Results 3151-3200 of 3551 (3461 ASCL, 90 submitted)

[ascl:1507.002]
SUPERBOX: Particle-multi-mesh code to simulate galaxies

SUPERBOX is a particle-mesh code that uses moving sub-grids to track and resolve high-density peaks in the particle distribution and a nearest grid point force-calculation scheme based on the second derivatives of the potential. The code implements a fast low-storage FFT-algorithm and allows a highly resolved treatment of interactions in clusters of galaxies, such as high-velocity encounters between elliptical galaxies and the tidal disruption of dwarf galaxies, as sub-grids follow the trajectories of individual galaxies. SUPERBOX is efficient in that the computational overhead is kept as slim as possible and is also memory efficient since it uses only one set of grids to treat galaxies in succession.

[ascl:1511.001]
SuperFreq: Numerical determination of fundamental frequencies of an orbit

SuperFreq numerically estimates the fundamental frequencies and orbital actions of pre-computed orbital time series. It is an implementation of a version of the Numerical Analysis of Fundamental Frequencies close to that by Monica Valluri, which itself is an implementation of an algorithm first used by Jacques Laskar.

[ascl:2406.018]
SuperLite: Spectral synthesis code for interacting transients

SuperLite produces synthetic spectra for astrophysical transient phenomena affected by circumstellar interaction. It uses Monte Carlo methods and multigroup structured opacity calculations for semi-implicit, semirelativistic radiation transport in high-velocity shocked outflows, and can reproduce spectra of typical Type Ia, Type IIP, and Type IIn supernovae. SuperLite also generates high-quality spectra that can be compared with observations of transient events, including superluminous supernovae, pulsational pair-instability supernovae, and other peculiar transients.

[ascl:2008.009]
SuperNNova: Photometric classification

SuperNNova performs photometric classification by leveraging recent advances in deep neural networks. It can train either a recurrent neural network or random forest to classify light-curves using only photometric information. It also allows additional information, such as host-galaxy redshift, to be incorporated to improve performance.

[ascl:1109.014]
Supernova Flux-averaging Likelihood Code

Flux-averaging justifies the use of the distance-redshift relation for a smooth universe in the analysis of type Ia supernova (SN Ia) data. Flux-averaging of SN Ia data is required to yield cosmological parameter constraints that are free of the bias induced by weak gravitational lensing. SN Ia data are converted into flux. For a given cosmological model, the distance dependence of the data is removed, then the data are binned in redshift, and placed at the average redshift in each redshift bin. The likelihood of the given cosmological model is then computed using "flux statistics''. These Fortran codes compute the likelihood of an arbitrary cosmological model [with given H(z)/H_0] using flux-averaged Type Ia supernova data.

[ascl:1705.017]
supernovae: Photometric classification of supernovae

Supernovae classifies supernovae using their light curves directly as inputs to a deep recurrent neural network, which learns information from the sequence of observations. Observational time and filter fluxes are used as inputs; since the inputs are agnostic, additional data such as host galaxy information can also be included.

[ascl:2103.019]
SUPERNU: Radiative transfer code for explosive outflows using Monte Carlo methods

SuperNu simulates time-dependent radiation transport in local thermodynamic equilibrium with matter. It applies the methods of Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) for static or homologously expanding spatial grids. The radiation field affects material temperature but does not affect the motion of the fluid. SuperNu may be applied to simulate radiation transport for supernovae with ejecta velocities that are not affected by radiation momentum. The physical opacity calculation includes elements from Hydrogen up to Cobalt. SuperNu is motivated by the ongoing research into the effect of variation in the structure of progenitor star explosions on observables: the brightness and shape of light curves and the temporal evolution of the spectra. Consequently, the code may be used to post-process data from hydrodynamic simulations. SuperNu does not include any capabilities or methods that allow for non-trivial hydrodynamics.

