➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
SPTCLASS assigns semi-automatic spectral types to a sample of stars. The main code includes three spectral classification schemes: the first one is optimized to classify stars in the mass range of TTS (K5 or later, hereafter LATE-type scheme); the second one is optimized to classify stars in the mass range of IMTTS (F late to K early, hereafter Gtype scheme), and the third one is optimized to classify stars in the mass range of HAeBe (F5 or earlier, hereafter HAeBe scheme). SPTCLASS has an interactive module that allows the user to select the best result from the three schemes and analyze the input spectra.
TESS-cont quantifies the flux fraction coming from nearby stars in the TESS photometric aperture of any observed target. The package identifies the main contaminant Gaia DR2/DR3 sources, quantifies their individual and total flux contributions to the aperture, and determines whether any of these stars could be the origin of the observed transit and variability signals. Written in Python, TESS-cont is based on building the pixel response functions (PRFs) of nearby Gaia sources and computing their flux distributions across the TESS Target Pixel Files (TPFs) or Full Frame Images (FFIs).