ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:2006.015] ARCHI: Add-on pipeline module for background star analysis from CHEOPS data

The CHaracterizing ExOPlanet Satellite (CHEOPS) mission pipeline provides photometry for the central star in its field; ARCHI takes in data from the CHEOPS mission pipeline, analyzes the background stars, and determines the photometry of these stars, thus creating the possibility of producing photometric time-series of several close-by targets at once, in addition to using different stars in the image to calibrate systematic errors.

[ascl:1805.012] Arcmancer: Geodesics and polarized radiative transfer library

Arcmancer computes geodesics and performs polarized radiative transfer in user-specified spacetimes. The library supports Riemannian and semi-Riemannian spaces of any dimension and metric; it also supports multiple simultaneous coordinate charts, embedded geometric shapes, local coordinate systems, and automatic parallel propagation. Arcmancer can be used to solve various problems in numerical geometry, such as solving the curve equation of motion using adaptive integration with configurable tolerances and differential equations along precomputed curves. It also provides support for curves with an arbitrary acceleration term and generic tools for generating ray initial conditions and performing parallel computation over the image, among other tools.

[ascl:1909.010] AREPO: Cosmological magnetohydrodynamical moving-mesh simulation code

AREPO is a massively parallel gravity and magnetohydrodynamics code for astrophysics, designed for problems of large dynamic range. It employs a finite-volume approach to discretize the equations of hydrodynamics on a moving Voronoi mesh, and a tree-particle-mesh method for gravitational interactions. AREPO is originally optimized for cosmological simulations of structure formation, but has also been used in many other applications in astrophysics.

[ascl:2011.010] ARES: Accelerated Reionization Era Simulations

The Accelerated Reionization Era Simulations (ARES) code rapidly generates models for the global 21-cm signal. It can also be used as a 1-D radiative transfer code, stand-alone non-equilibrium chemistry solver, or global radiation background calculator.

[ascl:1205.009] ARES: Automatic Routine for line Equivalent widths in stellar Spectra

ARES was developed for the measurement of Equivalent Width of absortion lines in stellar spectra; it can also be used to determine fundamental spectroscopic stellar parameters.The code reads a 1D FITS spectra and fits the requested lines in order to calculate the Equivalent width. The code is written in C++ based on the standard method of determining EWs. It automates the manual procedure that one normally carries out when using interactive routines such as the splot routine implemented in IRAF.

[ascl:1807.004] ARKCoS: Radial kernel convolution on the sphere

ARKCoS (Accelerated radial kernel convolution on the sphere) efficiently convolves pixelated maps on the sphere with radially symmetric kernels with compact support. It performs the convolution along isolatitude rings in Fourier space and integrates in longitudinal direction in pixel space. The computational costs scale linearly with the kernel support, making the method most beneficial for convolution with compact kernels. Typical applications include CMB beam smoothing, symmetric wavelet analyses, and point-source filtering operations. The software is written in C++/CUDA and provides two independent code paths to do the necessary computation either on conventional hardware (CPUs), or on graphics processing units (GPUs).

[ascl:1505.005] ARoME: Analytical Rossiter-McLaughlin Effects

The ARoMe (Analytical Rossiter-McLaughlin Effects) library generates analytical Rossiter-McLaughlin (RM) effects. It models the Doppler-shift of a star during a transit measured by the fit of a cross-correlation function by a Gaussian function, fit of an observed spectrum by a modeled one, and the weighted mean.

[ascl:1311.010] ARPACK: Solving large scale eigenvalue problems

ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue problems. The package is designed to compute a few eigenvalues and corresponding eigenvectors of a general n by n matrix A. It is most appropriate for large sparse or structured matrices A where structured means that a matrix-vector product w <- Av requires order n rather than the usual order n2 floating point operations. This software is based upon an algorithmic variant of the Arnoldi process called the Implicitly Restarted Arnoldi Method (IRAM). When the matrix A is symmetric it reduces to a variant of the Lanczos process called the Implicitly Restarted Lanczos Method (IRLM). These variants may be viewed as a synthesis of the Arnoldi/Lanczos process with the Implicitly Shifted QR technique that is suitable for large scale problems. For many standard problems, a matrix factorization is not required; only the action of the matrix on a vector is needed. ARPACK is capable of solving large scale symmetric, nonsymmetric, and generalized eigenproblems from significant application areas.

