ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:1411.003] voevent-parse: Parse, manipulate, and generate VOEvent XML packets

voevent-parse, written in Python, parses, manipulates, and generates VOEvent XML packets; it is built atop lxml.objectify. Details of transients detected by many projects, including Fermi, Swift, and the Catalina Sky Survey, are currently made available as VOEvents, which is also the standard alert format by future facilities such as LSST and SKA. However, working with XML and adhering to the sometimes lengthy VOEvent schema can be a tricky process. voevent-parse provides convenience routines for common tasks, while allowing the user to utilise the full power of the lxml library when required. An earlier version of voevent-parse was part of the pysovo (ascl:1411.002) library.

[ascl:1811.016] VoigtFit: Absorption line fitting for Voigt profiles

VoigtFit fits Voigt profiles to absorption lines. It fits multiple components for various atomic lines simultaneously, allowing parameters to be tied and fixed, and can automatically fit a polynomial continuum model together with the line profiles. A physical model can be used to constrain thermal and turbulent broadening of absorption lines as well as implementing molecular excitation models. The code uses a χ2 minimization approach to find the best solution and offers interactive features such as manual continuum placement locally around each line, manual masking of undesired fitting regions, and interactive definition of velocity components for various elements, improving the ease of estimating initial guesses.

[ascl:1309.007] VOMegaPlot: Plotting millions of points

VOMegaPlot, a Java based tool, has been developed for visualizing astronomical data that is available in VOTable format. It has been specifically optimized for handling large number of points (in the range of millions). It has the same look and feel as VOPlot (ascl:1309.006) and both these tools have certain common functionality.

[ascl:1309.006] VOPlot: Toolkit for Scientific Discovery using VOTables

VOPlot is a tool for visualizing astronomical data. It was developed in Java and acts on data available in VOTABLE, ASCII and FITS formats. VOPlot is available as a stand alone version, which is to be installed on the user's machine, or as a web-based version fully integrated with the VizieR database.

[ascl:1211.006] VorBin: Voronoi binning method

VorBin (Voronoi binning method) bins two-dimensional data to a constant signal-to-noise ratio per bin. It optimally solves the problem of preserving the maximum spatial resolution of general two-dimensional data, given a constraint on the minimum signal-to-noise ratio. The method is available in both IDL and Python.

[ascl:1205.011] VOSpec: VO Spectral Analysis Tool

VOSpec is a multi-wavelength spectral analysis tool with access to spectra, theoretical models and atomic and molecular line databases registered in the VO. The standard tools of VOSpec include line and continuum fitting, redshift and reddening correction, spectral arithmetic and convolution between spectra, equivalent width and flux calculations, and a best fitting algorithm for fitting selected SEDs to a TSAP service. VOSpec offers several display modes (tree vs table) and organising functionalities according to the available metadata for each service, including distance from the observation position.

[ascl:1309.008] VOStat: Statistical analysis of astronomical data

VOStat allows astronomers to use both simple and sophisticated statistical routines on large datasets. This tool uses the large public-domain statistical computing package R. Datasets can be uploaded in either ASCII or VOTABLE (preferred) format. The statistical computations are performed by the VOStat and results are returned to the user.

[ascl:1408.015] VPFIT: Voigt profile fitting program

The VPFIT program fits multiple Voigt profiles (convolved with the instrument profiles) to spectroscopic data that is in FITS or an ASCII file. It requires CFITSIO (ascl:1010.001) and PGPLOT (ascl:1103.002); the tarball includes RDGEN (ascl:1408.017), which can be used with VPFIT to set up the fits, fit the profiles, and examine the result in interactive mode for setting up initial guesses; vpguess (ascl:1408.016) can also be used to set up an initial file.

[ascl:1408.016] vpguess: Fitting multiple Voigt profiles to spectroscopic data

vpguess facilitates the fitting of multiple Voigt profiles to spectroscopic data. It is a graphical interface to VPFIT (ascl:1408.015). Originally meant to simplify the process of setting up first guesses for a subsequent fit with VPFIT, it has developed into a full interface to VPFIT. It may also be used independently of VPFIT for displaying data, playing around with data and models, "chi-by-eye" fits, displaying the result of a proper fit, pretty plots, etc. vpguess is written in C, and the graphics are based on PGPLOT (ascl:1103.002).

