ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:1010.028] GALPROP: Code for Cosmic-ray Transport and Diffuse Emission Production

GALPROP is a numerical code for calculating the propagation of relativistic charged particles and the diffuse emissions produced during their propagation. The GALPROP code incorporates as much realistic astrophysical input as possible together with latest theoretical developments. The code calculates the propagation of cosmic-ray nuclei, antiprotons, electrons and positrons, and computes diffuse γ-rays and synchrotron emission in the same framework. Each run of the code is governed by a configuration file allowing the user to specify and control many details of the calculation. Thus, each run of the code corresponds to a potentially different "model." The code continues to be developed and is available to the scientific community.

[ascl:1411.008] galpy: Galactic dynamics package

galpy is a python package for galactic dynamics. It supports orbit integration in a variety of potentials, evaluating and sampling various distribution functions, and the calculation of action-angle coordinates for all static potentials.

[ascl:2102.013] GalRotpy: Parametrize the rotation curve and gravitational potential of disk-like galaxies

GalRotpy models the dynamical mass of disk-like galaxies and makes a parametric fit of the rotation curve by means of the composed gravitational potential of the galaxy. It can be used to check the presence of an assumed mass type component in a observed rotation curve, to determine quantitatively the main mass contribution in a galaxy by means of the mass ratios of a given set of five potentials, and to bound the contribution of each mass component given its gravitational potential parameters.

[ascl:1402.009] GalSim: Modular galaxy image simulation toolkit

GalSim is a fast, modular software package for simulation of astronomical images. Though its primary purpose is for tests of weak lensing analysis methods, it can be used for other purposes. GalSim allows galaxies and PSFs to be represented in a variety of ways, and can apply shear, magnification, dilation, or rotation to a galaxy profile including lensing-based models from a power spectrum or NFW halo profile. It can write images in regular FITS files, FITS data cubes, or multi-extension FITS files. It can also compress the output files using various compressions including gzip, bzip2, and rice. The user interface is in python or via configuration scripts, and the computations are done in C++ for speed.

[ascl:1711.007] galstep: Initial conditions for spiral galaxy simulations

galstep generates initial conditions for disk galaxy simulations with GADGET-2 (ascl:0003.001), RAMSES (ascl:1011.007) and GIZMO (ascl:1410.003), including a stellar disk, a gaseous disk, a dark matter halo and a stellar bulge. The first two components follow an exponential density profile, and the last two a Dehnen density profile with gamma=1 by default, corresponding to a Hernquist profile.

[ascl:1711.010] galstreams: Milky Way streams footprint library and toolkit

galstreams provides a compilation of spatial information for known stellar streams and overdensities in the Milky Way and includes Python tools for visualizing them. ASCII tables are also provided for quick viewing of the stream's footprints using TOPCAT (ascl:1101.010).

[ascl:1304.003] GALSVM: Automated Morphology Classification

GALSVM is IDL software for automated morphology classification. It was specially designed for high redshift data but can be used at low redshift as well. It analyzes morphologies of galaxies based on a particular family of learning machines called support vector machines. The method can be seen as a generalization of the classical CAS classification but with an unlimited number of dimensions and non-linear boundaries between decision regions. It is fully automated and consequently well adapted to large cosmological surveys.

[ascl:1708.030] GAMBIT: Global And Modular BSM Inference Tool

GAMBIT (Global And Modular BSM Inference Tool) performs statistical global fits of generic physics models using a wide range of particle physics and astrophysics data. Modules provide native simulations of collider and astrophysics experiments, a flexible system for interfacing external codes (the backend system), a fully featured statistical and parameter scanning framework, and additional tools for implementing and using hierarchical models.

[ascl:1912.012] GAME: GAlaxy Machine learning for Emission lines

GAME infers different ISM physical properties by analyzing the emission line intensities in a galaxy spectrum. The code is trained with a large library of synthetic spectra spanning many different ISM phases, including HII (ionized) regions, PDRs, and neutral regions. GAME is based on a Supervised Machine Learning algorithm called AdaBoost with Decision Trees as base learner. Given a set of input lines in a spectrum, the code performs a training on the library and then evaluates the line intensities to give a determination of the physical properties. The errors on the input emission line intensities and the uncertainties on the physical properties determinations are also taken into account. GAME infers gas density, column density, far-ultraviolet (FUV, 6–13.6 eV) flux, ionization parameter, metallicity, escape fraction, and visual extinction. A web interface for using the code is available.