[ascl:1612.015]
Superplot: Graphical interface for plotting and analyzing data

Superplot calculates and plots statistical quantities relevant to parameter inference from a "chain" of samples drawn from a parameter space produced by codes such as MultiNest (ascl:1109.006), BAYES-X (ascl:1505.027), and PolyChord (ascl:1502.011). It offers a graphical interface for browsing a chain of many variables quickly and can produce numerous kinds of publication quality plots, including one- and two-dimensional profile likelihood, three-dimensional scatter plots, and confidence intervals and credible regions. Superplot can also save plots in PDF format, create a summary text file, and export a plot as a pickled object for importing and manipulating in a Python interpreter.

[ascl:2306.016]
SuperRad: Black hole superradiance gravitational waveform modeler

SuperRad models ultralight boson clouds that arise through black hole superradiance. It uses numerical results in the relativistic regime combined with analytic estimates to describe the dynamics and gravitational wave signals of ultralight scalar or vector clouds. Written in Python, SuperRad includes a set of testing routines that check the internal consistency of the package; these tests mainly serve the purpose of ensuring functionality of the waveform model but can also be utilized to check that SuperRad works as intended.

[ascl:2008.014]
SuperRAENN: Supernova photometric classification pipeline

SuperRAENN performs photometric classification of supernovae in the following categories: Type I superluminos supernovae, Type II, Type IIn, Type Ia and Type Ib/c. Though the code is optimized for use with complete (rather than realtime) light curves from the Pan-STARRS Medium Deep Survey, the classifier can be trained on other data. SuperRAENN can be used on a dataset containing both spectroscopically labelled and unlabelled SNe; all events will be used to train the RAENN, while labelled events will be used to train the random forest.

[submitted]
Supervised star, galaxy and QSO classification with sharpened dimensionality reduction

Aims. We explore the use of broadband colors to classify stars, galaxies and QSOs. Specifically, we apply sharpened dimensionality reduction (SDR)-aided classification to this problem, with the aim of enhancing cluster separation in the projections of high-dimensional data clusters to allow for better classification performance and more informative projections.

Methods. The main objective of this work is to apply SDR to large sets of broadband colors derived from the CPz catalog first introduced by Fotopoulou & Paltani (2018) to obtain projections with clusters of star, galaxy and QSO data that exhibit a high degree of separation. The SDR method achieves this by combining density-based clustering with conventional dimensionality-reduction techniques. To make SDR scalable and have out-of-sample ability, we use a deep neural network trained to reproduce the SDR projections. Subsequently classification is done by applying a k-nearest neighbors (k-NN) classifier to the sharpened projections.

Results. Based on a qualitative and quantitative analysis of the embeddings produced by SDR, we find that SDR consistently produces accurate projections with a high degree of cluster separation. A number of projection performance metrics are used to evaluate this separation, including the trustworthiness, continuity, Shepard goodness, and distribution consistency metrics. Using the k-NN classifier and consolidating the results of various data sets we obtain precisions of 99.7%, 98.9%, and 98.5% for classifying stars, galaxies, and QSOs, respectively. Furthermore, we achieve completenesses of 97.8%, 99.3%, and 86.8%, respectively. In addition to classification we explore the structure of the embeddings produced by SDR by cross-matching with data from Gaia DR3, Galaxy Zoo 1 and a catalog of specific star formation rates, stellar masses and dust luminosities. We discover that the embeddings reveal astrophysical information, which allows one to understand the structure of the high-dimensional broadband color data in greater detail.

Conclusions. We find that SDR-aided star, galaxy, and QSO classification performs comparably to another unsupervised learning method using hierarchical density-based spatial clustering of applications with noise (HDBSCAN) but offers advantages in terms of scalability and interpretability. Furthermore, it outperforms traditional color selection methods in terms of QSO classification performance. Overall, we demonstrate the potential of SDR-aided classification to provide an accurate and physically insightful classification of astronomical objects based on their broadband colors.

[ascl:2202.004]
SUPPNet: Spectrum normalization neural network

SUPPNet performs fully automated precise continuum normalization of merged echelle spectra and offers flexible manual fine-tuning, if necessary. The code uses a fully convolutional deep neural network (SUPP Network) trained to predict a pseudo-continuum. The post-processing step uses smoothing splines that give access to regressed knots, which are useful for optional manual corrections. The active learning technique controls possible biases that may arise from training with synthetic spectra and extends the applicability of the method to features absent in this kind of spectra.

