Results 2601-2650 of 3572 (3481 ASCL, 91 submitted)
KeplerPORTS calculates the detection efficiency of the DR25 Kepler Pipeline. It uses a detection contour model to quantify the recoverability of transiting planet signals due to the Kepler pipeline, and accurately portrays the ability of the Kepler pipeline to generate a Threshold Crossing Event (TCE) for a given hypothetical planet.
TRINITY statistically connects dark matter halos, galaxies and supermassive black holes (SMBHs) from z=0-10. Constrained by multiple galaxy (0 < z < 10) and SMBH datasets (0 < z < 6.5), the empirical model finds the posterior probability distributions of the halo-galaxy-SMBH connection and SMBH properties, all of which are allowed to evolve with redshift. TRINITY can predict many observational data, such as galaxy stellar mass functions and quasar luminosity functions, and underlying galaxy and SMBH properties, including SMBH Eddington average Eddington ratios. These predictions are made by different code files. There are basically two types of prediction codes: the first type generates observable data given input redshift or redshift invertals; the second type generates galaxy or SMBH properties as a function of host halo mass and redshift.
Persistent_Homology_LSS analyzes halo catalogs using persistent homology to constrain cosmological parameters. It implements persistent homology on a point cloud composed of halos positions in a cubic box from N-body simulations of the universe at large scales. The output of the code are persistence diagrams and images that are used to constrain cosmological parameters from the halo catalog.
The HERMES (High-Energy Radiative MESsengers) computational framework for line of sight integration creates sky maps in the HEALPix-compatibile format of various galactic radiative processes, including Faraday rotation, synchrotron and free-free radio emission, gamma-ray emission from pion-decay, bremsstrahlung and inverse-Compton. The code is written in C++ and provides numerous integrators, including dispersion measure, rotation measure, and Gamma-ray emissions from Dark Matter annihilation, among others.
MALU visualizes integral field spectroscopy (IFS) data such as CALIFA, MANGA, SAMI or MUSE data producing fully interactive plots. The tool is not specific to any instrument. It is available in Python and no installation is required.
Generate simulated radio recombination line observations of HII regions with various internal kinematic structure. Fit single Gaussians to each pixel of the simulated observations and generate images of the fitted Gaussian center and full-width half-maximum (FWHM) linewidth.
This module implements an ad-hoc grism-based spectrograph optical model. It provides a flexible chromatic mapping between the input focal plane and the output detector plane, based on an effective simplified ray-tracing model of the key optical elements defining the spectrograph (collimator, prism, grating, camera), described by a restricted number of physically-motivated distortion parameters.
AUM predicts galaxy abundances, their clustering, and the galaxy-galaxy lensing signal, given the halo occupation distribution of galaxies and the underlying cosmological model. In combination with the measurements of the clustering, abundance, and lensing of galaxies, these routines can be used to perform cosmological parameter inference.
MAPS (Multi-frequency Angular Power Spectrum) extracts two-point statistical information from Epoch of Reionization (EoR) signals observed in three dimensions, with two directions on the sky and the wavelength (or frequency) constituting the third dimension. Rather than assume that the signal has the same statistical properties in all three directions, as the spherically averaged power spectrum (SAPS) does, MAPS does not make these assumptions, making it more natural for radio interferometric observations than SAPS.
WaldoInSky finds anomalous astronomical light curves and their analogs. The package contains four methods: an adaptation of the Unsupervised Random Forest for anomaly detection in light curves that operates on the light curve points and their power spectra; two manifold-learning methods (the t-SNE and UMAP) that operate on the DMDT maps (image representations of the light curves), and that can be used to find analog light curves in the low-dimensional representation; and an Isolation Forest method for evaluating approaches of light curve pre-processing, before they are passed to the anomaly detectors. WaldoInSky also contain code for random sparsification of light curves.
millennium-tap-query is a simple wrapper for the Python package requests to deal with connections to the Millennium TAP Web Client. With this tool you can perform basic or advanced queries to the Millennium Simulation database and download the data products. millennium-tap-query is similar to the TAP query tool in the German Astrophysical Virtual Observatory (GAVO) VOtables package.