[ascl:2107.018] ART: A Reconstruction Tool

ART reconstructs log-probability distributions using Gaussian processes. It requires an existing MCMC chain or similar set of samples from a probability distribution, including the log-probabilities. Gaussian process regression is used for interpolating the log-probability for the rescontruction, allowing for easy resampling, importance sampling, marginalization, testing different samplers, investigating chain convergence, and other operations.

[ascl:1810.007] ARTES: 3D Monte Carlo scattering radiative transfer in planetary atmospheres

The 3D Monte Carlo radiative transfer code ARTES calculates reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material. Designed specifically for (polarized) scattered light simulations of planetary atmospheres, it can compute both reflected stellar light and thermal emission from the planet for an arbitrary atmospheric structure and distribution of opacity sources. Multiple scattering, absorption, and polarization are fully treated and the output includes an image, spectrum, or phase curve. Several tools are included to create opacities and scattering matrices for molecules and clouds.

[ascl:1802.004] ARTIP: Automated Radio Telescope Image Processing Pipeline

The Automated Radio Telescope Image Processing Pipeline (ARTIP) automates the entire process of flagging, calibrating, and imaging for radio-interferometric data. ARTIP starts with raw data, i.e. a measurement set and goes through multiple stages, such as flux calibration, bandpass calibration, phase calibration, and imaging to generate continuum and spectral line images. Each stage can also be run independently. The pipeline provides continuous feedback to the user through various messages, charts and logs. It is written using standard python libraries and the CASA package. The pipeline can deal with datasets with multiple spectral windows and also multiple target sources which may have arbitrary combinations of flux/bandpass/phase calibrators.

[ascl:2103.020] ARTIS: 3D Monte Carlo radiative transfer code for supernovae

ARTIS is a 3D radiative transfer code for Type Ia supernovae using the Monte Carlo method with indivisible energy packets. It incorporates polarization and virtual packets and non-LTE physics appropriate for the nebular phase of Type Ia supernovae.

[ascl:1402.014] ARTIST: Adaptable Radiative Transfer Innovations for Submillimeter Telescopes

ARTIST is a suite of tools for comprehensive multi-dimensional radiative transfer calculations of dust and line emission, as well as their polarization, to help interpret observations from submillimeter telescopes. The ARTIST package consists of LIME, a radiative transfer code that uses adaptive gridding allowing simulations of sources with arbitrary multi-dimensional (1D, 2D, 3D) and time-dependent structures, thus ensuring rapid convergence; the DustPol and LinePol tools for modeling the polarization of the line and dust emission; and an interface run from Python scripts that manages the interaction between a general model library and LIME, and a graphical interface to simulate images.

[ascl:2004.012] ArviZ: Exploratory analysis of Bayesian models

ArviZ provides backend-agnostic tools for diagnostics and visualizations of Bayesian inference by first converting inference data into xarray objects. It includes functions for posterior analysis, model checking, comparison and diagnostics. ArviZ’s functions work with NumPy arrays, dictionaries of arrays, xarray datasets, and have built-in support for PyMC3 (ascl:1610.016), PyStan, CmdStanPy, Pyro (ascl:1507.018), NumPyro, emcee (ascl:1303.002), and TensorFlow Probability objects. A Julia wrapper is also available.

