ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Kesden, Michael'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1611.004] PRECESSION: Python toolbox for dynamics of spinning black-hole binaries

PRECESSION is a comprehensive toolbox for exploring the dynamics of precessing black-hole binaries in the post-Newtonian regime. It allows study of the evolution of the black-hole spins along their precession cycles, performs gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and predicts the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. PRECESSION can add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation, and provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also useful for computing initial parameters for numerical-relativity simulations targeting specific precessing systems.

[ascl:1809.006] spops: Spinning black-hole binary population synthesis

spops is a database of populations synthesis simulations of spinning black-hole binary systems, together with a python module to query it. Data are obtained with the startrack and precession [ascl:1611.004] numerical codes to consistently evolve binary stars from formation to gravitational-wave detection. spops allows quick exploration of the interplay between stellar physics and black-hole spin dynamics.