[ascl:1811.017] VPLanet: Virtual planet simulator

VPLanet (Virtual Planetary Laboratory) simulates planetary system evolution with a focus on habitability. Physical models, typically consisting of ordinary differential equations for stellar, orbital, tidal, rotational, atmospheric, internal, magnetic, climate, and galactic evolution, are coupled together to simulate evolution for the age of a system.

[ascl:1407.013] VStar: Variable star data visualization and analysis tool

VStar is a multi-platform, easy-to-use variable star data visualization and analysis tool. Data for a star can be read from the AAVSO (American Association of Variable Star Observers) database or from CSV and TSV files. VStar displays light curves and phase plots, can produce a mean curve, and analyzes time-frequency with Weighted Wavelet Z-Transform. It offers tools for period analysis, filtering, and other functions.

[ascl:1704.011] VULCAN: Chemical Kinetics For Exoplanetary Atmospheres

VULCAN describes gaseous chemistry from 500 to 2500 K using a reduced C-H-O chemical network with about 300 reactions. It uses eddy diffusion to mimic atmospheric dynamics and excludes photochemistry, and can be used to examine the theoretical trends produced when the temperature-pressure profile and carbon-to-oxygen ratio are varied.

[ascl:1710.001] vysmaw: Fast visibility stream muncher

The vysmaw client library facilitates the development of code for processes to tap into the fast visibility stream on the National Radio Astronomy Observatory's Very Large Array correlator back-end InfiniBand network. This uses the vys protocol to allow loose coupling to clients that need to remotely access memory over an Infiniband network.

[ascl:2108.004] WaldoInSky: Anomaly detection algorithms for time-domain astronomy

WaldoInSky finds anomalous astronomical light curves and their analogs. The package contains four methods: an adaptation of the Unsupervised Random Forest for anomaly detection in light curves that operates on the light curve points and their power spectra; two manifold-learning methods (the t-SNE and UMAP) that operate on the DMDT maps (image representations of the light curves), and that can be used to find analog light curves in the low-dimensional representation; and an Isolation Forest method for evaluating approaches of light curve pre-processing, before they are passed to the anomaly detectors. WaldoInSky also contain code for random sparsification of light curves.

[ascl:1807.002] Warpfield: Winds And Radiation Pressure: Feedback Induced Expansion, colLapse and Dissolution

Warpfield (Winds And Radiation Pressure: Feedback Induced Expansion, colLapse and Dissolution) calculates shell dynamics and shell structure simultaneously for isolated massive clouds (≥105 M). This semi-analytic 1D feedback model scans a large range of physical parameters (gas density, star formation efficiency, and metallicity) to estimate escape fractions of ionizing radiation fesc, I, the minimum star formation efficiency ∊min required to drive an outflow, and recollapse time-scales for clouds that are not destroyed by feedback.

[ascl:1108.003] WCSLIB and PGSBOX

WCSLIB is a C library, supplied with a full set of Fortran wrappers, that implements the "World Coordinate System" (WCS) standard in FITS (Flexible Image Transport System). It also includes a PGPLOT-based routine, PGSBOX, for drawing general curvilinear coordinate graticules and a number of utility programs.

[ascl:1109.015] WCSTools: Image Astrometry Toolkit

WCSTools is a package of programs and a library of utility subroutines for setting and using the world coordinate systems (WCS) in the headers of the most common astronomical image formats, FITS and IRAF .imh, to relate image pixels to sky coordinates. In addition to dealing with image WCS information, WCSTools has extensive catalog search, image header manipulation, and coordinate and time conversion tasks. This software is all written in very portable C, so it should compile and run on any computer with a C compiler.