[ascl:1612.017] GAMER: GPU-accelerated Adaptive MEsh Refinement code

GAMER (GPU-accelerated Adaptive MEsh Refinement) serves as a general-purpose adaptive mesh refinement + GPU framework and solves hydrodynamics with self-gravity. The code supports adaptive mesh refinement (AMR), hydrodynamics with self-gravity, and a variety of GPU-accelerated hydrodynamic and Poisson solvers. It also supports hybrid OpenMP/MPI/GPU parallelization, concurrent CPU/GPU execution for performance optimization, and Hilbert space-filling curve for load balance. Although the code is designed for simulating galaxy formation, it can be easily modified to solve a variety of applications with different governing equations. All optimization strategies implemented in the code can be inherited straightforwardly.

[ascl:2104.024] GAMMA: Relativistic hydro and local cooling on a moving mesh

GAMMA models relativistic hydrodynamics and non-thermal emission on a moving mesh. It uses an arbitrary Lagrangian-Eulerian approach only in the dominant direction of fluid motion to avoid mesh entanglement and associated computational costs. Shock detection, particle injection and local calculation of their evolution including radiative cooling are done at runtime. The package is modular; though it was designed with GRB physics applications in mind, new solvers and geometries can be implemented easily, making GAMMA suitable for a wide range of applications.

[ascl:1110.007] GammaLib: Toolbox for High-level Analysis of Astronomical Gamma-ray Data

The GammaLib is a versatile toolbox for the high-level analysis of astronomical gamma-ray data. It is implemented as a C++ library that is fully scriptable in the Python scripting language. The library provides core functionalities such as data input and output, interfaces for parameter specifications, and a reporting and logging interface. It implements instruments specific functionalities such as instrument response functions and data formats. Instrument specific functionalities share a common interface to allow for extension of the GammaLib to include new gamma-ray instruments. The GammaLib provides an abstract data analysis framework that enables simultaneous multi-mission analysis.

[ascl:1711.014] Gammapy: Python toolbox for gamma-ray astronomy

Gammapy analyzes gamma-ray data and creates sky images, spectra and lightcurves, from event lists and instrument response information; it can also determine the position, morphology and spectra of gamma-ray sources. It is used to analyze data from H.E.S.S., Fermi-LAT, and the Cherenkov Telescope Array (CTA).

[ascl:1105.011] Ganalyzer: A tool for automatic galaxy image analysis

Ganalyzer is a model-based tool that automatically analyzes and classifies galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large datasets of galaxy images collected by autonomous sky surveys such as SDSS, LSST or DES.

[ascl:1708.012] GANDALF: Gas AND Absorption Line Fitting

GANDALF (Gas AND Absorption Line Fitting) accurately separates the stellar and emission-line contributions to observed spectra. The IDL code includes reddening by interstellar dust and also returns formal errors on the position, width, amplitude and flux of the emission lines. Example wrappers that make use of pPXF (ascl:1210.002) to derive the stellar kinematics are included.

[ascl:1602.015] GANDALF: Graphical Astrophysics code for N-body Dynamics And Lagrangian Fluids

GANDALF, a successor to SEREN (ascl:1102.010), is a hybrid self-gravitating fluid dynamics and collisional N-body code primarily designed for investigating star formation and planet formation problems. GANDALF uses various implementations of Smoothed Particle Hydrodynamics (SPH) to perform hydrodynamical simulations of gas clouds undergoing gravitational collapse to form new stars (or other objects), and can perform simulations of pure N-body dynamics using high accuracy N-body integrators, model the intermediate phase of cluster evolution, and provide visualizations via its python interface as well as interactive simulations. Although based on many of the SEREN routines, GANDALF has been largely re-written from scratch in C++ using more optimal algorithms and data structures.

[ascl:1303.027] GaPP: Gaussian Processes in Python

The algorithm Gaussian processes can reconstruct a function from a sample of data without assuming a parameterization of the function. The GaPP code can be used on any dataset to reconstruct a function. It handles individual error bars on the data and can be used to determine the derivatives of the reconstructed function. The data sample can consist of observations of the function and of its first derivative.