[ascl:1403.008]
SURF: Submm User Reduction Facility

SURF reduces data from the SCUBA instrument from the James Clerk Maxwell Telescope. Facilities are provided for reducing all the SCUBA observing modes including jiggle, scan and photometry modes. SURF uses the Starlink environment (ascl:1110.012).

[ascl:1809.007]
surfinBH: Surrogate final black hole properties for mergers of binary black holes

surfinBH predicts the final mass, spin and recoil velocity of the remnant of a binary black hole merger. Trained directly against numerical relativity simulations, these models are extremely accurate, reproducing the results of the simulations at the same level of accuracy as the simulations themselves. Fits such as these play a crucial role in waveform modeling and tests of general relativity with gravitational waves, performed by LIGO.

[ascl:1605.017]
Surprise Calculator: Estimating relative entropy and Surprise between samples

The Surprise is a measure for consistency between posterior distributions and operates in parameter space. It can be used to analyze either the compatibility of separately analyzed posteriors from two datasets, or the posteriors from a Bayesian update. The Surprise Calculator estimates relative entropy and Surprise between two samples, assuming they are Gaussian. The software requires the R package CompQuadForm to estimate the significance of the Surprise, and rpy2 to interface R with Python.

[ascl:1804.016]
surrkick: Black-hole kicks from numerical-relativity surrogate models

surrkick quickly and reliably extract recoils imparted to generic, precessing, black hole binaries. It uses a numerical-relativity surrogate model to obtain the gravitational waveform given a set of binary parameters, and from this waveform directly integrates the gravitational-wave linear momentum flux. This entirely bypasses the need of fitting formulae which are typically used to model black-hole recoils in astrophysical contexts.

[ascl:1208.012]
Swarm-NG: Parallel n-body Integrations

Dindar, Saleh; Ford, Eric B.; Juric, Mario; Young, In Yeo; Gao, Jianwei; Boley, Aaron C.; Nelson, Benjamin; Peters, Jorg

Swarm-NG is a C++ library for the efficient direct integration of many n-body systems using highly-parallel Graphics Processing Units (GPU). Swarm-NG focuses on many few-body systems, e.g., thousands of systems with 3...15 bodies each, as is typical for the study of planetary systems; the code parallelizes the simulation, including both the numerical integration of the equations of motion and the evaluation of forces using NVIDIA's "Compute Unified Device Architecture" (CUDA) on the GPU. Swarm-NG includes optimized implementations of 4th order time-symmetrized Hermite integration and mixed variable symplectic integration as well as several sample codes for other algorithms to illustrate how non-CUDA-savvy users may themselves introduce customized integrators into the Swarm-NG framework. Applications of Swarm-NG include studying the late stages of planet formation, testing the stability of planetary systems and evaluating the goodness-of-fit between many planetary system models and observations of extrasolar planet host stars (e.g., radial velocity, astrometry, transit timing). While Swarm-NG focuses on the parallel integration of many planetary systems,the underlying integrators could be applied to a wide variety of problems that require repeatedly integrating a set of ordinary differential equations many times using different initial conditions and/or parameter values.

[ascl:1010.068]
SWarp: Resampling and Co-adding FITS Images Together

SWarp resamples and co-adds together FITS images using any arbitrary astrometric projection defined in the WCS standard. It operates on pre-reduced images and their weight-maps. Based on the astrometric and photometric calibrations derived at an earlier phase of the pipeline, SWarp re-maps ("warps") the pixels to a perfect projection system, and co-adds them in an optimum way, according to their relative weights. SWarp's astrometric engine is based on a customized version of Calabretta's WCSLib 2.6 and supports all of the projections defined in the 2000 version of the WCS proposal.