[ascl:2004.004] WD: Wilson-Devinney binary star modeling

Wilson-Devinney binary star modeling code (WD) is a complete package for modeling binary stars and their eclipes and consists of two main modules. The LC module generates light and radial velocity curves, spectral line profiles, images, conjunction times, and timing residuals; the DC module handles differential corrections, performing parameter adjustment of light curves, velocity curves, and eclipse timings by the Least Squares criterion. WD handles eccentric orbits and asynchronous rotation, and can compute velocity curves (with proximity and eclipse effects). It offers options for detailed reflection and nonlinear (logarithmic law) limb darkening, adjustment of spot parameters, an optional provision for spots to drift over the surface, and can follow light curve development over large numbers of orbits. Absolute flux solution allow Direct Distance Estimation (DDE) and there are improved solutions for ellipsoidal variables and for eclipsing binaries (EBs) with very shallow eclipses. Absolute flux solutions also can estimate temperatures of both EB components under suitable circumstances.

[ascl:1806.012] WDEC: White Dwarf Evolution Code

WDEC (White Dwarf Evolution Code), written in Fortran, offers a fast and fairly easy way to produce models of white dwarfs. The code evolves hot (~100,000 K) input models down to a chosen effective temperature by relaxing the models to be solutions of the equations of stellar structure. The code can also be used to obtain g-mode oscillation modes for the models.

[ascl:1807.020] wdmerger: Simulate white dwarf mergers with CASTRO

wdmerger simulates binary white dwarf mergers (and related events) in CASTRO (ascl:1105.010) and provides useful information on the viability of mergers of white dwarfs as a progenitor for Type Ia supernovae.

[ascl:2007.013] wdtools: Spectroscopic analysis of white dwarfs

wdtools characterizes the atmospheric parameters of white dwarfs using spectroscopic data. The flagship class is the generative fitting pipeline (GFP), which fits ab initio theoretical models to observed spectra in a Bayesian framework using high-speed neural networks to interpolate synthetic spectra.

[ascl:1504.007] WebbPSF: James Webb Space Telescope PSF Simulation Tool

WebbPSF provides a PSF simulation tool in a flexible and easy-to-use software package implemented in Python. Functionality includes support for spectroscopic modes of JWST NIRISS, MIRI, and NIRSpec, including modeling of slit losses and diffractive line spread functions.

[ascl:1609.007] Weighted EMPCA: Weighted Expectation Maximization Principal Component Analysis

Weighted EMPCA performs principal component analysis (PCA) on noisy datasets with missing values. Estimates of the measurement error are used to weight the input data such that the resulting eigenvectors, when compared to classic PCA, are more sensitive to the true underlying signal variations rather than being pulled by heteroskedastic measurement noise. Missing data are simply limiting cases of weight = 0. The underlying algorithm is a noise weighted expectation maximization (EM) PCA, which has additional benefits of implementation speed and flexibility for smoothing eigenvectors to reduce the noise contribution.

[ascl:1010.042] WeightMixer: Hybrid Cross-power Spectrum Estimation

This code, which requires HEALPix 2.x, allows you to generate power spectrum estimators from WMAP 5-year maps and generate hybrid cross- and auto- power spectrum and covariance from general foreground-cleaned maps. In addition, it allows you to simulate combined maps or combinations of maps for individual detectors and do MPI spherical transforms of arrays of maps, calculate coupling matrices etc. The code includes all of LensPix - the MPI framework used for doing spherical transforms (based on HealPix).

[ascl:1010.069] WeightWatcher: Code to Produce Control Maps

WeightWatcher is a program that combines weight-maps, flag-maps and polygon data in order to produce control maps which can directly be used in astronomical image-processing packages like Drizzle, SWarp or SExtractor.

[ascl:1705.015] WeirdestGalaxies: Outlier Detection Algorithm on Galaxy Spectra

WeirdestGalaxies finds the weirdest galaxies in the Sloan Digital Sky Survey (SDSS) by using a basic outlier detection algorithm. It uses an unsupervised Random Forest (RF) algorithm to assign a similarity measure (or distance) between every pair of galaxy spectra in the SDSS. It then uses the distance matrix to find the galaxies that have the largest distance, on average, from the rest of the galaxies in the sample, and defined them as outliers.