[ascl:1010.049] Gas-momentum-kinetic SZ cross-correlations

We present a new method for detecting the missing baryons by generating a template for the kinematic Sunyaev-Zel'dovich effect. The template is computed from the product of a reconstructed velocity field with a galaxy field. We provide maps of such templates constructed from SDSS Data Release 7 spectroscopic data (SDSS VAGC sample) along side with their expected two point correlation functions with CMB temperature anisotropies. Codes of generating such coefficients of the two point correlation function are also released to provide users of the gas-momentum map a way to change the parameters such as cosmological parameters, reionization history, ionization parameters, etc.

[ascl:1210.020] GASGANO: Data File Organizer

GASGANO is a GUI software tool for managing and viewing data files produced by VLT Control System (VCS) and the Data Flow System (DFS). It is developed and maintained by ESO to help its user community manage and organize astronomical data observed and produced by all VLT compliant telescopes in a systematic way. The software understands FITS, PAF, and ASCII files, and Reduction Blocks, and can group, sort, classify, filter, and search data in addition to allowing the user to browse, view, and manage them.

[ascl:1710.019] GASOLINE: Smoothed Particle Hydrodynamics (SPH) code

Gasoline solves the equations of gravity and hydrodynamics in astrophysical problems, including simulations of planets, stars, and galaxies. It uses an SPH method that features correct mixing behavior in multiphase fluids and minimal artificial viscosity. This method is identical to the SPH method used in the ChaNGa code (ascl:1105.005), allowing users to extend results to problems requiring >100,000 cores. Gasoline uses a fast, memory-efficient O(N log N) KD-Tree to solve Poisson's Equation for gravity and avoids artificial viscosity in non-shocking compressive flows.

[ascl:1610.007] gatspy: General tools for Astronomical Time Series in Python

Gatspy contains efficient, well-documented implementations of several common routines for Astronomical time series analysis, including the Lomb-Scargle periodogram, the Supersmoother method, and others.

[ascl:1406.018] GAUSSCLUMPS: Gaussian-shaped clumping from a spectral map

GAUSSCLUMPS decomposes a spectral map into Gaussian-shape clumps. The clump-finding algorithm decomposes a spectral data cube by iteratively removing 3-D Gaussians as representative clumps. GAUSSCLUMPS was originally a separate code distribution but is now a contributed package in GILDAS (ascl:1305.010). A reimplementation can also be found in CUPID (ascl:1311.007).

[ascl:1305.009] GaussFit: Solving least squares and robust estimation problems

GaussFit solves least squares and robust estimation problems; written originally for reduction of NASA Hubble Space Telescope data, it includes a complete programming language designed especially to formulate estimation problems, a built-in compiler and interpreter to support the programming language, and a built-in algebraic manipulator for calculating the required partial derivatives analytically. The code can handle nonlinear models, exact constraints, correlated observations, and models where the equations of condition contain more than one observed quantity. Written in C, GaussFit includes an experimental robust estimation capability so data sets contaminated by outliers can be handled simply and efficiently.

[ascl:1907.019] GaussPy: Python implementation of the Autonomous Gaussian Decomposition algorithm

GaussPy implements the Autonomous Gaussian Decomposition (AGD) algorithm, which uses computer vision and machine learning techniques to provide optimized initial guesses for the parameters of a multi-component Gaussian model automatically and efficiently. The speed and adaptability of AGD allow it to interpret large volumes of spectral data efficiently. Although it was initially designed for applications in radio astrophysics, AGD can be used to search for one-dimensional Gaussian (or any other single-peaked spectral profile)-shaped components in any data set. To determine how many Gaussian functions to include in a model and what their parameters are, AGD uses a technique called derivative spectroscopy. The derivatives of a spectrum can efficiently identify shapes within that spectrum corresponding to the underlying model, including gradients, curvature and edges.

[ascl:1907.020] GaussPy+: Gaussian decomposition package for emission line spectra

GaussPy+ is a fully automated Gaussian decomposition package for emission line spectra. It is based on GaussPy (ascl:1907.019) and offers several improvements, including automating preparatory steps and providing an accurate noise estimation, improving the fitting routine, and providing a routine to refit spectra based on neighboring fit solutions. GaussPy+ handles complex emission and low to moderate signal-to-noise values.

[ascl:1710.014] GBART: Determination of the orbital elements of spectroscopic binaries

GBART is an improved version of the code for determining the orbital elements for spectroscopic binaries originally written by Bertiau & Grobben (1968).

