➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
CUBEP3M is a high performance cosmological N-body code which has many utilities and extensions, including a runtime halo finder, a non-Gaussian initial conditions generator, a tuneable accuracy, and a system of unique particle identification. CUBEP3M is fast, has a memory imprint up to three times lower than other widely used N-body codes, and has been run on up to 20,000 cores, achieving close to ideal weak scaling even at this problem size. It is well suited and has already been used for a broad number of science applications that require either large samples of non-linear realizations or very large dark matter N-body simulations, including cosmological reionization, baryonic acoustic oscillations, weak lensing or non-Gaussian statistics.
picasso makes predictions for the thermodynamic properties of the gas in massive dark matter halos from gravity-only cosmological simulations. It combines an analytical model of gas properties as a function of gravitational potential with a neural network predicting the parameters of said model. Written in Python, it combines an implementation of the gas model based on JAX (ascl:2111.002) and Flax (ascl:2504.026), and models that have been pre-trained to reproduce gas properties from hydrodynamic simulations.