**➥ Tip!** Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1502.006]
Montblanc: GPU accelerated Radio Interferometer Measurement Equations in support of Bayesian Inference for Radio Observations

Montblanc, written in Python, is a GPU implementation of the Radio interferometer measurement equation (RIME) in support of the Bayesian inference for radio observations (BIRO) technique. The parameter space that BIRO explores results in tens of thousands of computationally expensive RIME evaluations before reduction to a single *X ^{2}* value. The RIME is calculated over four dimensions, time, baseline, channel and source and the values in this 4D space can be independently calculated; therefore, the RIME is particularly amenable to a parallel implementation accelerated by Graphics Programming Units (GPUs). Montblanc is implemented for NVIDIA's CUDA architecture and outperforms MeqTrees (ascl:1209.010) and OSKAR.

[ascl:2305.005]
killMS: Direction-dependent radio interferometric calibration package

killMS implements two very efficient algorithms for solving the Direction-Dependent calibration problem (also known as third generation calibration). This problem naturally arises in the Radio Interferometry Measurement Equation (RIME), but only became overwhelmingly problematic with the construction of the SKA precursors and pathfinders. Solving for the DDE calibration problem basically consists in inverting a number of non-linear equations, while the system is very large and often subject to ill conditioning. The two algorithms killMS uses are based on complex optimization techniques and exploit algorithmic shortcuts; killMS also runs an extended Kalman filter.