[ascl:1204.016] ASCfit: Automatic Stellar Coordinate Fitting Package

A modular software package for automatically fitting astrometric world coordinates (WCS) onto raw optical or infrared FITS images. Image stars are identified with stars in a reference catalog (USNO-A2 or 2MASS), and coordinates derived as a simple linear transformation from (X,Y) pixels to (RA,DEC) to the accuracy level of the reference catalog used. The package works with both optical and infrared images, at sidereal and non-sidereal tracking rates.

[ascl:1804.001] ASERA: A Spectrum Eye Recognition Assistant

ASERA, ASpectrum Eye Recognition Assistant, aids in quasar spectral recognition and redshift measurement and can also be used to recognize various types of spectra of stars, galaxies and AGNs (Active Galactic Nucleus). This interactive software allows users to visualize observed spectra, superimpose template spectra from the Sloan Digital Sky Survey (SDSS), and interactively access related spectral line information. ASERA is an efficient and user-friendly semi-automated toolkit for the accurate classification of spectra observed by LAMOST (the Large Sky Area Multi-object Fiber Spectroscopic Telescope) and is available as a standalone Java application and as a Java applet. The software offers several functions, including wavelength and flux scale settings, zoom in and out, redshift estimation, and spectral line identification.

[ascl:1603.009] Asfgrid: Asteroseismic parameters for a star

asfgrid computes asteroseismic parameters for a star with given stellar parameters and vice versa. Written in Python, it determines delta_nu, nu_max or masses via interpolation over a grid.

[ascl:1912.003] ASKAPsoft: ASKAP science data processor software

ASKAPsoft provides data processing functionality for Australian Square Kilometre Array Pathfinder, including calibration, spectral line imaging, continuum imaging, source detection and generation of source catalogs, and transient detection. The MPI-based package is the primary software for storing and processing raw data, and initiating the archiving of resulting science data products into the data archive (CASDA). The processing pipelines within ASKAPsoft are largely written in C++ built on top of casacore (ascl:1912.002) and other third party libraries.

[ascl:1609.020] Askaryan Module: Askaryan electric fields predictor

The Askaryan Module is a C++ class that predicts the electric fields that Askaryan-based detectors detect; it is computationally efficient and accurate, performing fully analytic calculations requiring no a priori MC analysis to compute the entire field, for any frequencies, times, or viewing angles chosen by the user.

[ascl:1807.030] ASP: Ames Stereo Pipeline

ASP (Ames Stereo Pipeline) provides fully automated geodesy and stereogrammetry tools for processing stereo imagery captured from satellites (around Earth and other planets), robotic rovers, aerial cameras, and historical imagery, with and without accurate camera pose information. It produces cartographic products, including digital elevation models (DEMs), ortho-projected imagery, 3D models, and bundle-adjusted networks of cameras. ASP's data products are suitable for science analysis, mission planning, and public outreach.

[ascl:1112.017] ASpec: Astronomical Spectrum Analysis Package

ASpec is a spectrum and line analysis package developed at STScI. ASpec is designed as an add-on package for IRAF and incorporates a variety of analysis techniques for astronomical spectra. ASpec operates on spectra from a wide variety of ground-based and space-based instruments and allows simultaneous handling of spectra from different wavelength regimes. The package accommodates non-linear dispersion relations and provides a variety of functions, individually or in combination, with which to fit spectral features and the continuum. It also permits the masking of known bad data. ASpec provides a powerful, intuitive graphical user interface implemented using the IRAF Object Manager and customized to handle: data input/output (I/O); on-line help; selection of relevant features for analysis; plotting and graphical interaction; and data base management.

[ascl:1209.015] Aspects: Probabilistic/positional association of catalogs of sources

Given two catalogs K and K' of n and n' astrophysical sources, respectively, Aspects (Association positionnelle/probabiliste de catalogues de sources) computes, for any objects MiK and M'jK', the probability that M'j is a counterpart of Mi, i.e. that they are the same source. To determine this probability of association, the code takes into account the coordinates and the positional uncertainties of all the objects. Aspects also computes the probability P(Ai, 0 | C ∩ C') that Mi has no counterpart.

