**➥ Tip!** Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1102.008]
PMFAST: Towards Optimal Parallel PM N-body Codes

The parallel PM N-body code PMFAST is cost-effective and memory-efficient. PMFAST is based on a two-level mesh gravity solver where the gravitational forces are separated into long and short range components. The decomposition scheme minimizes communication costs and allows tolerance for slow networks. The code approaches optimality in several dimensions. The force computations are local and exploit highly optimized vendor FFT libraries. It features minimal memory overhead, with the particle positions and velocities being the main cost. The code features support for distributed and shared memory parallelization through the use of MPI and OpenMP, respectively.

The current release version uses two grid levels on a slab decomposition, with periodic boundary conditions for cosmological applications. Open boundary conditions could be added with little computational overhead. Timing information and results from a recent cosmological production run of the code using a 3712^3 mesh with 6.4 x 10^9 particles are available.

[ascl:1102.015]
PMFASTIC: Initial condition generator for PMFAST

PMFASTIC is a parallel initial condition generator, a slab decomposition Fortran 90 parallel cosmological initial condition generator for use with PMFAST (ascl:1102.008). Files required for generating initial dark matter particle distributions and instructions are included, however one would require CMBFAST (ascl:9909.004) to create alternative transfer functions.

[ascl:1208.018]
CUBEP3M: High performance P3M N-body code

Harnois-Deraps, Joachim; Pen, Ue-Li; Iliev, Ilian T.; Merz, Hugh; Emberson, J. D.; Desjacques, Vincent

CUBEP^{3}M is a high performance cosmological N-body code which has many utilities and extensions, including a runtime halo finder, a non-Gaussian initial conditions generator, a tuneable accuracy, and a system of unique particle identification. CUBEP^{3}M is fast, has a memory imprint up to three times lower than other widely used N-body codes, and has been run on up to 20,000 cores, achieving close to ideal weak scaling even at this problem size. It is well suited and has already been used for a broad number of science applications that require either large samples of non-linear realizations or very large dark matter N-body simulations, including cosmological reionization, baryonic acoustic oscillations, weak lensing or non-Gaussian statistics.

[ascl:1304.015]
TVD: Total Variation Diminishing code

TVD solves the magnetohydrodynamic (MHD) equations by updating the fluid variables along each direction using the flux-conservative, second-order, total variation diminishing (TVD), upwind scheme of Jin & Xin. The magnetic field is updated separately in two-dimensional advection-constraint steps. The electromotive force (EMF) is computed in the advection step using the TVD scheme, and this same EMF is used immediately in the constraint step in order to preserve ∇˙B=0 without the need to store intermediate fluxes. The code is extended to three dimensions using operator splitting, and Runge-Kutta is used to get second-order accuracy in time. TVD offers high-resolution per grid cell, second-order accuracy in space and time, and enforcement of the ∇˙B=0 constraint to machine precision. Written in Fortran, It has no memory overhead and is fast. It is also available in a fully scalable message-passing parallel MPI implementation.

[ascl:1804.015]
NR-code: Nonlinear reconstruction code

NR-code applies nonlinear reconstruction to the dark matter density field in redshift space and solves for the nonlinear mapping from the initial Lagrangian positions to the final redshift space positions; this reverses the large-scale bulk flows and improves the precision measurement of the baryon acoustic oscillations (BAO) scale.

[ascl:1805.018]
CUBE: Information-optimized parallel cosmological N-body simulation code

CUBE, written in Coarray Fortran, is a particle-mesh based parallel cosmological N-body simulation code. The memory usage of CUBE can approach as low as 6 bytes per particle. Particle pairwise (PP) force, cosmological neutrinos, spherical overdensity (SO) halofinder are included.