[ascl:1404.013] WFC3UV_GC: WFC3 UVIS geometric-distortion correction

WFC3UV_GC is an improved geometric-distortion solution for the Hubble Space Telescope UVIS channel of Wide Field Camera 3 for ten broad-band filters. The solution is made up of three parts:

1.) a 3rd-order polynomial to deal with the general optical distortion;
2.) a table of residuals that accounts for both chip-related anomalies and fine-structure introduced by the filter; and,
3.) a linear transformation to put the two chips into a convenient master frame.

[ascl:2101.003] whereistheplanet: Predicting positions of directly imaged companions

whereistheplanet predicts the locations of directly imaged companions (mainly exoplanets and brown dwarfs) based on past orbital fits to the data. This tool helps coordinate follow-up observations to characterize their properties, as precise pointing of the instrument is often needed. It uses orbitize! (ascl:1910.009) as a backend. whereistheplanet is available as a Python API, a command line tool, and a web form at whereistheplanet.com.

[ascl:1911.018] WhereWolf: Galaxy/(sub)Halo ghosting tool for N-body simulations

WhereWolf tracks (sub)haloes even if they have been lost by a halo finder in cosmological simulations and supplements halo catalogs such as VELOCIraptor (ascl:1911.020) with these recovered (sub)haloes. The code can improve measurements of the subhalo/halo mass function and present estimates of the distribution of radii at which subhaloes merge.

[ascl:1010.084] WhiskyMHD: Numerical Code for General Relativistic Magnetohydrodynamics

Whisky is a code to evolve the equations of general relativistic hydrodynamics (GRHD) and magnetohydrodynamics (GRMHD) in 3D Cartesian coordinates on a curved dynamical background. It was originally developed by and for members of the EU Network on Sources of Gravitational Radiation and is based on the Cactus Computational Toolkit. Whisky can also implement adaptive mesh refinement (AMR) if compiled together with Carpet.

Whisky has grown from earlier codes such as GR3D and GRAstro_Hydro, but has been rewritten to take advantage of some of the latest research performed here in the EU. The motivation behind Whisky is to compute gravitational radiation waveforms for systems that involve matter. Examples would include the merger of a binary system containing a neutron star, which are expected to be reasonably common in the universe and expected to produce substantial amounts of radiation. Other possible sources are given in the projects list.

[ascl:9910.007] WINGSPAN: A WINdows Gamma-ray SPectral Analysis program

WINGSPAN is a program written to analyze spectral data from the Burst and Transient Source Experiment (BATSE) on NASA's Compton Gamma-Ray Observatory. Data files in the FITS (BFITS) format are suitable for input into the program. WINGSPAN can be used to view and manipulate event time histories or count spectra, and also has the capability to perform spectral deconvolution via a standard forward folding model fitting technique (Levenberg-Marquardt algorithm). Although WINGSPAN provides many functions for data manipulation, the program was designed to allow users to easily plug in their own external IDL routines. These external routines have access to all data read from the FITS files, as well as selection intervals created in the main part of WINGSPAN (background intervals and model, etc).

[ascl:1806.004] WiseView: Visualizing motion and variability of faint WISE sources

WiseView renders image blinks of Wide-field Infrared Survey Explorer (WISE) coadds spanning a multi-year time baseline in a browser. The software allows for easy visual identification of motion and variability for sources far beyond the single-frame detection limit, a key threshold not surmounted by many studies. WiseView transparently gathers small image cutouts drawn from many terabytes of unWISE coadds, facilitating access to this large and unique dataset. Users need only input the coordinates of interest and can interactively tune parameters including the image stretch, colormap and blink rate. WiseView was developed in the context of the Backyard Worlds: Planet 9 citizen science project, and has enabled hundreds of brown dwarf candidate discoveries by citizen scientists and professional astronomers.

[ascl:1812.001] WISP: Wenger Interferometry Software Package

WISP (Wenger Interferometry Software Package) is a radio interferometry calibration, reduction, imaging, and analysis package. WISP is a collection of Python code implemented through CASA (ascl:1107.013). Its generic and modular framework is designed to handle any continuum or spectral line radio interferometry data.