viper (Velocity and IP EstimatoR) measures differential radial velocities from stellar spectra taken through iodine or other gas cells. It convolves the product of a stellar template and a gas cell spectrum with an instrumental profile. Via least square fitting, it optimizes the parameters of the instrumental profile, the wavelength solution, flux normalization, and the stellar Doppler shift. viper offers various functions to describe the instrumental profile such as Gaussian, super-Gaussian, skewed Gaussian or mixtures of Gaussians. The code is developed for echelle spectra; it can handle data from CES, CRIRES+, KECK, OES, TCES, and UVES, and additional instruments can easily be added. A graphical interface facilitates the work with numerous flexible options.
catwoman models asymmetric transit lightcurves. Written in Python, it calculates light curves for any radially symmetric stellar limb darkening law, and where planets are modeled as two semi-circles of different radii. Catwoman is built on the batman library (ascl:1510.002) and uses its integration algorithm.
CatBoost is a machine learning method based on gradient boosting over decision trees and can be used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. It supports both numerical and categorical features and computation on CPU and GPU, and is fast and scalable. Visualization tools are also included in CatBoost.
caesar-rest is a REST-ful web service for astronomical source extraction and classification with the caesar source extractor [ascl:1807.015]. The software is developed in python and consists of containerized microservices, deployable on standalone servers or on a distributed cloud infrastructure. The core component is the REST web application, based on the Flask framework and providing APIs for managing the input data (e.g. data upload/download/removal) and source finding jobs (e.g. submit, get status, get outputs) with different job management systems (Kubernetes, Slurm, Celery). Additional services (AAI, user DB, log storage, job monitor, accounting) enable the user authentication, the storage and retrieval of user data and job information, the monitoring of submitted jobs, and the aggregation of service logs and user data/job stats.
FIREFLY (Fitting IteRativEly For Likelihood analYsis) derives stellar population properties of stellar systems, whether observed galaxy or star cluster spectra or model spectra from simulations. The code fits combinations of single-burst stellar population models to spectroscopic data following an iterative best-fitting process controlled by the Bayesian Information Criterion without applying priors. Solutions within a statistical cut are retained with their weight, which is arbitrary. No additive or multiplicative polynomia are used to adjust the spectral shape and no regularization is imposed. This fitting freedom allows mapping of the effect of intrinsic spectral energy distribution (SED) degeneracies, such as age, metallicity, dust reddening on stellar population properties, and quantifying the effect of varying input model components on such properties.
Spectra-Without-Windows (formerly called BOSS-Without-Windows) analyzes Baryon Oscillation Spectroscopic Survey (BOSS) DR12 data using quadratic and cubic estimators. It contains analysis codes to estimate unwindowed power spectra and unwindowed bispectra. It also supplies the raw power and bispectrum spectrum measurements of BOSS and 999 Patchy simulations, and contains a utility function to generate the background number density, n(r) from the survey mask and n(z) distribution. This code has been replaced by the newer and more powerful 3D polyspectrum code PolyBin3D (ascl:2404.006).
The NRDD_constraints tool provides simple interpolating functions written in Python that return the most constraining limit on the dark matter-nucleon scattering cross section for a list of non-relativistic effective operators. The package contains four files: the main code, NRDD_constraints.py; a simple driver, NRDD_constraints-example.py; and two data files, NRDD_data1.npy and NRDD_data2.npy
AMOEBA (Automated Molecular Excitation Bayesian line-fitting Algorithm) employs a Bayesian approach to Gaussian decomposition, resulting in an objective and statistically robust identification of individual clouds along the line-of-sight. It uses the Python implementation of Goodman & Weare's Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler emcee (ascl:1303.002) to sample the posterior probability distribution and numerically evaluate the integrals required to compute the Bayes Factor. Amoeba takes as input a set of OH optical depth spectra and a set of expected brightness temperature spectra that are obtained by measuring the brightness temperature towards the bright background continuum source (the "on-source" observations), and in a pattern surrounding the continuum source (the "off-source" observations). Amoeba can also take as input a set of OH optical depth spectra only, and also allows input of an arbitrary number of spectra to be fit simultaneously.
