, ascl:1111.009). Exo-DMC combines the information on the target stars with instrument detection limits to estimate the probability of detection of companions within a user defined range of masses and physical separations, ultimately generating detection probability maps. The software allows for a high level of flexibility in terms of possible assumptions on the synthetic planet population to be used for the determination of the detection probability.

[ascl:2010.007]
stella: Stellar flares identifier

stella creates and trains a neural network to identify stellar flares. Within stella, users can simulate flares as a training set, run a neural network, and feed in their own data to the neural network model. The software returns a probability at each data point as to whether that data point is part of a flare; the code can also characterize the flares identified.

[ascl:2010.006]
LaSSI: Large-Scale Structure Information

LaSSI produces forecasts for the LSST 3x2 point functions analysis, or the LSSTxCMB S4 and LSSTxSO 6x2 point functions analyses using a Fisher matrix. It computes the auto and cross correlations of galaxy number density, galaxy shear and CMB lensing convergence. The software includes the effect of Gaussian and outlier photo-z errors, shear multiplicative bias, linear galaxy bias, and extensions to ΛCDM.

[ascl:2010.005]
GRAPUS: GRAvitational instability PopUlation Synthesis

GRAPUS (GRAvitational instability PopUlation Synthesis) executes population synthesis modeling of self-gravitating disc fragmentation and tidal downsizing in protostellar discs. It reads in pre-run 1D viscous disc models of self-gravitating discs and computes where fragmentation will occur and the initial fragment mass. GRAPUS then allows these fragment embryos to evolve under various forces, including quasistatic collapse of the embryo, growth and sedimentation of the dust inside the embryo, and the formation of solid cores. The software also evolves migration due to embryo-disc interactions and tidal disruption of the embryo, and can optionally determine gravitational interactions with neighboring embryos.

[ascl:2010.004]
TACHE: TensoriAl Classification of Hydrodynamic Elements

TACHE (TensoriAl Classification of Hydrodynamic Elements) performs classification of the eigenvalues of either the tidal tensor or the velocity shear tensor at the point of a smoothed particle. This provides local information as to how matter is collapsing or flowing, respectively, in particular what stable manifold is being produced. The code reads in smoothed particle hydrodynamics (SPH) snapshot files in sphNG format and computes neighbor lists for SPH data and either the (symmetric) velocity shear tensor or tidal tensor and their eigenvalues/eigenvectors. It classifies fluid elements by number of "positive" eigenvalues and permits decomposition of snapshots into classified components; it also includes several Python plotting scripts.

[ascl:2010.003]
stsynphot: synphot for HST and JWST

An extension to synphot (ascl:1811.001), stsynphot implements synthetic photometry package for HST and JWST support. The software constructs spectra from various grids of model atmosphere spectra, parameterized spectrum models, and atlases of stellar spectrophotometry. It also simulates observations specific to HST and JWST, computes photometric calibration parameters for any supported instrument mode, and plots instrument-specific sensitivity curves and calibration target spectra.

[ascl:2010.002]
GSpec: Gamma-ray Burst Monitor analyzer

GSpec analyzes the Fermi mission's Gamma-ray Burst Monitor (GBM) data via a user-interactive GUI. The software provides a seamless interface to XSPEC (ascl:9910.005). It allows users to create their own Python scripts using the included libraries, and to define additional data reduction techniques, such as background fitting/estimation and data binning, as Python-based plugins. It is part of a larger effort to produce a set of GBM data tools to allow the broader community to analyze all aspects of GBM data, including the continuous data that GBM produces. GSpec is similar to RMfit (ascl:1409.011), a GUI-based spectral analysis code that specializes in the analysis of GBM trigger data, and is intended to eventually replace that IDL package.

[ascl:2010.001]
MBF: MOLSCAT 2020, BOUND, and FIELD for atomic and molecular collisions

MOLSCAT, which supercedes MOLSCAT version 14 (ascl:1206.004), performs non-reactive quantum scattering calculations for atomic and molecular collisions using coupled-channel methods. Simple atom-molecule and molecule-molecule collision types are coded internally and additional ones may be handled with plug-in routines. Plug-in routines may include external magnetic, electric or photon fields (and combinations of them).

