ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Piaulet, Caroline'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:2411.028] SMINT: Structure Model INTerpolator

SMINT (Structure Model INTerpolator) obtains posterior distributions on the H/He or H2O mass fraction of a planet; its interface is user-friendly. The parameters of the planet of interest are input with specifications on the priors that should be used. SMINT returns publication-ready plots presenting the joint parameters constraints obtained from interpolating the interior models grid of interest as well as confidence intervals for each parameter.

[ascl:2502.016] ATOCA: Decontaminate and extract spectra from image

ATOCA (Algorithm to Treat Order Contamination) extracts and decontaminates spectroscopic images with multiple sources or diffraction orders. For all orders and sources, the package takes the wavelength solutions, the trace profiles, the throughputs, and the spectral resolution kernels as input. From these, ATOCA simultaneously models the detector and extracts the spectra.

[ascl:2503.008] APPLESOSS: Empirical profile construction module

APPLESOSS (A Producer of ProfiLEs for SOSS) builds 2D spatial profiles for the first, second, and third diffraction orders for a NIRISS/SOSS GR700XD/CLEAR observation. The profiles are entirely data driven, retain a high level of fidelity to the original observations, and can be used as the specprofile reference file for ATOCA (ascl:2502.016). They can also be used as a PSF weighting for optimal extractions.

[ascl:2505.004] Eureka!: Data reduction and analysis pipeline for JWST and HST time-series observations

Eureka! reduces and analyzes exoplanet time-series observations; though particularly focused on JWST data, it also handles HST observations. Starting with raw, uncalibrated FITS files, it reduces time-series data to precise exoplanet transmission and emission spectra. The code can perform flat-fielding, unit conversion, background subtraction, and optimal spectral extraction. It can generate a time series of 1D spectra for spectroscopic observations and a single light curve of flux versus time for photometric observations. Eureka! can also fit light curves with noise and astrophysical models using different optimization or sampling algorithms and is able to display the planet spectrum in figure and table form.