**➥ Tip!** Refine or expand your search. Authors are sometimes listed as 'Smith, J. K.' instead of 'Smith, John' so it is useful to search for last names only. Note this is currently a simple phrase search.

[ascl:0003.001]
GADGET-2: A Code for Cosmological Simulations of Structure Formation

The cosmological simulation code GADGET-2, a new massively parallel TreeSPH code, is capable of following a collisionless fluid with the N-body method, and an ideal gas by means of smoothed particle hydrodynamics (SPH). The implementation of SPH manifestly conserves energy and entropy in regions free of dissipation, while allowing for fully adaptive smoothing lengths. Gravitational forces are computed with a hierarchical multipole expansion, which can optionally be applied in the form of a TreePM algorithm, where only short-range forces are computed with the `tree'-method while long-range forces are determined with Fourier techniques. Time integration is based on a quasi-symplectic scheme where long-range and short-range forces can be integrated with different timesteps. Individual and adaptive short-range timesteps may also be employed. The domain decomposition used in the parallelisation algorithm is based on a space-filling curve, resulting in high flexibility and tree force errors that do not depend on the way the domains are cut. The code is efficient in terms of memory consumption and required communication bandwidth. It has been used to compute the first cosmological N-body simulation with more than 10^10 dark matter particles, reaching a homogeneous spatial dynamic range of 10^5 per dimension in a 3D box. It has also been used to carry out very large cosmological SPH simulations that account for radiative cooling and star formation, reaching total particle numbers of more than 250 million. GADGET-2 is publicly released to the research community.

[ascl:1108.005]
Gaepsi: Gadget Visualization Toolkit

Feng, Yu; Croft, Rupert A. C.; Di Matteo, Tiziana; Khandai, Nishikanta; Sargent, Randy; Nourbakhsh, Illah; Dille, Paul; Bartley, Chris; Springel, Volker; Jana, Anirban; Gardner, Jeffrey

Gaepsi is a PYTHON extension for visualizing cosmology simulations produced by Gadget. Visualization is the most important facet of Gaepsi, but it also allows data analysis on GADGET simulations with its growing number of physics related subroutines and constants. Unlike mesh based scheme, SPH simulations are directly visible in the sense that a splatting process is required to produce raster images from the simulations. Gaepsi produces images of 2-dimensional line-of-sight projections of the simulation. Scalar fields and vector fields are both supported.

Besides the traditional way of slicing a simulation, Gaepsi also has built-in support of 'Survey-like' domain transformation proposed by Carlson & White. An improved implementation is used in Gaepsi. Gaepsi both implements an interactive shell for plotting and exposes its API for batch processing. When complied with OpenMP, Gaepsi automatically takes the advantage of the multi-core computers. In interactive mode, Gaepsi is capable of producing images of size up to 32000 x 32000 pixels. The user can zoom, pan and rotate the field with a command in on the finger tip. The interactive mode takes full advantages of matplotlib's rich annotating, labeling and image composition facilities. There are also built-in commands to add objects that are commonly used in cosmology simulations to the figures.

[ascl:1408.008]
GALIC: Galaxy initial conditions construction

GalIC (GALaxy Initial Conditions) is an implementation of an iterative method to construct steady state composite halo-disk-bulge galaxy models with prescribed density distribution and velocity anisotropy that can be used as initial conditions for N-body simulations. The code is parallelized for distributed memory based on MPI. While running, GalIC produces "snapshot files" that can be used as initial conditions files. GalIC supports the three file formats ('type1' format, the slightly improved 'type2' format, and an HDF5 format) of the GADGET (ascl:0003.001) code for its output snapshot files.

[ascl:1502.003]
N-GenIC: Cosmological structure initial conditions

N-GenIC is an initial conditions code for cosmological structure formation that can be used to set-up random N-body realizations of Gaussian random fields with a prescribed power spectrum in a homogeneously sampled periodic box. The code creates cosmological initial conditions based on the Zeldovich approximation, in a format directly compatible with GADGET (ascl:0003.001) or AREPO (ascl:1909.010).

[ascl:1909.010]
AREPO: Cosmological magnetohydrodynamical moving-mesh simulation code

AREPO is a massively parallel gravity and magnetohydrodynamics code for astrophysics, designed for problems of large dynamic range. It employs a finite-volume approach to discretize the equations of hydrodynamics on a moving Voronoi mesh, and a tree-particle-mesh method for gravitational interactions. AREPO is originally optimized for cosmological simulations of structure formation, but has also been used in many other applications in astrophysics.

[ascl:2204.014]
GADGET-4: Parallel cosmological N-body and SPH code

GADGET-4 (GAlaxies with Dark matter and Gas intEracT) is a parallel cosmological N-body and SPH code that simulates cosmic structure formation and calculations relevant for galaxy evolution and galactic dynamics. It is massively parallel and flexible, and can be applied to a variety of different types of simulations, offering a number of sophisticated simulation algorithms. GADGET-4 supports collisionless simulations and smoothed particle hydrodynamics on massively parallel computers.

The code can be used for plain Newtonian dynamics, or for cosmological integrations in arbitrary cosmologies, both with or without periodic boundary conditions. Stretched periodic boxes, and special cases such as simulations with two periodic dimensions and one non-periodic dimension are supported as well. The modeling of hydrodynamics is optional. The code is adaptive both in space and in time, and its Lagrangian character makes it particularly suitable for simulations of cosmic structure formation. Several post-processing options such as group- and substructure finding, or power spectrum estimation are built in and can be carried out on the fly or applied to existing snapshots. Through a built-in cosmological initial conditions generator, it is also particularly easy to carry out cosmological simulations. In addition, merger trees can be determined directly by the code.