[ascl:1303.001]
SWIFT: A solar system integration software package

SWIFT follows the long-term dynamical evolution of a swarm of test particles in the solar system. The code efficiently and accurately handles close approaches between test particles and planets while retaining the powerful features of recently developed mixed variable symplectic integrators. Four integration techniques are included: Wisdom-Holman Mapping; Regularized Mixed Variable Symplectic (RMVS) method; fourth order T+U Symplectic (TU4) method; and Bulirsch-Stoer method. The package is designed so that the calls to each of these look identical so that it is trivial to replace one with another. Complex data manipulations and results can be analyzed with the graphics packace SwiftVis.

[ascl:1805.020]
SWIFT: SPH With Inter-dependent Fine-grained Tasking

Schaller, Matthieu; Gonnet, Pedro; Draper, Peter W.; Chalk, Aidan B. G.; Bower, Richard G.; Willis, James; Hausammann, Loïc

SWIFT runs cosmological simulations on peta-scale machines for solving gravity and SPH. It uses the Fast Multipole Method (FMM) to calculate gravitational forces between nearby particles, combining these with long-range forces provided by a mesh that captures both the periodic nature of the calculation and the expansion of the simulated universe. SWIFT currently uses a single fixed but time-variable softening length for all the particles. Many useful external potentials are also available, such as galaxy haloes or stratified boxes that are used in idealised problems. SWIFT implements a standard LCDM cosmology background expansion and solves the equations in a comoving frame; equations of state of dark-energy evolve with scale-factor. The structure of the code allows implementation for modified-gravity solvers or self-interacting dark matter schemes to be implemented. Many hydrodynamics schemes are implemented in SWIFT and the software allows users to add their own.

[ascl:2309.003]
Swiftbat: Utilities for handing BAT instrument data from the Neil Gehrels Swift Observatory

Swiftbat retrieves, analyzes, and displays data from NASA's Swift spacecraft, especially data from the Swift Burst Alert Telescope (BAT). All BAT data are available from the Swift data archive; however, a few routines in this library use data access methods not available to the general public and thus are useful only to Swift team members. The package also installs a command-line program 'swinfo' that provides Swift Information such as what the MET (onboard-clock) time is, where Swift was pointing, and whether a specific source was above the horizon and/or in the field of view.

[submitted]
Swiftest

Swiftest is a software package designed to model the long-term dynamics of system of bodies in orbit around a dominant central body, such a planetary system around a star, or a satellite system around a planet. The main body of the program is written in Modern Fortran, taking advantage of the object-oriented capabilities included with Fortran 2003 and the parallel capabilities included with Fortran 2008 and Fortran 2018. Swiftest also includes a Python package that allows the user to quickly generate input, run simulations, and process output from the simulations. Swiftest uses a NetCDF output file format which makes data analysis with the Swiftest Python package a streamlined and flexible process for the user. Building off a strong legacy, including its predecessors Swifter and Swift, Swiftest takes the next step in modeling the dynamics of planetary systems by improving the performance and ease of use of software, and by introducing a new collisional fragmentation model. Currently, Swiftest includes the four main symplectic integrators included in its predecessors: WHM, RMVS, HELIO, and SyMBA. In addition, Swiftest also contains the Fraggle model for generating products of collisional fragmentation.

[submitted]
SWIFTGalaxy

SWIFTGalaxy provides a software abstraction of simulated galaxies produced by the SWIFT smoothed particle hydrodynamics code. It extends the SWIFTSimIO module and is tailored to analyses of particles belonging to individual simulated galaxies. It inherits from and extends the functionality of the SWIFTDataset. It understands the output of halo finders and therefore which particles belong to a galaxy, and its integrated properties. The particles occupy a coordinate frame that is enforced to be consistent, such that particles loaded on-the-fly will match e.g. rotations and translations of particles already in memory. Intuitive masking of particle datasets is also enabled. Finally, some utilities to make working in cylindrical and spherical coordinate systems more convenient are also provided.

[ascl:1112.018]
SwiftVis: Data Analysis & Visualization For Planetary Science

SwiftVis is a tool originally developed as part of a rewrite of Swift (ascl:1303.001) to be used for analysis and plotting of simulations performed with Swift and Swifter. The extensibility built into the design has allowed us to make SwiftVis a general purpose analysis and plotting package customized to be usable by the planetary science community at large. SwiftVis is written in Java and has been tested on Windows, Linux, and Mac platforms. Its graphical interface allows users to do complex analysis and plotting without having to write custom code.