[ascl:1908.006] GBKFIT: Galaxy kinematic modeling

GBKFIT performs galaxy kinematic modeling. It can be used to extract morphological and kinematical properties of galaxies by fitting models to spatially resolved kinematic data. The software can also take beam smearing into account by using the knowledge of the line and point spread functions. GBKFIT can take advantage of many-core and massively parallel architectures such as multi-core CPUs and Graphics Processing Units (GPUs), making it suitable for modeling large-scale surveys of thousands of galaxies within a very seasonable time frame. GBKFIT features an extensible object-oriented architecture that supports arbitrary models and optimization techniques in the form of modules; users can write custom modules without modifying GBKFIT’s source code. The software is written in C++ and conforms to the latest ISO standards.

[ascl:1303.019] GBTIDL: Reduction and Analysis of GBT Spectral Line Data

GBTIDL is an interactive package for reduction and analysis of spectral line data taken with the Robert C. Byrd Green Bank Telescope (GBT). The package, written entirely in IDL, consists of straightforward yet flexible calibration, averaging, and analysis procedures (the "GUIDE layer") modeled after the UniPOPS and CLASS data reduction philosophies, a customized plotter with many built-in visualization features, and Data I/O and toolbox functionality that can be used for more advanced tasks. GBTIDL makes use of data structures which can also be used to store intermediate results. The package consumes and produces data in GBT SDFITS format. GBTIDL can be run online and have access to the most recent data coming off the telescope, or can be run offline on preprocessed SDFITS files.

[ascl:1811.018] gdr2_completeness: GaiaDR2 data retrieval and manipulation

gdr2_completeness queries Gaia DR2 TAP services and divides the queries into sub-queries chunked into arbitrary healpix bins. Downloaded data are formatted into arrays. Internal completeness is calculated by dividing the total starcount and starcounts with an applied cut (e.g., radial velocity measurement and good parallax). Independent determination of the external GDR2 completeness per healpix (level 6) and G magnitude bin (3 coarse bins: 8-12,12-15,15-18) is inferred from a crossmatch with 2MASS data. The overall completeness of a specific GDR2 sample can be approximated by multiplying the internal with the external completeness map, which is useful when data are compared to models thereof. Jupyter notebooks showcasing both utilities enable the user to easily construct the overall completeness for arbitrary samples of the GDR2 catalogue.

[ascl:1010.079] Geant4: A Simulation Toolkit for the Passage of Particles through Matter

Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics.

[ascl:1608.006] Gemini IRAF: Data reduction software for the Gemini telescopes

The Gemini IRAF package processes observational data obtained with the Gemini telescopes. It is an external package layered upon IRAF and supports data from numerous instruments, including FLAMINGOS-2, GMOS-N, GMOS-S, GNIRS, GSAOI, NIFS, and NIRI. The Gemini IRAF package is organized into sub-packages; it contains a generic tools package, "gemtools", along with instrument-specific packages. The raw data from the Gemini facility instruments are stored as Multi-Extension FITS (MEF) files. Therefore, all the tasks in the Gemini IRAF package, intended for processing data from the Gemini facility instruments, are capable of handling MEF files.

[ascl:1007.003] GEMINI: A toolkit for analytical models of two-point correlations and inhomogeneous structure formation

Gemini is a toolkit for analytical models of two-point correlations and inhomogeneous structure formation. It extends standard Press-Schechter theory to inhomogeneous situations, allowing a realistic, analytical calculation of halo correlations and bias.

[ascl:1212.005] General complex polynomial root solver

This general complex polynomial root solver, implemented in Fortran and further optimized for binary microlenses, uses a new algorithm to solve polynomial equations and is 1.6-3 times faster than the ZROOTS subroutine that is commercially available from Numerical Recipes, depending on application. The largest improvement, when compared to naive solvers, comes from a fail-safe procedure that permits skipping the majority of the calculations in the great majority of cases, without risking catastrophic failure in the few cases that these are actually required.

[ascl:2006.020] GenetIC: Initial conditions generator for cosmological simulations

GenetIC generates initial conditions for cosmological simulations, especially for zoom simulations of galaxies. It provides support for "genetic modifications" of specific attributes of simulations to allow study of the impact of such modifications on the outcomes; the code can also produce constrained initial conditions.

