**➥ Tip!** Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1010.027]
SNANA: A Public Software Package for Supernova Analysis

Kessler, Richard; Bernstein, Joseph P.; Cinabro, David; Dilday, Benjamin; Frieman, Joshua A.; Jha, Saurabh; Kuhlmann, Stephen; Miknaitis, Gajus; Sako, Masao; Taylor, Matt; VanderPlas, Jake

SNANA is a general analysis package for supernova (SN) light curves that contains a simulation, light curve fitter, and cosmology fitter. The software is designed with the primary goal of using SNe Ia as distance indicators for the determination of cosmological parameters, but it can also be used to study efficiencies for analyses of SN rates, estimate contamination from non-Ia SNe, and optimize future surveys. Several SN models are available within the same software architecture, allowing technical features such as K-corrections to be consistently used among multiple models, and thus making it easier to make detailed comparisons between models. New and improved light-curve models can be easily added. The software works with arbitrary surveys and telescopes and has already been used by several collaborations, leading to more robust and easy-to-use code. This software is not intended as a final product release, but rather it is designed to undergo continual improvements from the community as more is learned about SNe.

[ascl:1610.007]
gatspy: General tools for Astronomical Time Series in Python

Gatspy contains efficient, well-documented implementations of several common routines for Astronomical time series analysis, including the Lomb-Scargle periodogram, the Supersmoother method, and others.

[ascl:2112.025]
FTP: Fast Template Periodogram

The Fast Template Periodogram extends the Generalised Lomb Scargle periodogram (Zechmeister and Kurster 2009) for arbitrary (periodic) signal shapes. A template is first approximated by a truncated Fourier series of length H. The Nonequispaced Fast Fourier Transform NFFT is used to efficiently compute frequency-dependent sums. Template fitting can now be done in NlogN time, improving existing algorithms by an order of magnitude for even small datasets. The FTP can be used in conjunction with gradient descent to accelerate a non-linear model fit, or be used in place of the multi-harmonic periodogram for non-sinusoidal signals with a priori known shapes.

[ascl:1806.001]
feets: feATURE eXTRACTOR FOR tIME sERIES

feets characterizes and analyzes light-curves from astronomical photometric databases for modelling, classification, data cleaning, outlier detection and data analysis. It uses machine learning algorithms to determine the numerical descriptors that characterize and distinguish the different variability classes of light-curves; these range from basic statistical measures such as the mean or standard deviation to complex time-series characteristics such as the autocorrelation function. The library is not restricted to the astronomical field and could also be applied to any kind of time series. This project is a derivative work of FATS (ascl:1711.017).

[ascl:2012.015]
seaborn: Statistical data visualization

Waskom, Michael; Botvinnik, Olga; Gelbart, Maoz; Ostblom, Joel; Hobson, Paul; Lukauskas, Saulius; Gemperline, David C; Augspurger, Tom; Halchenko, Yaroslav; Warmenhoven, Jordi; Cole, John B.; De Ruiter, Julian; Vanderplas, Jake; Hoyer, Stephan; Pye, Cameron; Miles, Alistair; Swain, Corban; Meyer, Kyle; Martin, Marcel; Bachant, Pete Quintero, Eric; Kunter, Gero; Villalba, Santi; Brian; Fitzgerald, Clark; Evans, C. G.; Williams, Mike Lee; O'Kane, Drew; Yarkoni, Tal; Brunner, Thomas

Seaborn provides a high-level interface for drawing attractive statistical graphics. Written in Python, it builds on matplotlib and integrates closely with pandas data structures. Its plotting functions operate on dataframes and arrays containing whole datasets and internally perform the necessary semantic mapping and statistical aggregation to produce informative plots. Its dataset-oriented, declarative API allows the user to focus on what the different elements of the plots mean, rather than on the details of how to draw them.

[ascl:2111.002]
JAX: Autograd and XLA

Bradbury, James; Frostig, Roy; Hawkins, Peter; Johnson, Matthew James; Leary, Chris; Maclaurin, Dougal; Necula, George; Paszke, Adam; VanderPlas, Jake; Wanderman-Milne, Skye; Zhang, Qiao

JAX brings Autograd and XLA together for high-performance machine learning research. It can automatically differentiate native Python and NumPy functions. The code can differentiate through loops, branches, recursion, and closures, and it can take derivatives of derivatives of derivatives. JAX supports reverse-mode differentiation (a.k.a. backpropagation) via grad as well as forward-mode differentiation, and the two can be composed arbitrarily to any order.

[ascl:2112.023]
wpca: Weighted Principal Component Analysis in Python

wpca, written in Python, offers several implementations of Weighted Principal Component Analysis and uses an interface similar to scikit-learn's sklearn.decomposition.PCA. Implementations include a direct decomposition of a weighted covariance matrix to compute principal vectors, and then a weighted least squares optimization to compute principal components, and an iterative expectation-maximization approach to solve simultaneously for the principal vectors and principal components of weighted data. It also includes a standard non-weighted PCA implemented using the singular value decomposition, primarily to be useful for testing.