The package also includes BOUND, which performs calculations of bound-state energies in weakly bound atomic and molecular systems using coupled-channel methods, and FIELD, a development of BOUND that locates values of external fields at which a bound state exists with a specified energy. Though the three programs have different applications, they use closely related methods, share many subroutines, and are released with a single code base.

[ascl:2009.025]
Binary-Speckle: Binary or triple star parameters

Binary-Speckle reduces Speckle or AO data from the raw data to deconvolved images (in Fourier space), to determine the parameters of a binary or triple, and to find limits for undetected companion stars.

[ascl:2009.024]
MSL: Mining for Substructure Lenses

MSL applies simulation-based inference techniques to the problem of substructure inference in galaxy-galaxy strong lenses. It leverages additional information extracted from the simulator, then trains neural networks to estimate likelihood ratios associated with population-level parameters characterizing dark matter substructure. The package including five high-level scripts which run the simulation and create samples, combing multiple simulation runs into a single file to use for training, then train the neural networks. After training, the estimated likelihood ratio is tested, and calibrated network predictions are made based on histograms of the network output.

[ascl:2009.023]
DASTCOM5: JPL small-body data browser

DASTCOM5 is a portable direct-access database containing all NASA/JPL asteroid and comet orbit solutions, and the software to access it. Available data include orbital elements, orbit diagrams, physical parameters, and discovery circumstances. A JPL implementation of the software is available at http://ssd.jpl.nasa.gov/sbdb.cgi.

[ascl:2009.022]
Harmonia: Hybrid-basis inference for large-scale galaxy clustering

Harmonia combines clustering statistics decomposed in spherical and Cartesian Fourier bases for large-scale galaxy clustering likelihood analysis. Optimal weighting schemes for spherical Fourier analysis can also be readily implemented using the code.

[ascl:2009.021]
Chrono: Multi-physics simulation engine

Tasora, Alessandro; Serban, Radu; Mazhar, Hammad; Pazouki, Arman; Melanz, Daniel; Fleischmann, Jonathan; Taylor, Michael; Sugiyama, Hiroyuki; Negrut, Dan

Chrono is a physics-based modelling and simulation infrastructure implemented in C++. It can handle multibody dynamics, collision detection, and granular flows, among many other physical processes. Though the applications for which Chrono has been used most often are vehicle dynamics, robotics, and machine design, it has been used to simulate asteroid aggregation and granular systems for astrophysics research. Chrono is written in C++; a Python version, PyChrono, is also available.

[ascl:2009.020]
cosmoFns: Functions for observational cosmology

cosmoFns computes distances, times, luminosities, and other quantities useful in observational cosmology, including molecular line observations. Written in R and coded for a flat universe, it contains functions for rest-frame line and luminosities, cosmic lookback time given z and cosmological parameters, and differential comoving volume. cosmoFns also computes comoving, luminosity, and angular diameter distances and molecular mass, among other quantities.

[ascl:2009.019]
FLEET: Finding Luminous and Exotic Extragalactic Transients

Gomez, Sebastian; Berger, Edo; Blanchard, Peter K.; Hosseinzadeh, Griffin; Nicholl, Matt; Villar, V. Ashley; Yin, Yao

FLEET (Finding Luminous and Exotic Extragalactic Transients) is a machine-learning pipeline that predicts the probability of a transient to be a superluminous supernova. With light curve and contextual host galaxy information, it uses a random forest algorithm to rapidly identify SLSN-I without the need for redshift information.

[ascl:2009.018]
CRAC: Cosmology R Analysis Code

CRAC (Cosmology R Analysis Code) provides R functions for cosmology. Its main functions are similar to the Python library CosmoloPy (ascl:2009.017); for example, it implements functions to compute spherical geometric quantities for cosmological research.

[ascl:2009.017]
CosmoloPy: Cosmology package for Python

CosmoloPy is a suite of cosmology routines built on NumPy/SciPy. Its capabilities include various cosmological densities, distance measures, and galaxy luminosity functions (Schecter functions). It also offers pre-defined sets of cosmological parameters (*e.g.*, from WMAP), conversion in and out of the AB magnitude system, and the reionization of the IGM. Functions take cosmological parameters (which can be numpy arrays) as keywords and ignore any extra keywords, making it possible to build a dictionary of cosmological parameters and pass it to any function.

