Results 2601-2650 of 3648 (3551 ASCL, 97 submitted)
pyPETAL produces cross-correlation functions, discrete correlation functions, and mean time lags from multi-band AGN time-series data, combining multiple different codes (including pyCCF (ascl:1805.032), pyZDCF, PyROA (ascl:2107.012), and JAVELIN (ascl:1010.007)) used for active galactic nuclei (AGN) reverberation mapping (RM) analysis into a unified pipeline. This pipeline also implements outlier rejection using Damped Random Walk Gaussian process fitting, and detrending through the LinMix algorithm. pyPETAL implements a weighting scheme for all lag-producing modules, mitigating aliasing in peaks of time lag distributions between light curves. pyPETAL scales to any combination of internal code modules, supporting a variety of computational workflows.
PyPHER (Python-based PSF Homogenization kERnels) computes an homogenization kernel between two PSFs; the code is well-suited for PSF matching applications in both an astronomical or microscopy context. It can warp (rotation + resampling) the PSF images (if necessary), filter images in Fourier space using a regularized Wiener filter, and produce a homogenization kernel. PyPHER requires the pixel scale information to be present in the FITS files, which can if necessary be added by using the provided ADDPIXSCL method.
PyPion reads in Silo (ascl:2103.025) data files from PION (ascl:2103.024) simulations and plots the data. This library works for 1D, 2D, and 3D data files and for any amount of nested-grid levels. The scripts contained in PyPion save the options entered into the command line when the python script is run, open the silo file and save all of the important header variables, open the directory in the silo (or vtk, or fits) file and save the requested variable data (eg. density, temp, etc.), and set up the plotting function and the figure.
The spectroscopy analysis pipeline pyPipe3D produces coherent and easy to distribute and compare parameters of stellar populations and ionized gas; it is suited in particular for data from the most recent optical IFS surveys. The pipeline is build using pyFIT3D, which is the main spectral fitting module included in this package.
pyPplusS calculates the light curves for ringed, oblate or spherical exoplanets in both the uniform and limb darkened cases. It can constrain the oblateness of planets using photometric data only. This code can be used to model light curves of more complicated configurations, including multiple planets, oblate planets, moons, rings, and combinations of these, while properly and efficiently taking into account overlapping areas and limb darkening.
pyprofit is a python wrapper for libprofit (ascl:1612.003).
PyPulse handles PSRFITS files and performs subsequent analyses on pulse profiles.
The Python QSO fitting code (PyQSOFit) measures spectral properties of quasars. Based on Shen's IDL version, this code decomposes different components in the quasar spectrum, e.g., host galaxy, power-law continuum, Fe II component, and emission lines. In addition, it can run Monto Carlo iterations using flux randomization to estimate the uncertainties.
pyqz computes the values of log(Q) [the ionization parameter] and 12+log(O/H) [the oxygen abundance, either total or in the gas phase] for a given set of strong emission lines fluxes from HII regions. The log(Q) and 12+log(O/H) values are interpolated from a finite set of diagnostic line ratio grids computed with the MAPPINGS V code (ascl:1807.005). The grids used by pyqz are chosen to be flat, without wraps, to decouple the influence of log(Q) and 12+log(O/H) on the emission line ratios.
The 1D radiation code PyRADS provides line-by-line spectral resolution. For Earth-like atmospheres, PyRADS currently uses HITRAN 2016 line lists and the MTCKD continuum model. A version for shortwave radiation (scattering) is also available.
pyraf-dbsp is a PyRAF-based (ascl:1207.011) reduction pipeline for optical spectra taken with the Palomar 200-inch Double Beam Spectrograph. The pipeline provides a simplified interface for basic reduction of single-object spectra with minimal overhead. It is suitable for quicklook classification of transients as well as moderate-precision (few km/s) radial velocity work.