[ascl:2012.022]
SWIGLAL: Access LALSuite libraries with Python and Octave scripts

SWIGLAL, a wrapper for and component of the LALSuite (ascl:2012.021) gravitational wave detection and analysis libraries, which are primarily written in C, makes LALSuite routines directly accessible to Python and Octave scripts.

[ascl:1606.001]
SWOC: Spectral Wavelength Optimization Code

SWOC (Spectral Wavelength Optimization Code) determines the wavelength ranges that provide the optimal amount of information to achieve the required science goals for a spectroscopic study. It computes a figure-of-merit for different spectral configurations using a user-defined list of spectral features, and, utilizing a set of flux-calibrated spectra, determines the spectral regions showing the largest differences among the spectra.

[ascl:2110.014]
swordfish: Information yield of counting experiments

Swordfish studies the information yield of counting experiments. It implements at its core a rather general version of a Poisson point process with background uncertainties described by a Gaussian random field, and provides easy access to its information geometrical properties. Based on this information, a number of common and less common tasks can be performed. Swordfish allows quick and accurate forecasts of experimental sensitivities without time-intensive Monte Carlos, mock data generation and likelihood maximization. It can:

- calculate the expected upper limit or discovery reach of an instrument;

- derive expected confidence contours for parameter reconstruction;

- visualize confidence contours as well as the underlying information metric field;

- calculate the information flux, an effective signal-to-noise ratio that accounts for background systematics and component degeneracies; and

- calculate the Euclideanized signal which approximately maps the signal to a new vector which can be used to calculate the Euclidean distance between points.

[ascl:1707.007]
swot: Super W Of Theta

SWOT (Super W Of Theta) computes two-point statistics for very large data sets, based on “divide and conquer” algorithms, mainly, but not limited to data storage in binary trees, approximation at large scale, parellelization (open MPI), and bootstrap and jackknife resampling methods “on the fly”. It currently supports projected and 3D galaxy auto and cross correlations, galaxy-galaxy lensing, and weighted histograms.

[ascl:2302.016]
swyft: Scientific simulation-based inference at scale

swyft implements Truncated Marginal Neural Radio Estimation (TMNRE), a Bayesian parameter inference technique for complex simulation data. The code improves performance by estimating low-dimensional marginal posteriors rather than the joint posteriors of distributions, while also targeting simulations to targets of observational interest via an indicator function. The use of local amortization permits statistical checks, enabling validation of parameters that cannot be performed using sampling-based methods. swyft is also based on stochastic simulations, mapping parameters to observational data, and incorporates a simulator manager.

[ascl:1904.001]
sxrbg: ROSAT X-Ray Background Tool

The ROSAT X-Ray Background Tool (sxrbg) calculates the average X-ray background count rate and statistical uncertainty in each of the six standard bands of the ROSAT All-Sky Survey (RASS) diffuse background maps (R1, R2, R4, R5, R6, R7) for a specified astronomical position and a search region consisting of either a circle with a specified radius or an annulus with specified inner and outer radii centered on the position. The values returned by the tool are in units of 10^-6 counts/second/arcminute^2. sxrbg can also create a count-rate-based spectrum file which can be used with XSpec (ascl:9910.005) to calculate fluxes and offers support for counts statistics (cstat), an alternative method for generating a background spectrum. HEASoft (ascl:1408.004) is a prerequisite for building. The code is in the public domain.

[ascl:1806.019]
SYGMA: Modeling stellar yields for galactic modeling

SYGMA (Stellar Yields for Galactic Modeling Applications) follows the ejecta of simple stellar populations as a function of time to model the enrichment and feedback from simple stellar populations. It is the basic building block of the galaxy code One-zone Model for the Evolution of GAlaxies (OMEGA, ascl:1806.018) and is part of the NuGrid Python Chemical Evolution Environment (NuPyCEE, ascl:1610.015). Stellar yields of AGB and massive stars are calculated with the same nuclear physics and are provided by the NuGrid collaboration.

