ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Angus, Ruth'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1609.018] SIP: Systematics-Insensitive Periodograms

SIP (Systematics-Insensitive Periodograms) extends the generative model used to create traditional sine-fitting periodograms for finding the frequency of a sinusoid by including systematic trends based on a set of eigen light curves in the generative model in addition to using a sum of sine and cosine functions over a grid of frequencies, producing periodograms with vastly reduced systematic features. Acoustic oscillations in giant stars and measurement of stellar rotation periods can be recovered from the SIP periodograms without detrending. The code can also be applied to detection other periodic phenomena, including eclipsing binaries and short-period exoplanet candidates.

[ascl:1709.008] celerite: Scalable 1D Gaussian Processes in C++, Python, and Julia

celerite provides fast and scalable Gaussian Process (GP) Regression in one dimension and is implemented in C++, Python, and Julia. The celerite API is designed to be familiar to users of george and, like george, celerite is designed to efficiently evaluate the marginalized likelihood of a dataset under a GP model. This is then be used alongside a non-linear optimization or posterior inference library for the best results.

[ascl:2007.001] GProtation: Measuring stellar rotation periods with Gaussian processes

GProtation measures stellar rotation periods with Gaussian processes.

This code is no longer being maintained. Please consider using celerite (ascl:1709.008) or exoplanet (ascl:1910.005) instead.

[ascl:2109.015] unpopular: Using CPM detrending to obtain TESS light curves

unpopular is an implementation of the Causal Pixel Model (CPM) de-trending method to obtain TESS Full-Frame Image (FFI) light curves. The code, written in Python, models the systematics in the light curves of individual pixels as a linear combination of light curves from many other distant pixels and removes shared flux variations. unpopular is able to preserve sector-length astrophysical signals, allowing for the extraction of multi-sector light curves from the FFI data.