**➥ Tip!** Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1901.003]
CCL: Core Cosmology Library

Chisari, Nora Elisa; Alonso, David; Krause, Elisabeth; Leonard, C. Daniellle; Bull, Philip; Neveu, Jérémy; Villarreal, Antonia Sierra; Singh, Sukhdeep; McClintock, Thomas; Ellison, John; Du, Zilong; Zuntz, Joe; Mead, Alexander; Joudaki, Shahab; Lorenz, Christiane S.; Troester, Tilman; Sanchez, Javier; Lanusse, Francois; Ishak, Mustapha; Hlozek, Renée; Blazek, Jonathan; Campagne, Jean-Eric; Almoubayyed, Husni; Eifler, Tim; Kirby, Matthew; Kirkby, David; Plaszczynski, Stéphane; Slosar, Anze; Vrastil, Michal; Wagoner, Erika L.

The Core Cosmology Library (CCL) computes basic cosmological observables and provides predictions for many cosmological quantities, including distances, angular power spectra, correlation functions, halo bias and the halo mass function through state-of-the-art modeling prescriptions. Fiducial specifications for the expected galaxy distributions for the Large Synoptic Survey Telescope (LSST) are also included, together with the capability of computing redshift distributions for a user-defined photometric redshift model. Predictions for correlation functions of galaxy clustering, galaxy-galaxy lensing and cosmic shear are within a fraction of the expected statistical uncertainty of the observables for the models and in the range of scales of interest to LSST. CCL is written in C and has a python interface.

[ascl:2104.022]
RadioFisher: Fisher forecasting for 21cm intensity mapping and spectroscopic galaxy surveys

RadioFisher is a Fisher forecasting code for cosmology with intensity maps of the redshifted 21cm emission line of neutral hydrogen. It uses CAMB (ascl:1102.026) to produce a high-resolution P(k) for the fiducial cosmology when the code is first run and caches the results, making subsequent runs faster and more efficient. It includes specifications for a large number of experiments, as well as survey parameters and the fiducial cosmological parameters, and can run a forecast for a galaxy redshift survey rather than an IM survey. RadioFisher also contains a number of options for plotting results.

[ascl:2105.019]
RandomQuintessence: Integrate the Klein-Gordon and Friedmann equations with random initial conditions

RandomQuintessence integrates the Klein-Gordon and Friedmann equations for quintessence models with random initial conditions and functional forms for the potential. Quintessence models generically impose non-trivial structure on observables like the equation of state of dark energy. There are three main modules; montecarlo_nompi.py sets initial conditions, loops over a bunch of randomly-initialised models, integrates the equations, and then analyses and saves the resulting solutions for each model. Models are defined in potentials.py; each model corresponds to an object that defines the functional form of the potential, various model parameters, and functions to randomly draw those parameters. All of the equation-solving code and methods to analyze the solution are kept in solve.py under the base class DEModel(). Other files available analyze and plot the data in a variety of ways.

[ascl:2312.030]
matvis: Fast matrix-based visibility simulator

Kittiwisit, Piyanat; Murray, Steven G.; Garsden, Hugh; Bull, Philip; Cain, Christopher; Parsons, Aaron R.; Sipple, Jackson; Abdurashidova, Zara; Adams, Tyrone; Aguirre, James E.; Alexander, Paul; Ali, Zaki S.; Baartman, Rushelle; Balfour, Yanga; Beardsley, Adam P.; Berkhout, Lindsay M.; Bernardi, Gianni; Billings, Tashalee S.; Bowman, Judd D.; Bradley, Richard F.; Burba, Jacob; Carey, Steven; Carilli, Chris L.; Chen, Kai-Feng; Cheng, Carina; Choudhuri, Samir; DeBoer, David R.; de Lera Acedo, Eloy; Dexter, Matt; Dillon, Joshua S.; Dynes, Scott; Eksteen, Nico; Ely, John; Ewall-Wice, Aaron; Fagnoni, Nicolas; Fritz, Randall; Furlanetto, Steven R.; Gale-Sides, Kingsley; Gehlot, Bharat Kumar; Ghosh, Abhik; Glendenning, Brian; Gorce, Adelie; Gorthi, Deepthi; Greig, Bradley; Grobbelaar, Jasper; Halday, Ziyaad; Hazelton, Bryna J.; Hewitt, Jacqueline N.; Hickish, Jack; Huang, Tian; Jacobs, Daniel C.; Josaitis, Alec; Julius, Austin; Kariseb, MacCalvin; Kern, Nicholas S.; Kerrigan, Joshua; Kim, Honggeun; Kohn, Saul A.; Kolopanis, Matthew; Lanman, Adam; La Plante, Paul; Liu, Adrian; Loots, Anita; Ma, Yin-Zhe; MacMahon, David H. E.; Malan, Lourence; Malgas, Cresshim; Malgas, Keith; Marero, Bradley; Martinot, Zachary E.; Mesinger, Andrei; Molewa, Mathakane; Morales, Miguel F.; Mosiane, Tshegofalang; Neben, Abraham R.; Nikolic, Bojan; Devi Nunhokee, Chuneeta; Nuwegeld, Hans; Pascua, Robert; Patra, Nipanjana; Pieterse, Samantha; Qin, Yuxiang; Rath, Eleanor; Razavi-Ghods, Nima; Riley, Daniel; Robnett, James; Rosie, Kathryn; Santos, Mario G.; Sims, Peter; Singh, Saurabh; Storer, Dara; Swarts, Hilton; Tan, Jianrong; Thyagarajan, Nithyanandan; van Wyngaarden, Pieter; Williams, Peter K. G.; Xu, Zhilei; Zheng, Haoxuan

matvis simulates radio interferometric visibilities at the necessary scale with both CPU and GPU implementations. It is matrix-based and applicable to wide field-of-view instruments such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), as it does not make any approximations of the visibility integral (such as the flat-sky approximation). The only approximation made is that the sky is a collection of point sources, which is valid for sky models that intrinsically consist of point-sources, but is an approximation for diffuse sky models. The matvix matrix-based algorithm is fast and scales well to large numbers of antennas. The code supports both CPU and GPU implementations as drop-in replacements for each other and also supports both dense and sparse sky models.