PyRAF is a command language for running IRAF tasks that is based on the Python scripting language. It gives users the ability to run IRAF tasks in an environment that has all the power and flexibility of Python. PyRAF can be installed along with an existing IRAF installation; users can then choose to run either PyRAF or the IRAF CL.
Pyrat Bay computes radiative-transfer spectra and fits exoplanet atmospheric properties, and is an efficient, user-friendly Python tool. The package offers transmission or emission spectra of exoplanet transit or eclipses respectively and forward-model or retrieval calculations. The radiative-transfer includes opacity sources from line-by-line molecular absorption, collision-induced absorption, Rayleigh scattering absorption, and more, including Gray aerosol opacities. Pyrat Bay's Bayesian (MCMC) posterior sampling of atmospheric parameters includes molecular abundances, temperature profile, pressure-radius, and Rayleigh and cloud properties.
PyRaTE (Python Radiative Transfer Emission) post-processes astrochemical simulations. This multilevel radiative transfer code uses the escape probablity method to calculate the population densities of the species under consideration. The code can handle all projection angles and geometries and can also be used to produce mock observations of the Goldreich-Kylafis effect. PyRaTE is written in Python; it uses a parallel strategy and relies on the YT analysis toolkit (ascl:1011.022), mpi4py and numba.
Pyriod provides basic period detection and fitting routines for astronomical time series. Written in Python and designed to be run interactively in a Jupyter notebook, it displays and allows the user to interact with time series data, fit frequency solutions, and save figures from the toolbar. It can display original or residuals time series, fold the time series on some frequency, add selected peaks from the periodogram to the model, and refine the fit by computing a least-squared fit of the model using Lmfit (ascl:1606.014).
Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. It can represent any computable probability distribution and scales to large data sets with little overhead compared to hand-written code. The library is implemented with a small core of powerful, composable abstractions. Its high-level abstractions express generative and inference models, but also allows experts to customize inference.
pyro is a simple python-based tutorial on computational methods for hydrodynamics. It includes 2-d solvers for advection, compressible, incompressible, and low Mach number hydrodynamics, diffusion, and multigrid. It is written with ease of understanding in mind. An extensive set of notes that is part of the Open Astrophysics Bookshelf project provides details of the algorithms.
PyROA models quasar light curves where the variability is described using a running optimal average (ROA), and parameters are sampled using Markov Chain Monte Carlo (MCMC) techniques using emcee (ascl:1303.002). Using a Bayesian approach, priors can be used on the sampled parameters. Currently it has three main uses: 1.) Determining the time delay between lightcurves at different wavelengths; 2.) Intercalibrating light curves from multiple telescopes, merging them into a single lightcurve; and 3.) Determining the time delay between images of lensed quasars, where the microlensing effects are also modeled. PyROA also includes a noise model, where there is a parameter for each light curve that adds extra variance to the flux measurments, to account for underestimated errors; this can be turned off if required. Example jupyter notebooks that demonstrate each of the three main uses of the code are provided.
pyRRG measures the 2nd and 4th order moments using a TinyTim model to correct for PSF distortions. The code is invariant to the number exposures and orientation of the drizzle images. pyRRG uses a machine learning algorithm to automatically classify stars and galaxies; this can also be done manually if greater accuracy is needed.
pyRSD computes the theoretical predictions of the redshift-space power spectrum of galaxies. It also includes functionality for fitting data measurements and finding the optimal model parameters, using both MCMC and nonlinear optimization techniques.
The PySALT user package contains the primary reduction and analysis software tools for the SALT telescope. Currently, these tools include basic data reductions for RSS and SALTICAM in both imaging, spectroscopic, and slot modes. Basic analysis software for slot mode data is also provided. These tools are primarily written in python/PyRAF with some additional IRAF code.
PySAP (Python Sparse data Analysis Package) provides a common API for astronomical and neuroimaging datasets and access to iSAP's (ascl:1303.029) Sparse2D executables with both wrappers and bindings. It also offers a graphical user interface for exploring the provided functions and access to application specific plugins.
