ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Feroz, F.'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1109.006] MultiNest: Efficient and Robust Bayesian Inference

We present further development and the first public release of our multimodal nested sampling algorithm, called MultiNest. This Bayesian inference tool calculates the evidence, with an associated error estimate, and produces posterior samples from distributions that may contain multiple modes and pronounced (curving) degeneracies in high dimensions. The developments presented here lead to further substantial improvements in sampling efficiency and robustness, as compared to the original algorithm presented in Feroz & Hobson (2008), which itself significantly outperformed existing MCMC techniques in a wide range of astrophysical inference problems. The accuracy and economy of the MultiNest algorithm is demonstrated by application to two toy problems and to a cosmological inference problem focusing on the extension of the vanilla $Lambda$CDM model to include spatial curvature and a varying equation of state for dark energy. The MultiNest software is fully parallelized using MPI and includes an interface to CosmoMC (ascl:1106.025). It will also be released as part of the SuperBayeS package (ascl:1109.007) for the analysis of supersymmetric theories of particle physics.

[ascl:2504.031] TempoNest: Bayesian analysis tool for pulsar timing

TempoNest performs a Bayesian analysis of pulsar timing data, which allows for the robust determination of the non-linear pulsar timing solution simultaneously with a range of additional stochastic parameters. This includes both red spin noise and dispersion measure variations using either power law descriptions of the noise, or through a model-independent method that parameterizes the power at individual frequencies in the signal. It uses the Bayesian inference tool MultiNest (ascl:1109.006) to explore the joint parameter space, while using Tempo2 (ascl:1210.015) as a means of evaluating the timing model. TempoNest allows for the analysis of additional stochastic signals beyond the white noise described by the TOA error bars that may be present in the data.