➥ Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.
The Core Cosmology Library (CCL) computes basic cosmological observables and provides predictions for many cosmological quantities, including distances, angular power spectra, correlation functions, halo bias and the halo mass function through state-of-the-art modeling prescriptions. Fiducial specifications for the expected galaxy distributions for the Large Synoptic Survey Telescope (LSST) are also included, together with the capability of computing redshift distributions for a user-defined photometric redshift model. Predictions for correlation functions of galaxy clustering, galaxy-galaxy lensing and cosmic shear are within a fraction of the expected statistical uncertainty of the observables for the models and in the range of scales of interest to LSST. CCL is written in C and has a python interface.
SACC (Save All Correlations and Covariances) is a format and reference library for general storage
of summary statistic measurements for the Dark Energy Science Collaboration (DESC) within and from the Large Synoptic Survey Telescope (LSST) project's Dark Energy Science Collaboration.
NaMaster computes full-sky angular cross-power spectra of masked, spin-0 and spin-2 fields with an arbitrary number of known contaminants using a pseudo-Cl (aka MASTER) approach. The code also implements E/B-mode purification and offers both full-sky and flat-sky modes. NaMaster is available as a C library, Python module, and standalone program.
CoLoRe (Cosmological Lofty Realization) generates fast mock realizations of a given galaxy sample using a lognormal model or LPT for the matter density. Tt can simulate a variety of cosmological tracers, including photometric and spectroscopic galaxies, weak lensing, and intensity mapping. CoLoRe is a parallel C code, and its behavior is controlled primarily by the input param file.
WeakLensingDeblending provides weak lensing fast simulations and analysis for the LSST Dark Energy Science Collaboration. It is used to study the effects of overlapping sources on shear estimation, photometric redshift algorithms, and deblending algorithms. Users can run their own simulations (of LSST and other surveys) or download the galaxy catalog and simulation outputs to use with their own code.
SpECTRE solves multi-scale, multi-physics problems in astrophysics and gravitational physics, such as those associated with the multi-messenger astrophysics of neutron star mergers, core-collapse supernovae, and gamma-ray bursts. It runs at petascale and is designed for future exascale computers.