[ascl:2203.018]
sympy2c: Generating fast C/C++ functions and ODE solvers from symbolic expressions

The Python package sympy2c allows creation and compilation of fast C/C++ based extension modules from symbolic representations. It can create fast code for the solution of high dimensional ODEs, or numerical evaluation of integrals where sympy fails to compute an anti-derivative. Based on the symbolic formulation of a stiff ODE, sympy2c analyzes sparsity patterns in the Jacobian matrix of the ODE, and generates loop-less fast code by unrolling loops in the internally used LU factorization algorithm and by avoiding unnecessary computations involving known zeros.

[ascl:1308.008]
SYN++: Standalone SN spectrum synthesis

SYN++ is a standalone SN spectrum synthesis program. It is a rewrite of the original SYNOW (ascl:1010.055) code in modern C++. It offers further enhancements, a new structured input control file format, and the atomic data files have been repackaged and are more complete than those of SYNOW.

[ascl:1308.007]
SYNAPPS: Forward-modeling of supernova spectroscopy data sets

SYNAPPS is a spectrum fitter embedding a highly parameterized synthetic SN spectrum calculation within a parallel asynchronous optimizer. This open-source code is aimed primarily at the problem of systematically interpreting large sets of SN spectroscopy data.

[submitted]
synchrofit: Python-based synchrotron spectral fitting

The synchrofit (synchrotron fitter) package implements a reduced dimensionality parameterisation of standard synchrotron spectrum models, and provides fitting routines applicable for active galactic nuclei and supernova remnants. The Python code includes the Jaffe-Parola model (JP), Kardashev-Pacholczyk model (KP), and continuous injection models (CI/KGJP) for both constant or Maxwell-Boltzmann magnetic field distributions. An adaptive maximum likelihood algorithm is invoked to fit these models to multi-frequency radio observations; the adaptive mesh is customisable for either optimal precision or computational efficiency. Functions are additionally provided to plot the fitted spectral model with its confidence interval, and to derive the spectral age of the synchrotron emitting particles.

[ascl:1302.014]
SYNMAG Photometry: Catalog-level Matched Colors of Extended Sources

Bundy, Kevin; Hogg, David W.; Higgs, Tim D.; Nichol, Robert C.; Yasuda, Naoki; Masters, Karen L.; Lang, Dustin; Wake, David A.

SYNMAG is a tool for producing synthetic aperture magnitudes to enable fast matched photometry at the catalog level without reprocessing imaging data. Aperture magnitudes are the most widely tabulated flux measurements in survey catalogs; obtaining reliable, matched photometry for galaxies imaged by different observatories represents a key challenge in the era of wide-field surveys spanning more than several hundred square degrees. Methods such as flux fitting, profile fitting, and PSF homogenization followed by matched-aperture photometry are all computationally expensive. An alternative solution called "synthetic aperture photometry" exploits galaxy profile fits in one band to efficiently model the observed, point-spread-function-convolved light profile in other bands and predict the flux in arbitrarily sized apertures.

[ascl:1010.055]
SYNOW: A Highly Parameterized Spectrum Synthesis Code for Direct Analysis of SN Spectra

SYNOW is a highly parameterized spectrum synthesis code used primarily for direct (empirical) analysis of SN spectra. The code is based on simple assumptions : spherical symmetry; homologous expansion; a sharp photosphere that emits a blackbody continuous spectrum; and line formation by resonance scattering, treated in the Sobolev approximation. Synow does not do continuum transport, it does not solve rate equations, and it does not calculate ionization ratios. Its main function is to take line multiple scattering into account so that it can be used in an empirical spirit to make line identifications and estimate the velocity at the photosphere (or pseudo-photosphere) and the velocity interval within which each ion is detected. these quantities provide constraints on the composition structure of the ejected matter.