The Python Satellite Data Analysis Toolkit (pysat) provides a simple and flexible interface for downloading, loading, cleaning, managing, processing, and analyzing space science data. The toolkit supports in situ satellite observations and many different types of ground- and space-based measurements. Its analysis routines are independent of instrument and data source.
pySDR performs local gradient clustering-based sharpened dimensionality reduction (SDR). The library uses the C++ LGCDR_v1 code as its backend.
PySE finds and measures sources in radio telescope images. It is run with several options, such as the detection threshold (a multiple of the local noise), grid size, and the forced clean beam fit, followed by a list of input image files in standard FITS or CASA format. From these, PySe provides a list of found sources; information such as the calculated background image, source list in different formats (e.g. text, region files importable in DS9), and other data may be saved. PySe can be integrated into a pipeline; it was originally written as part of the LOFAR Transient Detection Pipeline (TraP, ascl:1412.011).
Pyshellspec models binary systems with circumstellar matter (e.g. accretion disk, jet, shell), computes the interferometric observables |V2|, arg T3, |T3|, |dV|, and arg dV, and performs comparisons of light curves, spectro-interferometry, spectra, and SED with observations, and both global and local optimization of system parameters. The code solves the inverse problem of finding the stellar and orbital parameters of the stars and circumstellar medium. Pyshellspec is based on the long-characteristic LTE radiation transfer code Shellspec (ascl:1108.017).
pySIDES generates mock catalogs of galaxies in the (sub-)millimeter domain and associates spectral cubes (e.g., for intensity mapping experiments). It produces both continuum and CO, [CII], and [CI] line emissions. pySIDES is the Python version of the Simulated Infrared Dusty Extragalactic Sky (SIDES).
PySM generates full-sky simulations of Galactic foregrounds in intensity and polarization relevant for CMB experiments. The components simulated are thermal dust, synchrotron, AME, free-free, and CMB at a given Nside, with an option to integrate over a top hat bandpass, to add white instrument noise, and to smooth with a given beam. PySM is based on the large-scale Galactic part of Planck Sky Model code and uses some of its inputs.
PySME is a partial reimplementation of Spectroscopy Made Easy (SME, ascl:1202.013), which fits an observed spectrum of a star with a model spectrum. The IDL routines of SME used to call a dynamically linked library of compiled C++ and Fortran programs have been rewritten in Python. In addition, an object oriented paradigm and continuous integration practices, including build automation, self-testing, and frequent builds, have been added.
PYSOLATOR removes the orbital modulation from a binary pulsar and/or its companion. In essence, it subtracts the predicted Roemer delay for the given orbit and then resamples the time series so as to make the signal appear as if it were emitted from the barycenter of the binary system, making the search for pulses easier and faster.
The pYSOVAR code calculates properties for a stack of lightcurves, including simple descriptive statistics (mean, max, min, ...), timing (e.g. Lomb-Scargle periodograms), variability indixes (e.g. Stetson), and color properties (e.g. slope in the color-magnitude diagram). The code is written in python and is closely integrated with astropy tables. Initially, pYSOVAR was written specifically for the analysis of two clusters in the YSOVAR project, using the (not publicly released) YSOVAR database as an input. Additional functionality has been added and the code has become more general; it is now useful for other clusters in the YSOVAR dataset or for other projects that have similar data (lightcurves in one or more bands with a few hundred points for a few thousand objects), though may not work out-of-the-box for different datasets.
pysovo contains basic tools to work with VOEvents. Though written for specific needs, others interested in VOEvents may find it useful to examine.