[ascl:1812.014] GENGA: Gravitational ENcounters with Gpu Acceleration

GENGA (Gravitational ENcounters with Gpu Acceleration) integrates planet and planetesimal dynamics in the late stage of planet formation and stability analyses of planetary systems. It uses mixed variable integration when the motion is a perturbed Kepler orbit and combines this with a direct N-body Bulirsch-Stoer method during close encounters. It supports three simulation modes: 1.) integration of up to 2048 massive bodies; 2.) integration with up to a million test particles; and 3.) parallel integration of a large number of individual planetary systems.

[ascl:1706.006] GenPK: Power spectrum generator

GenPK generates the 3D matter power spectra for each particle species from a Gadget snapshot. Written in C++, it requires both FFTW3 and GadgetReader.

[ascl:1011.015] Geokerr: Computing Photon Orbits in a Kerr Spacetime

Relativistic radiative transfer problems require the calculation of photon trajectories in curved spacetime. Programmed in Fortran, Geokerr uses a novel technique for rapid and accurate calculation of null geodesics in the Kerr metric. The equations of motion from the Hamilton-Jacobi equation are reduced directly to Carlson's elliptic integrals, simplifying algebraic manipulations and allowing all coordinates to be computed semi-analytically for the first time.

[submitted] Geometric-Focused JWST Deep Field Image Simulation

This code was written as a novel geometric-focused deep field simulation of the expected JWST future deep field image. Galaxies are represented by ellipses with randomly-generated positions and orientations. Three scripts are included: a deterministic simulation, an ensemble simulation, and a more-realistic monochrome image simulation. The following initial conditions can be perturbed in these codes: H0, Ωm, ΩΛ, the dark energy equation of state parameter, the number of unseen galaxies in the Hubble Ultra Deep Field Image (HUDF), the increase in effective radius due to the JWST’s higher sensitivity, the anisotropy of dark energy, and the maximum redshift reached by the JWST. Galaxy number densities are estimated using integration over comoving volume with an integration constant calibrated with the Hubble Ultra Deep Field. A galaxy coverage percentage is calculated for each image to determine the percentage of the background occupied by galaxies.

[ascl:1511.015] George: Gaussian Process regression

George is a fast and flexible library, implemented in C++ with Python bindings, for Gaussian Process regression useful for accounting for correlated noise in astronomical datasets, including those for transiting exoplanet discovery and characterization and stellar population modeling.

[ascl:1412.012] GeoTOA: Geocentric TOA tools

GeoTOA computes the pulse times of arrival (TOAs) at an observatory (or spacecraft) from unbinned Fermi LAT data. Written in Python, the software requires NumPy, matplotlib, SciPy, Fermitools (ascl:1905.011), and Tempo2 (ascl:1210.015).

[ascl:1512.002] GetData: A filesystem-based, column-oriented database format for time-ordered binary data

The GetData Project is the reference implementation of the Dirfile Standards, a filesystem-based, column-oriented database format for time-ordered binary data. Dirfiles provide a fast, simple format for storing and reading data, suitable for both quicklook and analysis pipelines. GetData provides a C API and bindings exist for various other languages. GetData is distributed under the terms of the GNU Lesser General Public License.

[ascl:1910.018] GetDist: Monte Carlo sample analyzer

GetDist analyzes Monte Carlo samples, including correlated samples from Markov Chain Monte Carlo (MCMC). It offers a point and click GUI for selecting chain files, viewing plots, marginalized constraints, and LaTeX tables, and includes a plotting library for making custom publication-ready 1D, 2D, 3D-scatter, triangle and other plots. Its convergence diagnostics include correlation length and diagonalized Gelman-Rubin statistics, and the optimized kernel density estimation provides an automated optimal bandwidth choice for 1D and 2D densities with boundary and bias correction. It is available as a standalong package and with CosmoMC (ascl:1106.025).

[ascl:1705.007] getimages: Background derivation and image flattening method

getimages performs background derivation and image flattening for high-resolution images obtained with space observatories. It is based on median filtering with sliding windows corresponding to a range of spatial scales from the observational beam size up to a maximum structure width X. The latter is a single free parameter of getimages that can be evaluated manually from the observed image. The median filtering algorithm provides a background image for structures of all widths below X. The same median filtering procedure applied to an image of standard deviations derived from a background-subtracted image results in a flattening image. Finally, a flattened image is computed by dividing the background-subtracted by the flattening image. Standard deviations in the flattened image are now uniform outside sources and filaments. Detecting structures in such radically simplified images results in much cleaner extractions that are more complete and reliable. getimages also reduces various observational and map-making artifacts and equalizes noise levels between independent tiles of mosaicked images. The code (a Bash script) uses FORTRAN utilities from getsources (ascl:1507.014), which must be installed.

