**➥ Tip!** Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1807.025]
NRPy+: Code generator for Numerical Relativity

NRPy+ (Python-based Code generation for Numerical Relativity and Beyond) generates highly-optimized C code from complex tensorial expressions input in Einstein-like notation. NRPy+ uses SymPy as its computer algebra system backend. It is part of the NRPy+/SENR numerical relativity code package for solving Einstein's equations of general relativity to model compact objects at about 1/100 the cost in memory of more traditional, AMR-based numerical relativity codes, thus allowing desktop computers to be used for gravitational wave astrophysics.

[ascl:1807.026]
SENR: Simple, Efficient Numerical Relativity

SENR (Simple, Efficient Numerical Relativity) provides the algorithmic framework that combines the C codes generated by NRPy+ (ascl:1807.025) into a functioning numerical relativity code. It is part of the numerical relativity code package SENR/NRPy+. The package extends previous implementations of the BSSN reference-metric formulation to a much broader class of curvilinear coordinate systems, making it suitable for modeling physical configurations with approximate or exact symmetries, such as modeling black hole dynamics.

[ascl:1810.012]
GiRaFFE: General relativistic force-free electrodynamics code

GiRaFFE leverages the Einstein Toolkit's (ascl:1102.014) highly-scalable infrastructure to create large-scale simulations of magnetized plasmas in strong, dynamical spacetimes on adaptive-mesh refinement (AMR) grids. It is based on IllinoisGRMHD (ascl:2004.003), a user-friendly, open-source, dynamical-spacetime GRMHD code, and is highly scalable, to tens of thousands of cores.

[ascl:2004.003]
IllinoisGRMHD: GRMHD code for dynamical spacetimes

IllinoisGRMHD is an open-source, highly-extensible rewrite of the original closed-source general relativistic (ideal) magnetohydrodynamics (GRMHD) code of the Illinois Numerical Relativity (ILNR) Group. Reducing the learning curve was the primary focus of this rewrite, with the goal of facilitating community involvement in the code's use and development, as well as reducing the human effort necessary to generate new science. IllinoisGRMHD also saves computer time, generating roundoff-precision identical output to the original code on adaptive-mesh grids while being nearly twice as fast at scales of hundreds to thousands of cores.