Aspects is written in Fortran 95; the required Fortran 90 Numerical Recipes routines used in version 1.0 have been replaced with free equivalents in version 2.0.

[ascl:1806.031] ASPIC: Accurate Slow-roll Predictions for Inflationary Cosmology

Aspic, written in modern Fortran, computes various observable quantities used in cosmology from definite single field inflationary models. It provides an efficient, extendable, and accurate way of comparing theoretical inflationary predictions with cosmological data and supports many (~70) models of inflation. The Hubble flow functions, observable quantities up to second order in the slow-roll approximation, are in direct correspondence with the spectral index, the tensor-to-scalar ratio and the running of the primordial power spectrum. The ASPIC library also provides the field potential, its first and second derivatives, the energy density at the end of inflation, the energy density at the end of reheating, and the field value (or e-fold value) at which the pivot scale crossed the Hubble radius during inflation. All these quantities are computed in a way which is consistent with the existence of a reheating phase.

[ascl:1510.006] ASPIC: STARLINK image processing package

ASPIC handled basic astronomical image processing. Early releases concentrated on image arithmetic, standard filters, expansion/contraction/selection/combination of images, and displaying and manipulating images on the ARGS and other devices. Later releases added new astronomy-specific applications to this sound framework. The ASPIC collection of about 400 image-processing programs was written using the Starlink "interim" environment in the 1980; the software is now obsolete.

[ascl:1310.005] ASPRO 2: Astronomical Software to PRepare Observations

ASPRO 2 (Astronomical Software to PRepare Observations) is an observation preparation tool for interferometric observations with the VLTI or other interferometers such as CHARA and SUSI. It is a Java standalone program that provides a dynamic graphical interface to simulate the projected baseline evolution during observations (super-synthesis) and derive visibilities for targets (i.e., single star, binaries, user defined FITS image). It offers other useful functions such as the ability to load and save your observation settings and generate Observing Blocks.

[ascl:1903.011] AsPy: Aspherical fluctuations on the spherical collapse background

AsPy computes the determinants of aspherical fluctuations on the spherical collapse background. Written in Python, this procedure includes analytic factorization and cancellation of the so-called `IR-divergences'—spurious enhanced contributions that appear in the dipole sector and are associated with large bulk flows.

[ascl:1404.016] AST: World Coordinate Systems in Astronomy

The AST library provides a comprehensive range of facilities for attaching world coordinate systems to astronomical data, for retrieving and interpreting that information in a variety of formats, including FITS-WCS, and for generating graphical output based on it. Core projection algorithms are provided by WCSLIB (ascl:1108.003) and astrometry is provided by the PAL (ascl:1606.002) and SOFA (ascl:1403.026) libraries. AST bindings are available in Python (pyast), Java (JNIAST) and Perl (Starlink::AST). AST is used as the plotting and astrometry library in DS9 and GAIA, and is distributed separately and as part of the Starlink software collection.

[ascl:1505.002] ASteCA: Automated Stellar Cluster Analysis

ASteCA (Automated Stellar Cluster Analysis), written in Python, fully automates standard tests applied on star clusters in order to determine their characteristics, including center, radius, and stars' membership probabilities. It also determines associated intrinsic/extrinsic parameters, including metallicity, age, reddening, distance, total mass, and binarity fraction, among others.

[ascl:1403.023] ASTERIX: X-ray Data Processing System

ASTERIX is a general purpose X-ray data reduction package optimized for ROSAT data reduction. ASTERIX uses the Starlink software environment (ascl:1110.012).

[ascl:1607.016] astLib: Tools for research astronomers

astLib is a set of Python modules for performing astronomical plots, some statistics, common calculations, coordinate conversions, and manipulating FITS images with World Coordinate System (WCS) information through PyWCSTools, a simple wrapping of WCSTools (ascl:1109.015).

