ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Douglas, Ewan'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1602.018] POPPY: Physical Optics Propagation in PYthon

POPPY (Physical Optics Propagation in PYthon) simulates physical optical propagation including diffraction. It implements a flexible framework for modeling Fraunhofer and Fresnel diffraction and point spread function formation, particularly in the context of astronomical telescopes. POPPY provides the optical modeling framework for WebbPSF (ascl:1504.007) and was developed as part of a simulation package for JWST, but is available separately and is broadly applicable to many kinds of imaging simulations.

[submitted] Poke: An open-source ray-based physical optics platform

Integrated optical models allow for accurate prediction of the as-built performance of an optical instrument. Optical models are typically composed of a separate ray trace and diffraction model to capture both the geometrical and physical regimes of light. These models are typically separated across both open-source and commercial software that don't interface with each other directly. To bridge the gap between ray trace models and diffraction models, we have built an open-source optical analysis platform in Python called Poke that uses commercial ray tracing APIs and open-source physical optics engines to simultaneously model scalar wavefront error, diffraction, and polarization. Poke operates by storing ray data from a commercial ray tracing engine into a Python object, from which physical optics calculations can be made. We present an introduction to using Poke, and highlight the capabilities of two new propagation physics modules that add to the utility of existing scalar diffraction models. Gaussian Beamlet Decomposition is a ray-based approach to diffraction modeling that allows us to integrate physical optics models with ray trace models to directly capture the influence of ray aberrations in diffraction simulations. Polarization Ray Tracing is a ray-based method of vector field propagation that can diagnose the polarization aberrations in optical systems.