PySpecKit is a Python spectroscopic analysis and reduction toolkit meant to be generally applicable to optical, infrared, and radio spectra. It is capable of reading FITS-standard and many non-standard file types including CLASS spectra. It contains procedures for line fitting including gaussian and voigt profile fitters, and baseline-subtraction routines. It is capable of more advanced line fitting using arbitrary model grids. Fitting can be done both in batch mode and interactively. PySpecKit also produces publication-quality plots with TeX axis labels and annotations. It is designed to be extensible, allowing user-written reader, writer, and fitting routines to be "plugged in." It is actively under development and currently in the 'alpha' phase, with plans for a beta release.
pySpectrum calculates the power spectrum and bispectrum for galaxies, halos, and dark matter.
pySPEDAS (Python-based Space Physics Environment Data Analysis Software) supports multi-mission, multi-instrument retrieval, analysis, and visualization of heliophysics time series data. A Python implementation of SPEDAS (ascl:2405.001), it supports most of the capabilities of SPEDAS; it can load heliophysics data sets from more than 30 space-based and ground-based missions, coordinate transforms, interpolation routines, and unit conversions, and provide interactive access to numerous data sets. pySPEDAS also creates multi-mission, multi-instrument figures, includes field and wave analysis tools, and performs magnetic field modeling, among other functions.
PySR performs Symbolic Regression; it uses machine learning to find an interpretable symbolic expression that optimizes some objective. Over a period of several years, PySR has been engineered from the ground up to be (1) as high-performance as possible, (2) as configurable as possible, and (3) easy to use. PySR is developed alongside the Julia library SymbolicRegression.jl, which forms the powerful search engine of PySR. Symbolic regression works best on low-dimensional datasets, but one can also extend these approaches to higher-dimensional spaces by using "Symbolic Distillation" of Neural Networks. Here, one essentially uses symbolic regression to convert a neural net to an analytic equation. Thus, these tools simultaneously present an explicit and powerful way to interpret deep neural networks.
PySSED (Python Stellar Spectral Energy Distributions) downloads and extracts data on multi-wavelength catalogs of astronomical objects and regions of interest and automatically proceses photometry into one or more stellar SEDs. It then fits those SEDs with stellar parameters. PySSED can be run directly from the command line or as a module within a Python environment. The package offers a wide variety plots, including Hertzsprung–Russell diagrams of analyzed objects, angular separation between sources in specific catalogs, and two-dimensional offset between cross-matches.
pystortion provides support for distortion measurements in astronomical imagers. It includes classes to support fitting of bivariate polynomials of arbitrary degree and helper functions for crossmatching catalogs. The crossmatching uses an iterative approach in which a two-dimensional distortion model is fit at every iteration and used to continuously refine the position of extracted sources.
pySYD detects solar-like oscillations and measures global asteroseismic parameters. The code is a python-based implementation of the IDL-based SYD pipeline by Huber et al. (2009), which was extensively used to measure asteroseismic parameters for Kepler stars, and adapts the well-tested methodology from SYD and also improves these existing analyses. It also provides additional capabilities, including an automated best-fit background model selection, parallel processing, the ability to samples for further analyses, and an accessible and command-line friendly interface. PySYD provides best-fit values and uncertainties for the granulation background, frequency of maximum power, large frequency separation, and mean oscillation amplitudes.
pysymlog provides utilities for binning, normalizing colors, wrangling tick marks, and other tasks, in symmetric logarithm space. For numbers spanning positive and negative values, the code works in log scale with a transition through zero, down to some threshold. This is useful for representing data that span many scales such as standard log-space that include values of zero or even negative values. pysymlog provides convenient functions for creating 1D and 2D histograms and symmetric log bins, generating logspace-like arrays through zero and managing matplotlib major and minor ticks in symlog space, as well as bringing symmetric log scaling functionality to plotly.
pysynphot is a synthetic photometry software package suitable for either library or interactive use. Intended as a modern-language successor to the IRAF/STSDAS synphot package, it provides improved algorithms that address known shortcomings in synphot, and its object-oriented design is more easily extensible than synphot's task-oriented approach. It runs under PyRAF (ascl:1207.011), and a backwards compatibility mode is provided that recognizes all spectral and throughput tables, obsmodes, and spectral expressions used by synphot, to facilitate the transition for legacy code.