[ascl:2012.001] getsf: Multi-scale, multi-wavelength sources and filaments extraction

getsf extracts sources and filaments in astronomical images by separating their structural components, and is designed to handle multi-wavelength sets of images and very complex filamentary backgrounds. The method spatially decomposes the original images and separates the structural components of sources and filaments from each other and from their backgrounds, flattening their resulting images. It spatially decomposes the flattened components, combines them over wavelengths, and detects the positions of sources and skeletons of filaments. Finally, getsf measures the detected sources and filaments and creates the output catalogs and images. This universal and fully automated method has a single user-definable free parameter, which reduces to a minimum dependence of its results on the human factor.

[ascl:1507.014] getsources: Multi-scale, multi-wavelength source extraction

getsources is a powerful multi-scale, multi-wavelength source extraction algorithm. It analyzes fine spatial decompositions of original images across a wide range of scales and across all wavebands, cleans those single-scale images of noise and background, and constructs wavelength-independent single-scale detection images that preserve information in both spatial and wavelength dimensions. getsources offers several advantages over other existing methods of source extraction, including the filtering out of irrelevant spatial scales to improve detectability, especially in the crowded regions and for extended sources, the ability to combine data over all wavebands, and the full automation of the extraction process.

[ascl:1608.014] gevolution: General Relativity Cosmological N-body code for evolution of large scale structures

The N-body code gevolution complies with general relativity principles at every step; it calculates all six metric degrees of freedom in Poisson gauge. N-body particles are evolved by solving the geodesic equation written in terms of a canonical momentum to remain valid for relativistic particles. gevolution can be extended to include different kinds of dark energy or modified gravity models, going beyond the usually adopted quasi-static approximation. A weak field expansion is the central element of gevolution; this permits the code to treat settings in which no strong gravitational fields appear, including arbitrary scenarios with relativistic sources as long as gravitational fields are not very strong. The framework is well suited for cosmology, but may also be useful for astrophysical applications with moderate gravitational fields where a Newtonian treatment is insufficient.

[ascl:1509.008] GFARGO: FARGO for GPU

GFARGO is a GPU version of FARGO (ascl:1102.017). It is written in C and C for CUDA and runs only on NVIDIA’s graphics cards. Though it corresponds to the standard, isothermal version of FARGO, not all functionalities of the CPU version have been translated to CUDA. The code is available in single and double precision versions, the latter compatible with FERMI architectures. GFARGO can run on a graphics card connected to the display, allowing the user to see in real time how the fields evolve.

[ascl:1510.001] GGADT: Generalized Geometry Anomalous Diffraction Theory

GGADT uses anomalous diffraction theory (ADT) to compute the differential scattering cross section (or the total cross sections as a function of energy) for a specified grain of arbitrary geometry (natively supports spheres, ellipsoids, and clusters of spherical monomers). It is written in Fortran 95. ADT is valid when the grain is large compared to the wavelength of incident light. GGADT can calculate either the integrated cross sections (absorption, scattering, extinction) as a function of energy, or it can calculate the differential scattering cross section as a function of scattering angle.

[ascl:2104.018] GGchem: Fast thermo-chemical equilibrium code

GGchem is a fast thermo-chemical equilibrium code with or without equilibrium condensation down to 100K. It can handle up to 40 elements (H, ..., Zr, and W), up to 1155 molecules, and up to 200 condensates (solids and liquids) from NIST-JANAF and SUPCRTBL. It offers a customized selection of elements, molecules, and condensates. The Fortran-90 code is very fast, and has a stable iterative solution scheme based on Newton-Raphson.

[ascl:2103.006] ggm: Gaussian gradient magnitude filtering of astronomical images

Ggm contains useful utilities for Gaussian gradient filtering of astronomical FITS images. It applies the Gaussian gradient magnitude filter to an input fits image, using a particular scale, sigma, in pixels. ggm cosmetically hides point sources in fits images by filling point sources with random values from the surrounding pixel region. It also provides an interactive tool to combine FITS images filtered on different scales.

Would you like to view a random code?