[ascl:2009.016]
halomod: Flexible interface for the halo model of dark matter halos

halomod calculates cosmological halo model and HOD quantities. It is built on HMF (ascl:1412.006); it retains that code's features and provides extended components for the halo model, including numerous halo bias models, including scale-dependent bias, basic concentration-mass-redshift relations, and several plug-and-play halo-exclusion models. halomod includes built-in HOD parameterizations and halo profiles, support for WDM models, and all basic quantities such as 3D correlations and power spectra, and also several derived quantities such as effective bias and satellite fraction. In addition, it offers a simple routine for populating a halo catalog with galaxies via a HOD. halomod is flexible and modular, making it easily extendable.

[ascl:2009.015]
rcosmo: Cosmic Microwave Background data analysis

rcosmo provides information processing, visualization, manipulation and spatial statistical analysis of Cosmic Microwave Background (CMB) radiation and other spherical data stored in or converted to HEALPix coordinates. The package has more than 100 different functions, and can perform spherical geometry, manipulate CMB and other spherical data, and visualize HEALPix data. rcosmo can also perform statistical analysis of CMB and spherical data, and transforme spherical data in cartesian and geographic coordinates into HEALPix format.

[ascl:2009.014]
pySpectrum: Power spectrum and bispectrum calculator

pySpectrum calculates the power spectrum and bispectrum for galaxies, halos, and dark matter.

[ascl:2009.013]
AstroVaDEr: Unsupervised clustering and synthetic image generation

AstroVaDEr (Astronomical Variational Deep Embedder) performs unsupervised clustering and synthetic image generation using astronomical imaging catalogs to classify their morphologies. This variational autoencoder leverages improvements to the variational deep clustering (VDC) paradigm; its variational inference properties allow the network to be employed as a generative network. AstroVaDEr can be adapted to various surveys and image classification problems.

[ascl:2009.012]
minot: Modeling framework for diffuse components in galaxy clusters

Adam, R.; Goksu, H.; Leingärtner-Goth, A.; Ettori, S.; Gnatyk, R.; Hnatyk, B.; Hütten, M.; Pérez-Romero, J.; Sánchez-Conde, M. A.; Sergijenko, O.

minot (Modeling of the ICM (Non-)thermal content and Observables prediction Tools) provides a self-consistent modeling framework for the thermal and non-thermal diffuse components in galaxy clusters and predictions multi-wavelength observables. The framework sets or modifies the cluster object according to set parameters and defines the physical and observational properties, which can include thermal gas and CR physics, tSZ, inverse Compton, and radio synchotron. minot then generates outputs, including model parameters, plots, and relationships between models.

[ascl:2009.011]
PyWST: WST and RWST for astrophysics

PyWST performs statistical analyses of two-dimensional data with the Wavelet Scattering Transform (WST) and the Reduced Wavelet Scattering Transform (RWST). The WST/RWST provides convenient sets of coefficients for describing non-Gaussian data in a comprehensive way.

[ascl:2009.010]
MLG: Microlensing with Gaia

MLG simulates Gaia measurements for predicted astrometric microlensing events. It fits the motion of the lens and source simultaneously and reconstructs the 11 parameters of the lensing event. For lenses passing by multiple background sources, it also fits the motion of all background sources and the lens simultaneously. A Monte-Carlo simulation is used to determine the achievable precision of the mass determination.

[ascl:2009.009]
MADHAT: Gamma-ray emission analyzer

Boddy, Kimberly K.; Hill, Stephen; Kumar, Jason; Sandick, Pearl; Haghi, Barmak Shams Es; Marfatia, Danny

MADHAT (Model-Agnostic Dark Halo Analysis Tool) analyzes gamma-ray emission from dwarf satellite galaxies and dwarf galaxy candidates due to dark matter annihilation, dark matter decay, or other nonstandard or unknown astrophysics. The tool is data-driven and model-independent, and provides statistical upper bounds on the number of observed photons in excess of the number expected using a stacked analysis of any selected set of dwarf targets. MADHAT also calculates the resulting bounds on the properties of dark matter under any assumptions the user makes regarding dark sector particle physics or astrophysics.

[ascl:2009.008]
Paramo: PArticle and RAdiation MOnitor

Paramo (PArticle and RAdiation MOnitor) numerically solves the Fokker-Planck kinetic equation, which is used to model the dynamics of a particle distribution function, using a robust implicit method, for the proper modeling of the acceleration processes, and accounts for accurate cooling coefficient (*e.g.*, radiative cooling with Klein-Nishina corrections). The numerical solution at every time step is used to calculate radiations processes, namely synchrotron and IC, with sophisticated numerical techniques, obtaining the multi-wavelength spectral evolution of the system.