[ascl:2004.006] ASTRAEUS: Semi-analytical semi-numerical galaxy evolution and reionization code

ASTRAEUS (semi-numerical rAdiative tranSfer coupling of galaxy formaTion and Reionization in n-body dArk mattEr simUlationS) self-consistently derives the evolution of galaxies and the reionization of the IGM based on the merger trees and density fields of a DM-only N-body simulation. It models gas accretion, star formation, SN feedback, the time and spatial evolution of the ionized regions, accounting for recombinations, HI fractions and photoionization rates within ionized regions, and radiative feedback. ASTRAEUS is for studying the galaxy-reionization interplay in the first billion years. The underlying code is written in C and is MPI-parallelized; its modular design allows new physical processes and galaxy properties to be added easily. ASTRAEUS can be run on a tree-branch-by-tree-branch basis (i.e., fully vertical) or on a redshift-by-redshift basis (i.e., fully horizontal) when evolving the galaxies by using local horizontal merger trees.

[ascl:1605.009] ASTRiDE: Automated Streak Detection for Astronomical Images

ASTRiDE detects streaks in astronomical images using a "border" of each object (i.e. "boundary-tracing" or "contour-tracing") and their morphological parameters. Fast moving objects such as meteors, satellites, near-Earth objects (NEOs), or even cosmic rays can leave streak-like traces in the images; ASTRiDE can detect not only long streaks but also relatively short or curved streaks.

[ascl:2103.028] Astro-Fix: Correcting astronomical bad pixels in Python

astrofix is an astronomical image correction algorithm based on Gaussian Process Regression. It trains itself to apply the optimal interpolation kernel for each image, performing multiple times better than median replacement and interpolation with a fixed kernel.

[ascl:1907.032] Astro-SCRAPPY: Speedy Cosmic Ray Annihilation Package in Python

Astro-SCRAPPY detects cosmic rays in images (numpy arrays), based on Pieter van Dokkum's L.A.Cosmic algorithm and originally adapted from cosmics.py written by Malte Tewes. This implementation is optimized for speed, resulting in slight difference from the original code, such as automatic recognition of saturated stars (rather than treating such stars as large cosmic rays, and use of a separable median filter instead of the true median filter. Astro-SCRAPPY is an AstroPy (ascl:1304.002) affiliated package.

[ascl:1705.016] astroABC: Approximate Bayesian Computation Sequential Monte Carlo sampler

astroABC is a Python implementation of an Approximate Bayesian Computation Sequential Monte Carlo (ABC SMC) sampler for parameter estimation. astroABC allows for massive parallelization using MPI, a framework that handles spawning of processes across multiple nodes. It has the ability to create MPI groups with different communicators, one for the sampler and several others for the forward model simulation, which speeds up sampling time considerably. For smaller jobs the Python multiprocessing option is also available.

[ascl:1912.010] AstroAccelerate: Accelerated software package for processing time-domain radio astronomy data

AstroAccelerate processes time-domain radio astronomy data. It offers a standalone code that can be used to process filterbank data and a library that performs GPU-accelerated single pulse processing (SPS), Fourier Domain Acceleration Searching (FDAS) and dedispersion in real-time on very large data-sets comparable to those that will be produced by next-generation radio telescopes such as the SKA. AstroAccelerate uses NVIDIAR GPUs, and is configurable, stable, and easily maintained.

[ascl:1906.001] Astroalign: Asterism-matching alignment of astronomical images

Astroalign tries to register (align) two stellar astronomical images, especially when there is no WCS information available. It does so by finding similar 3-point asterisms (triangles) in both images and deducing the affine transformation between them. Generic registration routines try to match feature points, using corner detection routines to make the point correspondence. These generally fail for stellar astronomical images since stars have very little stable structure so are, in general, indistinguishable from each other. Asterism matching is more robust and closer to the human way of matching stellar images. Astroalign can match images of very different field of view, point-spread function, seeing and atmospheric conditions. It may require special care or may not work on images of extended objects with few point-like sources or in crowded fields.