[ascl:1811.001]
synphot: Synthetic photometry using Astropy

Synphot simulates photometric data and spectra, observed or otherwise. It can incorporate the user's filters, spectra, and data, and use of a pre-defined standard star (Vega), bandpass, or extinction law. synphot can also construct complicated composite spectra using different models, simulate observations, and compute photometric properties such as count rate, effective wavelength, and effective stimulus. It can manipulate a spectrum by, for example, applying redshift, or normalize it to a given flux value in a given bandpass. Synphot can also sample a spectrum at given wavelengths, plot a quick-view of a spectrum, and perform repetitive operations such as simulating the observations of multiple type of sources through multiple bandpasses. Synphot understands Astropy (ascl:1304.002) models and units and is an Astropy affiliated package. Support for HST and JWST is available through the extension stsynphot (ascl:2010.003).

[ascl:1109.022]
Synspec: General Spectrum Synthesis Program

Synspec is a user-oriented package written in FORTRAN for modeling stellar atmospheres and for stellar spectroscopic diagnostics. It assumes an existing model atmosphere, calculated previously with Tlusty or taken from the literature (for instance, from the Kurucz grid of models). The opacity sources (continua, atomic and molecular lines) are fully specified by the user. An arbitrary stellar rotation and instrumental profile can be applied to the synthetic spectrum.

[ascl:1212.010]
Synth3: Non-magnetic spectrum synthesis code

Synth3 is a non-magnetic spectrum synthesis code. It works with model atmospheres in Kurucz format and VALD Sf line lists and features element stratification, molecular equilibrium and individual microturbulence for each line. Disk integration can be done with s3di which is included in the archive. Synth3 computes spectra emergent from the stellar atmospheres with a depth-dependent chemical composition if depth-dependent abundance is provided in the input model atmosphere file.

[ascl:2307.014]
Synthetic LISA: Simulator for LISA-like gravitational-wave observatories

Synthetic LISA simulates the LISA science process at the level of scientific and technical requirements. The code generates synthetic time series of the LISA fundamental noises, as filtered through all the TDI observables, and provides a streamlined module to compute the TDI responses to gravitational waves, according to a full model of TDI, including the motion of the LISA array, and the temporal and directional dependence of the armlengths.

[ascl:2209.014]
SyntheticISOs: Synthetic Population of Interstellar Objects

Synthetic Population of Interstellar Objects generates a synthetic population of interstellar objects (orbits and sizes) in arbitrary volume of space around the Sun. The only necessary assumption is that the population of ISOs in the interstellar space (far from any massive body) is homogeneous and isotropic. The assumed distribution of interstellar velocities of ISOs has to be provided as an input. This distribution can be defined analytically, but also in a discrete form. The algorithm, based on the multivariate inverse transform sampling method, is implemented in Python.

[ascl:2401.010]
SYSNet: Neural Network modeling of imaging systematics in galaxy surveys

The Feed Forward Neural Network SYSNet models the relationship between the imaging maps, such as stellar density and the observed galaxy density field, in order to mitigate the systematic effects and to make a robust galaxy clustering measurements. The cost function is Mean Squared Error and a L2 regularization term, and the optimization algorithm is Adaptive Moment (ADAM).

[ascl:1210.018]
Systemic Console: Advanced analysis of exoplanetary data

Systemic Console is a tool for advanced analysis of exoplanetary data. It comprises a graphical tool for fitting radial velocity and transits datasets and a library of routines for non-interactive calculations. Among its features are interactive plotting of RV curves and transits, combined fitting of RV and transit timing (primary and secondary), interactive periodograms and FAP estimation, and bootstrap and MCMC error estimation. The console package includes public radial velocity and transit data.

[ascl:1304.018]
SZpack: Computation of Sunyaev-Zeldovich (SZ) signals

SZpack is a numerical library which allows fast and precise computation of the Sunyaev-Zeldovich (SZ) signal for hot, moving clusters of galaxies. Both explicit numerical integration as well as approximate representation of the SZ signals can be obtained. Variations of the electron temperature and bulk velocity along the line-of-sight can be included. SZpack allows very fast and precise (<~0.001% at frequencies h nu <~ 30kT_g and electron temperature kTe ~ 75 keV) computation and its accuracy practically eliminates uncertainties related to more expensive numerical evaluation of the Boltzmann collision term. It furthermore cleanly separates kinematic corrections from scattering physics, effects that previously have not been clarified.

