ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Searching for codes credited to 'Yan, Renbin'

Tip! Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:2012.005] MLC_ELGs: Machine Learning Classifiers for intermediate redshift Emission Line Galaxies

MLC_EPGs classifies intermediate redshift (z = 0.3–0.8) emission line galaxies as star-forming galaxies, composite galaxies, active galactic nuclei (AGN), or low-ionization nuclear emission regions (LINERs). It uses four supervised machine learning classification algorithms: k-nearest neighbors (KNN), support vector classifier (SVC), random forest (RF), and a multi-layer perceptron (MLP) neural network. For input features, it uses properties that can be measured from optical galaxy spectra out to z < 0.8—[O III]/Hβ, [O II]/Hβ, [O III] line width, and stellar velocity dispersion—and four colors (u−g, g−r, r−i, and i−z) corrected to z = 0.1.

[ascl:2106.005] Marvin: Data access and visualization for MaNGA

Marvin searches, accesses, and visualizes data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. Written in Python, it provides tools for easy efficient interaction with the MaNGA data via local files, files retrieved from the Science Archive Server, or data directly grabbed from the database. The tools come mainly in the form of convenience functions and classes for interacting with the data. Also available is a web app, Marvin-web, offers an easily accessible interface for searching the MaNGA data and visual exploration of individual MaNGA galaxies or of the entire sample, and a powerful query functionality that uses the API to query the MaNGA databases and return the search results to your python session. Marvin-API is the critical link that allows Marvin-tools and Marvin-web to interact with the databases, which enables users to harness the statistical power of the MaNGA data set.