[ascl:1311.003] AstroAsciiData: ASCII table Python module

ASCII tables continue to be one of the most popular and widely used data exchange formats in astronomy. AstroAsciiData, written in Python, imports all reasonably well-formed ASCII tables. It retains formatting of data values, allows column-first access, supports SExtractor style headings, performs column sorting, and exports data to other formats, including FITS, Numpy/Numarray, and LaTeX table format. It also offers interchangeable comment character, column delimiter and null value.

[ascl:1104.002] AstroBEAR: Adaptive Mesh Refinement Code for Ideal Hydrodynamics & Magnetohydrodynamics

AstroBEAR is a modular hydrodynamic & magnetohydrodynamic code environment designed for a variety of astrophysical applications. It uses the BEARCLAW package, a multidimensional, Eulerian computational code used to solve hyperbolic systems of equations. AstroBEAR allows adaptive-mesh-refinment (AMR) simulations in 2, 2.5 (i.e., cylindrical), and 3 dimensions, in either cartesian or curvilinear coordinates. Parallel applications are supported through the MPI architecture. AstroBEAR is written in Fortran 90/95 using standard libraries.

AstroBEAR supports hydrodynamic (HD) and magnetohydrodynamic (MHD) applications using a variety of spatial and temporal methods. MHD simulations are kept divergence-free via the constrained transport (CT) methods of Balsara & Spicer. Three different equation of state environments are available: ideal gas, gas with differing isentropic γ, and the analytic Thomas-Fermi formulation of A.R. Bell.

[ascl:1512.007] AstroBlend: Visualization package for use with Blender

AstroBlend is a visualization package for use in the three dimensional animation and modeling software, Blender. It reads data in via a text file or can use pre-fab isosurface files stored as OBJ or Wavefront files. AstroBlend supports a variety of codes such as FLASH (ascl:1010.082), Enzo (ascl:1010.072), and Athena (ascl:1010.014), and combines artistic 3D models with computational astrophysics datasets to create models and animations.

[ascl:2006.017] AstroCatR: Time series reconstruction of large-scale astronomical catalogs

AstroCatR reconstructs celestial objects' time series data for astronomical catalogs. It is a command-line program running on the Linux platform and is implemented in C and Python; AstroCatR's capabilities are based on specialized sky partitioning and MPI parallel programming. The package contains three parts: ETL (extract-transform-load) pre-processing, TS-matching calculation, and time series data retrieval. Once the user obtains the original catalogs, running ETL pre-processing generates a sky zoning file. The TS-matching module marks celestial objects, and finally, running the Query program searches celestial objects from the time series datasets which matched with the target.

[ascl:1507.010] Astrochem: Abundances of chemical species in the interstellar medium

Astrochem computes the abundances of chemical species in the interstellar medium, as function of time. It studies the chemistry in a variety of astronomical objects, including diffuse clouds, dense clouds, photodissociation regions, prestellar cores, protostars, and protostellar disks. Astrochem reads a network of chemical reactions from a text file, builds up a system of kinetic rates equations, and solves it using a state-of-the-art stiff ordinary differential equation (ODE) solver. The Jacobian matrix of the system is computed implicitly, so the resolution of the system is extremely fast: large networks containing several thousands of reactions are usually solved in a few seconds. A variety of gas phase process are considered, as well as simple gas-grain interactions, such as the freeze-out and the desorption via several mechanisms (thermal desorption, cosmic-ray desorption and photo-desorption). The computed abundances are written in a HDF5 file, and can be plotted in different ways with the tools provided with Astrochem. Chemical reactions and their rates are written in a format which is meant to be easy to read and to edit. A tool to convert the chemical networks from the OSU and KIDA databases into this format is also provided. Astrochem is written in C, and its source code is distributed under the terms of the GNU General Public License (GPL).