StelNet predicts mass and age from absolute luminosity and effective temperature for stars with close to solar metallicity. It uses a Deep Neural Network trained on stellar evolutionary tracks. The underlying model makes no assumption on the evolutionary stage and includes the pre-main sequence phase. A mix of models are trained and bootstrapped to quantify the uncertainty of the model, and data is through all trained models to provide a predictive distribution from which an expectation value and uncertainty level can be estimated.
ELISa models light curves of close eclipsing binaries. It models surfaces of detached, semi-detached, and over-contact binaries, generates light curves, and generates stellar spots with given longitude, latitude, radius, and temperature. It can also fit radial velocity curves and light curves via the implementation of the non-linear least squares method and also via Markov Chain Monte Carlo method.
The neural network-based emulator Chemulator advances the gas temperature and chemical abundances of a single position in an astrophysical gas. It is accurate on a single timestep and stable over many iterations with decreased accuracy, though performs less well at low visual extinctions. The code is useful for applications such as large scale ISM modeling; by retraining the emulator for a given parameter space, Chemulator could also perform more specialized applications such as planetary atmosphere modeling.
AutoProf performs basic and advanced non-parametric galaxy image analysis. The pipeline's design allows for fast startup and easy implementation; the package offers a suite of robust default and optional tools for surface brightness profile extractions and related methods. AUTOPROF is highly extensible and can be adapted for a variety of applications, providing flexibility for exploring new ideas and supporting advanced users.
Cosmic-CoNN detects cosmic rays (CR) in CCD-captured astronomical images. It offers a PyTorch deep-learning framework to train generic, robust CR detection models for ground- and space-based imaging data as well as spectroscopic observations. Cosmic-CoNN also includes a suite of tools, including console commands, a web app, and Python APIs, to make deep-learning models easily accessible.
PIPS analyzes the lightcurves of astronomical objects whose brightness changes periodically. Originally developed to determine the periods of RR Lyrae variable stars, the code offers many features designed for variable star analysis and can obtain period values for almost any type of lightcurve with both speed and accuracy. PIPS determines periods through several different methods, analyzes the morphology of lightcurves via Fourier analysis, estimates the statistical significance of the detected signal, and determines stellar properties based on pre-existing stellar models.
DBSP_DRP reduces data from the Palomar spectrograph DBSP. Built on top of PypeIt (ascl:1911.004), it automates the reduction, fluxing, telluric correction, and combining of the red and blue sides of one night's data. The pipeline also provides several GUIs for easier control of the reduction, with one for selecting which data to reduce, and verifying the correctness of FITS headers in an editable table. Another GUI manually places traces for a sort of manually "forced" spectroscopy with the -m option, and after manually placing traces, manually selects sky regions and tweaks the FWHM of the manual traces.
ExoPlaSim extends the PlaSim (ascl:2107.019) 3D general climate model to terrestrial exoplanets. It includes the PlaSim general circulation model and modifications that allow this code to run tidally-locked planets, planets with substantially different surface pressures than Earth, planets orbiting stars with different effective temperatures, super-Earths, and more. ExoPlaSim includes the ability to compute carbon-silicate weathering, dynamic orography through the glacier module (though only accumulation and ablation/evaporation/melting are included; glacial flow and spreading are not), and storm climatology.
COSMIC (Compact Object Synthesis and Monte Carlo Investigation Code) generates synthetic populations with an adaptive size based on how the shape of binary parameter distributions change as the number of simulated binaries increases. It implements stellar evolution using SSE (ascl:1303.015) and binary interactions using BSE (ascl:1303.014). COSMIC can also be used to simulate a single binary at a time, a list of multiple binaries, a grid of binaries, or a fixed population size as well as restart binaries at a mid point in their evolution. The code is included in CMC-COSMIC (ascl:2108.023).
