ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Smith, Michael J.'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1907.029] XDF-GAN: Mock astronomical survey generator

XDF-GAN generates mock galaxy surveys with a Spatial Generative Adversarial Network (SGAN)-like architecture. Mock galaxy surveys are generated from data that is preprocessed as little as possible (preprocessing is only a 99.99th percentile clipping). The outputs can also be tessellated together to create a very large survey, limited in size only by the RAM of the generation machine.

[ascl:2009.013] AstroVaDEr: Unsupervised clustering and synthetic image generation

AstroVaDEr (Astronomical Variational Deep Embedder) performs unsupervised clustering and synthetic image generation using astronomical imaging catalogs to classify their morphologies. This variational autoencoder leverages improvements to the variational deep clustering (VDC) paradigm; its variational inference properties allow the network to be employed as a generative network. AstroVaDEr can be adapted to various surveys and image classification problems.

[ascl:2010.014] Pix2Prof: Deep learning for textraction of useful sequential information from galaxy imagery

Pix2Prof produces a surface brightness profile from an unprocessed galaxy image from the SDSS in either the g, r, or i bands. It is fast, and given suitable training data, Pix2Prof can be retrained to produce any galaxy profile from any galaxy image.

[ascl:2111.001] astroDDPM: Realistic galaxy simulation via score-based generative models

astroDDPM uses a denoising diffusion probabilistic model (DDPM) to synthesize galaxies that are qualitatively and physically indistinguishable from the real thing. The similarity of the synthesized images to real galaxies from the Photometry and Rotation curve OBservations from Extragalactic Surveys (PROBES) sample and from the Sloan Digital Sky Survey is quantified using the Fréchet Inception Distance to test for subjective and morphological similarity. The emergent physical properties (such as total magnitude, color, and half light radius) of a ground truth parent and synthesized child dataset are also compared to generate a Synthetic Galaxy Distance metric. The DDPM approach produces sharper and more realistic images than other generative methods such as Adversarial Networks (with the downside of more costly inference), and could be used to produce large samples of synthetic observations tailored to a specific imaging survey. Potential uses of the DDPM include accurate in-painting of occluded data, such as satellite trails, and domain transfer, where new input images can be processed to mimic the properties of the DDPM training set.