[ascl:1204.001] WM-basic: Modeling atmospheres of hot stars

WM-basic is an easy-to-use interface to a program package which models the atmospheres of Hot Stars (and also SN and GN). The release comprises all programs required to calculate model atmospheres which especially yield ionizing fluxes and synthetic spectra. WM-basic is a native 32-bit application, conforming to the Multiple Documents Interface (MDI) standards for Windows XP/2000/NT/9x. All components of the program package have been compiled with Digital Visual Fortran V6.6(Pro) and Microsoft Visual C++.

[ascl:1312.002] WND-CHARM: Multi-purpose image classifier

WND-CHARM quantitatively analyzes morphologies of galaxy mergers and associate galaxies by their morphology. It computes a large set (up to ~2700) of image features for each image based on the WND-CHARM algorithm. It can then split the images into training and test sets and classify them. The software extracts the image content descriptor from raw images, image transforms, and compound image transforms. The most informative features are then selected, and the feature vector of each image is used for classification and similarity measurement using Fisher discriminant scores and a variation of Weighted Nearest Neighbor analysis. WND-CHARM's results comparable favorably to the performance of task-specific algorithms developed for tested datasets. The simple user interface allows researchers who are not knowledgeable in computer vision methods and have no background in computer programming to apply image analysis to their data.

[ascl:2011.012] wobble: Time-series spectra analyzer

wobble analyzes time-series spectra. It was designed with stabilized extreme precision radial velocity (EPRV) spectrographs in mind, but is highly flexible and extensible to a variety of applications. It takes a data-driven approach to deriving radial velocities and requires no a priori knowledge of the stellar spectrum or telluric features.

[ascl:1212.007] WOLF: FITS file processor

WOLF processes FITS files and generates photometry files, annotated JPGs, opacity maps, background, transient detection and luminance changes detection. This software was used to process data for the Night Sky Live project.

[ascl:1204.014] WOMBAT: sWift Objects for Mhd BAsed on Tvd

WOMBAT (sWift Objects for Mhd BAsed on Tvd) is an astrophysical fluid code that is an implementation of a non-relativistic MHD TVD scheme; an extension for relativistic MHD has been added. The code operates on 1, 2, and 3D Eulerian meshes (cartesian and cylindrical coordinates) with magnetic field divergence restriction controlled by a constrained transport (CT) scheme. The user can tune code performance to a given processor based on chip cache sizes. Proper settings yield significant speed-ups due to efficient cache reuse.

[ascl:1907.030] Wōtan: Stellar detrending methods

Wōtan provides free and open source algorithms to remove trends from time-series data automatically as an aid to to search efficiently for transits in stellar light curves from surveys. The toolkit helps determine empirically the best tool for a given job, serving as a one-stop solution for various smoothing tasks.

[ascl:1304.004] Wqed: Lightcurve Analysis Suite

Wqed (pronounced "Wicked") is a set of tools developed by the Delaware Asteroseismic Research Center (DARC) to simplify the process of reducing time-series CCD data on variable stars. It does not provide tools to measure the brightness of stars in individual frames, focusing instead on what comes next:

    - selecting and removing data lost to cloud,
    - removing the effects of light cloud and seeing variations,
    - keeping track of what star a given data set refers to, and when that data was taken, and
    - performing barycentric corrections to data.

[ascl:1408.023] WSClean: Widefield interferometric imager

WSClean (w-stacking clean) is a fast generic widefield imager. It uses the w-stacking algorithm and can make use of the w-snapshot algorithm. It supports full-sky imaging and proper beam correction for homogeneous dipole arrays such as the MWA. WSClean allows Hogbom and Cotton-Schwab cleaning, and can clean polarizations joinedly. All operations are performed on the CPU; it is not specialized for GPUs.

[ascl:1010.071] WSHAPE: Gravitational Softening and Adaptive Mass Resolution

Pairwise forces between particles in cosmological N-body simulations are generally softened to avoid hard collisions. Physically, this softening corresponds to treating the particles as diffuse clouds rather than point masses. For particles of unequal mass (and hence unequal softening length), computing the softened force involves a nontrivial double integral over the volumes of the two particles. We show that Plummer force softening is consistent with this interpretation of softening while spline softening is not. We provide closed-form expressions and numerical implementation for pairwise gravitational force laws for pairs of particles of general softening scales $epsilon_1$ and $epsilon_2$ assuming the commonly used cloud profiles: NGP, CIC, TSC, and PQS. Similarly, we generalize Plummer force law into pairs of particles of general softenings. We relate our expressions to the gaussian, Plummer and spline force softenings known from literature. Our expressions allow possible inclusions of pointlike particles such as stars or supermassive black holes.