[ascl:1905.007] Astrocut: Tools for creating cutouts of TESS images

The Transiting Exoplanet Survey Satellite (TESS) produces Full Frame Images (FFIs) at a half hour cadence and keeps the same pointing for ~27 days at a time. Astrocut performs the same cutout across all FFIs that share a common pointing to create a time series of images on a small portion of the sky.

The Astrocut package has two parts: the CubeFactory and the CutoutFactory. The CubeFactory class creates a large image cube from a list of FFI files, which allows the cutout operation to be performed efficiently. The CutoutFactory class performs the actual cutout and builds a target pixel file (TPF) that is compatible with TESS pipeline TPFs. Because this software operates on TESS mission-produced FFIs, the resulting TPFs are not background-subtracted. In addition to the Astrocut software itself, the Mikulski Archive for Space Telescopes (MAST) provides a cutout service, TESScut, which runs Astrocut on MAST servers, and allows users to simply request cutouts through a web form or direct HTTP API query.

[ascl:1804.004] AstroCV: Astronomy computer vision library

AstroCV processes and analyzes big astronomical datasets, and is intended to provide a community repository of high performance Python and C++ algorithms used for image processing and computer vision. The library offers methods for object recognition, segmentation and classification, with emphasis in the automatic detection and classification of galaxies.

[ascl:1907.016] astrodendro: Astronomical data dendrogram creator

Astrodendro, written in Python, creates dendrograms for exploring and displaying hierarchical structures in observed or simulated astronomical data. It handles noisy data by allowing specification of the minimum height of a structure and the minimum number of pixels needed for an independent structure. Astrodendro allows interactive viewing of computed dendrograms and can also produce publication-quality plots with the non-interactive plotting interface.

[ascl:1010.013] AstroGK: Astrophysical Gyrokinetics Code

The gyrokinetic simulation code AstroGK is developed to study fundamental aspects of kinetic plasmas and for applications mainly to astrophysical problems. AstroGK is an Eulerian slab code that solves the electromagnetic Gyrokinetic-Maxwell equations in five-dimensional phase space, and is derived from the existing gyrokinetics code GS2 by removing magnetic geometry effects. Algorithms used in the code are described. The code is benchmarked using linear and nonlinear problems. Serial and parallel performance scalings are also presented.

[ascl:2003.013] AstroHOG: Analysis correlations using the Histograms of Oriented Gradients

AstroHOG compares extended spectral-line observations (PPV cubes); the histogram of oriented gradients (HOG) technique takes as input two PPV cubes and provides an estimate of their spatial correlation across velocity channels to study spatial correlation between different tracers of the ISM.

[ascl:1309.001] AstroImageJ: ImageJ for Astronomy

AstroImageJ is generic ImageJ (ascl:1206.013) with customizations to the base code and a packaged set of astronomy specific plugins. It reads and writes FITS images with standard headers, displays astronomical coordinates for images with WCS, supports photometry for developing color-magnitude data, offers flat field, scaled dark, and non-linearity processing, and includes tools for precision photometry that can be used during real-time data acquisition.

[ascl:1502.022] AstroLines: Astrophysical line list generator in the H-band

AstroLines adjusts spectral line parameters (gf and damping constant) starting from an initial line list. Written in IDL and tailored to the APO Galactic Evolution Experiment (APOGEE), it runs a slightly modified version of MOOG (ascl:1202.009) to compare synthetic spectra with FTS spectra of the Sun and Arcturus.

[ascl:1406.008] ASTROM: Basic astrometry program

ASTROM performs "plate reductions" by taking user-provided star positions and the (x,y) coordinates of the corresponding star images and establishes the relationship between (x,y) and (ra,dec), thus enabling the coordinates of unknown stars to be determined. ASTROM is distributed with the Starlink software (ascl:1110.012) and uses SLALIB (ascl:1403.025).

Would you like to view a random code?