[ascl:2009.007]
J plots: Tool for characterizing 2D and 3D structures in the interstellar medium

J plots classifies and quantifies a pixelated structure, based on its principal moments of inertia, thus enabling automatic detection and objective comparisons of centrally concentrated structures (cores), elongated structures (filaments) and hollow circular structures (bubbles) from the main population of slightly irregular blobs that make up most astronomical images. Examples of how to analyze 2D or 3D datasets, enabling an unbiased analysis and comparison of simulated and observed structures are provided along with the Python code.

[ascl:2009.006]
SPInS: Stellar Parameters INferred Systematically

SPInS (Stellar Parameters INferred Systematically) provides the age, mass, and radius of a star, among other parameters, from a set of photometric, spectroscopic, interferometric, and/or asteroseismic observational constraints; it also generates error bars and correlations. Derived from AIMS (ascl:1611.014), it relies on a stellar model grid and uses a Bayesian approach to find the PDF of stellar parameters from a set of classical constraints. The heart of SPInS is a MCMC solver coupled with interpolation within a pre-computed stellar model grid. The code can consider priors such as the IMF or SFR and can characterize single stars or coeval stars, such as members of binary systems or of stellar clusters.

[ascl:2009.005]
CASI-3D: Convolutional Approach to Structure Identification-3D

CASI-3D identifies signatures of stellar feedback in molecular line spectra, such as 12CO and 13CO, using deep learning. The code is developed from CASI-2D (ascl:1905.023) and exploits the full 3D spectral information.

[ascl:2009.004]
ISPy3: Integrated-light Spectroscopy for Python3

The ISPy3 suite of Python routines models and analyzes integrated-light spectra of stars and stellar populations. The actual spectral modeling and related tasks such as setting up model atmospheres is done via external codes. Currently, the Kurucz codes (ATLAS/SYNTHE) and MARCS/TurboSpectrum are supported, though implementing other similar codes should be relatively straight forward.

[ascl:2009.003]
oxkat: Semi-automated imaging of MeerKAT observations

oxkat semi-automatically performs calibration and imaging of data from the MeerKAT radio telescope. Taking as input raw visibilities in Measurement Set format, the entire processing workflow is covered, from flagging and reference calibration, to imaging and self-calibration, and (optionally) direction-dependent calibration. The oxkat scripts use Python, and draw on numerous existing radio astronomy packages, including CASA (ascl:1107.013), WSClean (ascl:1408.023), and CubiCal (ascl:1805.031), among others, that are containerized using Singularity. Submission scripts for slurm and PBS job schedulers are automatically generated where necessary, catering for HPC facilities that are commonly used for processing MeerKAT data.

[ascl:2009.002]
vlt-sphere: Automatic VLT/SPHERE data reduction and analysis

The high-contrast imager SPHERE at the Very Large Telescope combines extreme adaptive optics and coronagraphy to directly image exoplanets in the near-infrared. The vlt-sphere package enables easy reduction of the data coming from IRDIS and IFS, the two near-infrared subsystems of SPHERE. The package relies on the official ESO pipeline (ascl:1402.010), which must be installed separately.

[ascl:2009.001]
JetSeT: Numerical modeling and SED fitting tool for relativistic jets

JetSeT reproduces radiative and accelerative processes acting in relativistic jets and fits the numerical models to observed data. This C/Python framework re-bins observed data, can define data sets, and binds to astropy tables and quantities. It can use Synchrotron Self-Compton (SSC), external Compton (EC) and EC against the CMB when defining complex numerical radiative scenarios. JetSeT can constrain the model in the pre-fitting stage based on accurate and already published phenomenological trends starting from parameters such as spectral indices, peak fluxes and frequencies, and spectral curvatures. The package fits multiwavelength SEDs using both frequentist approach and Bayesian MCMC sampling, and also provides self-consistent temporal evolution of the plasma under the effect of radiative and accelerative processes for both first order and second order (stochastic acceleration) processes.

Previous12345678910111213141516171819202122232425**26**27282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172Next

Would you like to view a random code?