Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Masters, Karen L.'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:1302.014] SYNMAG Photometry: Catalog-level Matched Colors of Extended Sources

SYNMAG is a tool for producing synthetic aperture magnitudes to enable fast matched photometry at the catalog level without reprocessing imaging data. Aperture magnitudes are the most widely tabulated flux measurements in survey catalogs; obtaining reliable, matched photometry for galaxies imaged by different observatories represents a key challenge in the era of wide-field surveys spanning more than several hundred square degrees. Methods such as flux fitting, profile fitting, and PSF homogenization followed by matched-aperture photometry are all computationally expensive. An alternative solution called "synthetic aperture photometry" exploits galaxy profile fits in one band to efficiently model the observed, point-spread-function-convolved light profile in other bands and predict the flux in arbitrarily sized apertures.

[ascl:2203.016] MaNGA-DRP: MaNGA Data Reduction Pipeline

The MaNGA Data Reduction Pipeline (DRP) processes the raw data to produce flux calibrated, sky subtracted, coadded data cubes from each of the individual exposures for a given galaxy. The DRP consists of two primary parts: the 2d stage that produces flux calibrated fiber spectra from raw individual exposures, and the 3d stage that combines multiple flux calibrated exposures with astrometric information to produce stacked data cubes. These science-grade data cubes are then processed by the MaNGA Data Analysis Pipeline (ascl:2203.017), which measures the shape and location of various spectral features, fits stellar population models, and performs a variety of other analyses necessary to derive astrophysically meaningful quantities from the calibrated data cubes.

[ascl:2203.027] Zoobot: Deep learning galaxy morphology classifier

Zoobot classifies galaxy morphology with Bayesian CNN. Deep learning models were trained on volunteer classifications; these models were able to both learn from uncertain volunteer responses and predict full posteriors (rather than point estimates) for what volunteers would have said. The code reproduces and improves Galaxy Zoo DECaLS automated classifications, and can be finetuned for new tasks.