[ascl:1402.029] wssa_utils: WSSA 12 micron dust map utilities

wssa_utils contains utilities for accessing the full-sky, high-resolution maps of the WSSA 12 micron data release. Implementations in both Python and IDL are included. The code allows users to sample values at (longitude, latitude) coordinates of interest with ease, transparently mapping coordinates to WSSA tiles and performing interpolation. The wssa_utils software also serves to define a unique WSSA 12 micron flux at every location on the sky.

[ascl:1207.014] wvrgcal: Correction of atmospheric phase fluctuations in ALMA observations

wvrgcal is a command line front end to LibAIR, the atmospheric inference library for phase correction of ALMA data using water vapour radiometers, and is the user-facing application for calculating atmospheric phase correction from WVR data. wvrgcal outputs a CASA gain calibration table which can then be applied to the observed data in the usual way.

[ascl:1211.003] WVT Binning: Spatially adaptive 2-D binning

WVT Binning is a spatially adaptive 2-dimensional binning algorithm designed to bin sparse X-ray data. It can handle background subtracted, exposure corrected data to produce intensity images, hardness ratio maps, or temperature maps. The algorithm is an extension of Cappellari & Copin's (2003) Voronoi binning code and uses Weighted Voronoi Tesselations (WVT) to produce a very compact binning structure with a constant S/N per bin. The bin size adjusts to the required resolution in single-pixel steps, which minimizes the scatter around the target S/N. The code is very versatile and can in principle be applied to any type of data. The user manual contains instructions on how to apply the WVT binning code to X-ray data and how to extend the algorithm to other problems.

[ascl:1909.011] WVTICs: SPH initial conditions using Weighted Voronoi Tesselations

WVTICs generates glass-like initial conditions for Smoothed Particle Hydrodynamics. Relaxation of the particle distribution is done using an algorithm based on Weighted Voronoi Tesselations; additional particle reshuffling can be enabled to improve over- and undersampled maxima/minima. The WBTICs package includes a full suite of analytical test problems.

[ascl:1601.019] WzBinned: Binned and uncorrelated estimates of dark energy EOS extractor

WzBinned extracts binned and uncorrelated estimates of dark energy equation of state w(z) using Type Ia supernovae Hubble diagram and other cosmological probes and priors. It can handle an arbitrary number of input distance modulus data (entered as an input file SNdata.dat) and various existing cosmological information.

[ascl:2102.005] X-PSI: X-ray Pulse Simulation and Inference

X-PSI simulates rotationally-modified (pulsed) surface X-ray emission from neutron stars, taking into account relativistic effects on the emitted radiation. This can then be used to perform Bayesian statistical inference on real or simulated astronomical data sets. Model parameters of interest may include neutron star mass and radius (useful to constrain the properties of ultradense nuclear matter) or the system geometry and properties of the hot emitting surface-regions. To achieve this, X-PSI couples code for likelihood functionality (simulation) with existing open-source software for posterior sampling (inference).

[ascl:1312.005] XAssist: Automatic analysis of X-ray astrophysics data

XAssist provides automation of X-ray astrophysics, specifically data reprocessing, source detection, and preliminary spatial, temporal and spectral analysis for each source with sufficient counts, with an emphasis on galaxies. It has been used for data from Chandra, ROSAT, XMM-Newton, and other various projects.

[ascl:1810.016] XCLASS: eXtended CASA Line Analysis Software Suite

XCLASS (eXtended CASA Line Analysis Software Suite) extends CASA (ascl:1107.013) with new functions for modeling interferometric and single dish data. It provides a tool for calculating synthetic spectra by solving the radiative transfer equation for an isothermal object in one dimension, taking into account the finite source size and dust attenuation. It also includes an interface for MAGIX (ascl:1303.009) to find the parameter set that most closely reproduces the data.

Would you like to view a random code?