CMC-COSMIC models dense star clusters using Hénon's method using orbit-averaging collisional stellar dynamics. It includes all the relevant physics for modeling dense spherical star clusters, such as strong dynamical encounters, single and binary stellar evolution, central massive black holes, three-body binary formation, and relativistic dynamics, among others. CMC is parallelized using the Message Passing Interface (MPI), and is pinned to the COSMIC (ascl:2108.022) package for binary population synthesis, which itself was originally based on the version of BSE (ascl:1303.014). COSMIC is currently a submodule within CMC, ensuring that any cluster simulations or binary populations are integrated with the same physics.
iminuit is a Jupyter-friendly Python interface for the Minuit2 C++ library maintained by CERN's ROOT team. It can be used as a general robust function minimization method, but is most commonly used for likelihood fits of models to data, and to get model parameter error estimates from likelihood profile analysis.
SORA optimally analyzes stellar occultation data. The library includes processes starting on the prediction of such events to the resulting size, shape and position of the Solar System object and can be used to build pipelines to analyze stellar occultation data. A stellar occultation is defined by the occulting body (Body), the occulted star (Star), and the time of the occultation. On the other hand, each observational station (Observer) will be associated with their light curve (LightCurve). SORA has tasks that allow the user to determine the immersion and emersion times and project them to the tangent sky plane, using the information within the Observer, Body and Star Objects. That projection will lead to chords that will be used to obtain the object’s apparent size, shape and position at the moment of the occultation. Automatic processes optimize the reduction of typical events. However, users have full control over the parameters and methods and can make changes in every step of the process.
An attempt at creating a common pythonic framework for visual and infrared telescope instrument data simulators.
Templates and helper functions for creating on-sky Source description objects for the ScopeSim instrument data simulation engine.
A reference database for astronomical instrument and telescope characteristics for all types of visual and infrared systems. Instrument packages are used in conjunction with the ScopeSim instrument data simulator.
A python package created around Eric Gendron’s code for analytically (and quickly) generating field-varying SCAO PSFs for the ELT.
A super lightweight interface in Python to load spectra from the Pickles 1998 (stellar) and Brown 2014 (galactic) spectral catalogues
gammaALPs calculates the conversion probability between photons and axions/axion-like particles in various astrophysical magnetic fields. Though focused on environments relevant to mixing between gamma rays and ALPs, this suite, written in Python, can also be used for broader applications. The code also implements various models of astrophysical magnetic fields, which can be useful for applications beyond ALP searches.
alpconv calculates the alp-photon conversion by calculating the degree of irregularity of the spectrum, in contract to some other methods that fit the source's spectrum with both null and ALP models and then compare the goodness of fit between the two.
The VOLK2 (VLBI Observation for transient Localization Keen Searcher) pipeline conducts single pulse searches and localization in regular VLBI observations as well as single pulse detections from known sources in dedicated observations. In VOLKS2, the search and localization are two independent steps. The search step takes the idea of geodetic VLBI post processing, which fully utilizes the cross spectrum fringe phase information to maximize the signal power. Compared with auto spectrum based method, it is able to extract single pulses from highly RFI contaminated data. The localization uses the geodetic VLBI solving methods, which derives the single pulse location by solving a set of linear equations given the relation between the residual delay and the offset to a priori position.
DviSukta calculates the Spherically Averaged Bispectrum (SABS). The code is based on an optimized direct estimation method, is written in C, and is parallelized. DviSukta starts by reading the real space gridded data and performing a 3D Fourier transform of it. Alternatively, it starts by reading the data already in Fourier space. The grid spacing, number of k1 bins, number of n bins, and number of cos(theta) bins need to be specified in the input file.