pyTANSPEC extracts XD-mode spectra automatically from data collected by the TIFR-ARIES Near Infrared Spectrometer (TANSPEC) on India's ground-based 3.6-m Devasthal Optical Telescope at Nainital, India. The TANSPEC offers three modes of observations, imaging with various filters, spectroscopy in the low-resolution prism mode with derived R~ 100-400 and the high-resolution cross-dispersed mode (XD-mode) with derived median R~ 2750 for a slit of width 0.5 arcsec. In the XD-mode, ten cross-dispersed orders are packed in the 2048 x 2048 pixels detector to cover the full wavelength regime. The XD-mode is most utilized; pyTANSPEC provides a dedicated pipeline for consistent data reduction for all orders and to reduces data reduction time. The code requires nominal human intervention only for the quality assurance of the reduced data. Two customized configuration files are used to guide the data reduction. The pipeline creates a log file for all the fits files in a given data directory from its header, identifies correct frames (science, continuum and calibration lamps) based on the user input, and offers an option to the user for eyeballing and accepting/removing of the frames, does the cleaning of raw science frames and yields final wavelength calibrated spectra of all orders simultaneously.
The “sgp4” module is a Python wrapper around the C++ version of the standard SGP4 algorithm for propagating Earth satellite positions from the element sets published by organizations like SpaceTrak and Celestrak. The code is the most recent version, including all of the corrections and bug fixes described in the paper _Revisiting Spacetrack Report #3_ (AIAA 2006-6753) by Vallado, Crawford, Hujsak, and Kelso. The test suite verifies that the Python wrapper returns exactly the coordinates specified in the C++ test cases.
Python-CPL is a framework to configure and execute pipeline recipes written with the Common Pipeline Library (CPL) (ascl:1402.010) with Python2 or Python3. The input, calibration and output data can be specified as FITS files or as astropy.io.fits objects in memory. The package is used to implement the MUSE pipeline in the AstroWISE data management system.
Characterization of the frequency response of coherent radiometric receivers is a key element in estimating the flux of astrophysical emissions, since the measured signal depends on the convolution of the source spectral emission with the instrument band shape. Python-qucs automates the process of preparing input data, running simulations and exporting results of QUCS (Quasi Universal Circuit Simulator) simulations.
PythonPhot is a simple Python translation of DAOPHOT-type (ascl:1104.011) photometry procedures from the IDL AstroLib (Landsman 1993), including aperture and PSF-fitting algorithms, with a few modest additions to increase functionality and ease of use. These codes allow fast, easy, and reliable photometric measurements and are currently used in the Pan-STARRS supernova pipeline and the HST CLASH/CANDELS supernova analysis.
PyTorchDIA is a Difference Image Analysis tool. It is built around the PyTorch machine learning framework and uses automatic differentiation and (optional) GPU support to perform fast optimizations of image models. The code offers quick results and is scalable and flexible.
PyTransit implements optimized versions of the Giménez and Mandel & Agol transit models for exoplanet transit light-curves. The two models are implemented natively in Fortran with OpenMP parallelization, and are accessed by an object-oriented python interface. PyTransit facilitates the analysis of photometric time series of exoplanet transits consisting of hundreds of thousands of data points, and of multipassband transit light curves from spectrophotometric observations. It offers efficient model evaluation for multicolour observations and transmission spectroscopy, built-in supersampling to account for extended exposure times, and routines to calculate the projected planet-to-star distance for circular and eccentric orbits, transit durations, and more.
PyTransport calculates the 2-point and 3-point function of inflationary perturbations produced during multi-field inflation. The core of PyTransport is C++ code which is automatically edited and compiled into a Python module once an inflationary potential is specified. This module can then be called to solve the background inflationary cosmology as well as the evolution of correlations of inflationary perturbations. PyTransport includes two additional modules written in Python, one to perform the editing and compilation, and one containing a suite of functions for common tasks such as looping over the core module to construct spectra and bispectra.
Would you like to view a random code?