**➥ Tip!** Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1601.003]
SCOUSE: Semi-automated multi-COmponent Universal Spectral-line fitting Engine

Henshaw, J. D.; Longmore, S. N.; Kruijssen, J. M. D.; Davies, B.; Bally, J.; Barnes, A.; Battersby, C.; Burton, M.; Cunningham, M. R.; Dale, J. E.; Ginsburg, A.; Immer, K.; Jones, P. A.; Kendrew, S.; Mills, E. A. C.; Molinari, S.; Moore, T. J. T.; Ott, J.; Pillai, T.; Rathborne, J.; Schilke, P.; Schmiedeke, A.; Testi, L.; Walker, D.; Walsh, A.; Zhang, Q.

The Semi-automated multi-COmponent Universal Spectral-line fitting Engine (SCOUSE) is a spectral line fitting algorithm that fits Gaussian files to spectral line emission. It identifies the spatial area over which to fit the data and generates a grid of spectral averaging areas (SAAs). The spatially averaged spectra are fitted according to user-provided tolerance levels, and the best fit is selected using the Akaike Information Criterion, which weights the chisq of a best-fitting solution according to the number of free-parameters. A more detailed inspection of the spectra can be performed to improve the fit through an iterative process, after which SCOUSE integrates the new solutions into the solution file.

[ascl:2308.012]
KeplerFit: Keplerian velocity distribution model fitter

Bosco, Felix; Beuther, H.; Ahmadi, A.; Mottram, J. C; Kuiper, R.; Linz, H.; Maud, L.; Winters, J. M.; Henning, T.; Feng, S.; Peters, T.; Semenov, D.; Klaassen, P. D.; Schilke, P.; Urquhart, J. S.; Beltrán, M. T.; Lumsden, S. L.; Leurini, S.; Moscadelli, L.; Cesaroni, R.; Sánchez-Monge, Á.; Palau, A.; Pudritz, R.; Wyrowski, F.; Longmore, S.

KeplerFit fits a Keplerian velocity distribution model to position-velocity (PV) data to obtain an estimate of the enclosed mass. The code extracts the scales of the pixels in both directions, spatial and spectral, then extracts the most extreme velocity at each position; this returns two arrays of positions and velocities. KeplerFit then models the extracted PV data and returns a set of the best-fit parameters, the standard deviations in each of the parameters, and the total residual of the fit.