SoFiA 2 is a fully automated spectral-line source finding pipeline originally intended for the detection of galaxies in large HI data cubes. It is a reimplementation of parts of the original SoFiA pipeline (ascl:1412.001) in the C programming language and uses OpenMP for multithreading, making it substantially faster and more memory-efficient than its predecessor. At its core, SoFiA 2 uses the Smooth + Clip algorithm for source finding which operates by spatially and spectrally smoothing the data on multiple scales and applying a user-defined flux threshold relative to the noise level in each iteration. A wide range of useful preconditioning and post-processing filters is available, including noise normalization, flagging of artifacts and reliability filtering. In addition to global data products and source catalogs in different formats, SoFiA 2 can also generate cutout images and spectra for each individual detection.
The e-MERLIN CASA Pipeline calibrates and processes data from the e-MERLIN radio interferometer. It works on top of CASA (ascl:1107.013) and can convert, concatenate, prepare, flag and calibrate raw to produce advanced calibrated products for both continuum and spectral line data. The main outputs of the data are calibration tables, calibrated data, assessment plots, preliminary images of target and calibrator sources and a summary weblog. The pipeline provides an easy, ready-to-use toolkit that delivers calibrated data in a consistent, clear, and repeatable way. A parameters file is used to control the pipeline execution, so optimization of the algorithms is straightforward and reproducible. Good quality images are usually obtained with minimum human intervention.
SkyCalc-iPy (SkyCalc for interactive Python) accesses atmospheric emission and transmission data generated by ESO’s SkyCalc tool interactively with Python. This package is based on the command line tool by ESO for accessing spectra on the ESO SkyCalc server.
pyia provides tools for working with Gaia data. It accesses Gaia data columns as Quantity objects, i.e., with units (e.g., data.parallax will have units ‘milliarcsecond’) , constructs covariance matrices for Gaia data, and generates random samples from the Gaia error distribution per source. pyia can also create SkyCoord objects from Gaia data and execute simple (small) remote queries via the Gaia science archive and automatically fetch the results.
pyFFTW is a pythonic wrapper around FFTW (ascl:1201.015), the speedy FFT library. Both the complex DFT and the real DFT are supported, as well as on arbitrary axes of arbitrary shaped and strided arrays, which makes it almost feature equivalent to standard and real FFT functions of numpy.fft. Additionally, it supports the clongdouble dtype, which numpy.fft does not, and operating FFTW in multithreaded mode.
Frankenstein (frank) fits the 1D radial brightness profile of an interferometric source given a set of visibilities. It uses a Gaussian process that performs the fit in <1 minute for a typical protoplanetary disc continuum dataset. Frankenstein can perform a fit in 2 ways, by running the code directly from the terminal or using the code as a Python module.
Rubble implicitly models the local evolution of dust distributions in size, mass, and surface density by solving the Smoluchowski equation (also known as the coagulation-fragmentation equation) under given disk conditions. The Python package's robustness has been validated by a suite of numerical benchmarks against known analytical and empirical results. Rubble can model prescribed physical processes such as bouncing, modulated mass transfer, regulated dust loss/supply, probabilistic collisional outcomes based on velocity distributions, and more. The package also includes a toolkit for analyzing and visualizing results produced by Rubble.
STAR-MELT extracts and identifies emission lines from FITS files by matching to a compiled reference database of lines. Line profiles are fitted and quantified, allowing for calculations of physical properties across each individual observation. Temporal variations in lines can readily be displayed and quantified. STAR-MELT is also useful for different applications of spectral analysis where emission line identification is required. Standard data formats for spectra are automatically compatible, with user-defined custom formats also available. Any reference database (atomic or molecular) can also be used for line identification.
WimPyDD calculates accurate predictions for the expected rates in WIMP direct–detection experiments within the framework of Galilean–invariant non–relativistic effective theory. The object–oriented customizable Python code handles different scenarios including inelastic scattering, WIMP of arbitrary spin, and a generic velocity distribution of WIMP in the Galactic halo.
The Hough Stream Spotter (HSS) is a stream finding code which transforms individual positions of stars to search for linear structure in discrete data sets. The code requires only the two-dimensional plane of galactic longitude and latitude as input.
Would you like to view a random code?