[ascl:1511.006]
T-Matrix: Codes for Computing Electromagnetic Scattering by Nonspherical and Aggregated Particles

The T-Matrix package includes codes to compute electromagnetic scattering by homogeneous, rotationally symmetric nonspherical particles in fixed and random orientations, randomly oriented two-sphere clusters with touching or separated components, and multi-sphere clusters in fixed and random orientations. All codes are written in Fortran-77. LAPACK-based, extended-precision, Gauss-elimination- and NAG-based, and superposition codes are available, as are double-precision superposition, parallelized double-precision, double-precision Lorenz-Mie codes, and codes for the computation of the coefficients for the generalized Chebyshev shape.

[ascl:1609.001]
T-PHOT: PSF-matched, prior-based, multiwavelength extragalactic deconfusion photometry

Merlin, E.; Fontana, A.; Ferguson, H. C.; Dunlop, J. S.; Elbaz, D.; Bourne, N.; Bruce, V. A.; Buitrago, F.; Castellano, M.; Schreiber, C.; Grazian, A.; McLure, R. J.; Okumura, K.; Shu, X.; Wang, T.; Amorín, R.; Boutsia, K.; Cappelluti, N.; Comastri, A.; Derriere, S.; Faber, S. M.; Santini, P.

T-PHOT extracts accurate photometry from low-resolution images of extragalactic fields, where the blending of sources can be a serious problem for accurate and unbiased measurement of fluxes and colors. It gathers data from a high-resolution image of a region of the sky and uses the source positions and morphologies to obtain priors for the photometric analysis of the lower resolution image of the same field. T-PHOT handles different types of datasets as input priors, including a list of objects that will be used to obtain cutouts from the real high-resolution image, a set of analytical models (as .fits stamps), and a list of unresolved, point-like sources, useful for example for far-infrared wavelength domains. T-PHOT yields accurate estimations of fluxes within the intrinsic uncertainties of the method when systematic errors are taken into account (which can be done using a flagging code given in the output), and handles multiwavelength optical to far-infrared image photometry. T-PHOT was developed as part of the ASTRODEEP project (www.astrodeep.eu).

[ascl:1906.008]
T-RECS: Tiered Radio Extragalactic Continuum Simulation

Bonaldi, Anna; Bonato, Matteo; Galluzzi, Vincenzo; Harrison, Ian; Massardi, Marcella; Kay, Scott; De Zotti, Gianfranco; Brown, Michael L.

T-RECS produces radio sources catalogs with user-defined frequencies, area and depth. It models two main populations of radio galaxies, Active Galactic Nuclei (AGNs) and Star-Forming Galaxies (SFGs), and corresponding sub-populations. T-RECS is not computationally demanding and can be run multiple times, using the same catalog inputs, to project the simulated sky onto different fields.

[ascl:1403.014]
T(dust) as a function of sSFR

This IDL code returns the dust temperature of a galaxy from its redshift, SFR and stellar mass; it can also predict the observed monochromatic fluxes of the galaxy. These monochromatic fluxes correspond to those of a DH SED template with the appropriate dust temperature and the appropriate normalization. Dust temperatures and fluxes predictions are only valid and provided in the redshift, stellar mass, SSFR and wavelength ranges 0 < z < 2.5, Mstar> 10^10 Msun, 10^-11 < SSFR[yr-1]< 10^-7 and 30um < lambda_rest < 2mm.

[ascl:1210.006]
TA-DA: A Tool for Astrophysical Data Analysis

TA-DA is a pre-compiled IDL widget-based application which greatly simplifies and improves the analysis of stellar photometric data in comparison with theoretical models and allows the derivation of stellar parameters from multi-band photometry. It is flexible and can address a number of problems, from the interpolation of stellar models or sets of stellar physical parameters in general to the computation of synthetic photometry in arbitrary filters or units. It also analyzes observed color-magnitude diagrams and allows a Bayesian derivation of stellar parameters (and extinction) based on multi-band data.

Previous123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263**64**6566676869707172Next

Would you like to view a random code?