[ascl:1807.026]
SENR: Simple, Efficient Numerical Relativity

SENR (Simple, Efficient Numerical Relativity) provides the algorithmic framework that combines the C codes generated by NRPy+ (ascl:1807.025) into a functioning numerical relativity code. It is part of the numerical relativity code package SENR/NRPy+. The package extends previous implementations of the BSSN reference-metric formulation to a much broader class of curvilinear coordinate systems, making it suitable for modeling physical configurations with approximate or exact symmetries, such as modeling black hole dynamics.

[ascl:1811.004]
SEP: Source Extraction and Photometry

SEP (Source Extraction and Photometry) makes the core algorithms of Source Extractor (ascl:1010.064) available as a library of standalone functions and classes. These operate directly on in-memory arrays (no FITS files or configuration files). The code is derived from the Source Extractor code base (written in C) and aims to produce results compatible with Source Extractor whenever possible. SEP consists of a C library with no dependencies outside the standard library and a Python module that wraps the C library in a Pythonic API. The Python wrapper operates on NumPy arrays with NumPy as its only dependency. It is generated using Cython.

From Source Extractor, SEP includes background estimation, image segmentation (including on-the-fly filtering and source deblending), aperture photometry in circular and elliptical apertures, and source measurements such as Kron radius, "windowed" position fitting, and half-light radius. It also adds the following features that are not available in Source Extractor: optimized matched filter for variable noise in source extraction; circular annulus and elliptical annulus aperture photometry functions; local background subtraction in shape consistent with aperture in aperture photometry functions; exact pixel overlap mode in all aperture photometry functions; and masking of elliptical regions on images.

[ascl:1404.005]
SER: Subpixel Event Repositioning Algorithms

Subpixel Event Repositioning (SER) techniques significantly improve the already unprecedented spatial resolution of Chandra X-ray imaging with the Advanced CCD Imaging Spectrometer (ACIS). Chandra CCD SER techniques are based on the premise that the impact position of events can be refined, based on the distribution of charge among affected CCD pixels. Unlike ACIS SER models that are restricted to corner split (3- and 4-pixel) events and assume that such events take place at the split pixel corners, this IDL code uses two-pixel splits as well, and incorporates more realistic estimates of photon impact positions.

[ascl:1102.010]
SEREN: A SPH code for star and planet formation simulations

Hubber, David; Batty, Chris; McLeod, Andrew; Whitworth, Anthony; Bisbas, Thomas; Stamatellos, Dimitrios; Walch, Stefanie; Rawiraswattana, Krisada; Goodwin, Simon

SEREN is an astrophysical Smoothed Particle Hydrodynamics code designed to investigate star and planet formation problems using self-gravitating hydrodynamics simulations of molecular clouds, star-forming cores, and protostellar disks.

SEREN is written in Fortran 95/2003 with a modular philosophy for adding features into the code. Each feature can be easily activated or deactivated by way of setting options in the Makefile before compiling the code. This has the added benefit of allowing unwanted features to be removed at the compilation stage resulting in a smaller and faster executable program. SEREN is written with OpenMP directives to allow parallelization on shared-memory architecture.

[ascl:1312.001]
SERPent: Scripted E-merlin Rfi-mitigation PipelinE for iNTerferometry

SERPent is an automated reduction and RFI-mitigation procedure that uses the SumThreshold methodology. It was originally developed for the LOFAR pipeline. SERPent is written in Parseltongue, enabling interaction with the Astronomical Image Processing Software (AIPS) program. Moreover, SERPent is a simple "out of the box" Python script, which is easy to set up and is free of compilers.

[ascl:1304.009]
Sérsic: Exact deprojection of Sérsic surface brightness profiles

Sérsic is an implementation of the exact deprojection of Sérsic surface brightness profiles described in Baes and Gentile (2011). This code depends on the mpmath python library for an implementation of the Meijer G function required by the Baes and Gentile (hereafter B+G) formulas for rational values of the Sérsic index. Sérsic requires rational Sérsic indices, but any irrational number can be approximated arbitrarily well by some rational number. The code also depends on scipy, but the dependence is mostly for testing. The implementation of the formulas and the formulas themselves have undergone comprehensive testing.

[ascl:2006.011]
SERVAL: SpEctrum Radial Velocity AnaLyser

Zechmeister, M.; Reiners, A.; Amado, P. J.; Azzaro, M.; Bauer, F. F.; Béjar, V. J. S.; Caballero, J. A.; Guenther, E. W.; Hagen, H. -J.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Launhardt, R.; Montes, D.; Morales, J. C.; Quirrenbach, A.; Reffert, S.; Ribas, I.; Seifert, W.; Tal-Or, L. Wolthoff, V.

SERVAL calculates radial velocities (RVs) from stellar spectra. The code uses least-squares fitting algorithms to derive the RVs and additional spectral diagnostics. Forward modeling in pixel space is used to properly weight pixel errors, and the stellar templates are reconstructed from the observations themselves to make optimal use of the RV information inherent in the stellar spectra.

[ascl:2203.025]
SetCoverPy: A heuristic solver for the set cover problem

SetCoverPy finds an (near-)optimal solution to the set cover problem (SCP) as fast as possible. It employs an iterative heuristic approximation method, combining the greedy and Lagrangian relaxation algorithms. It also includes a few useful tools for a quick chi-squared fitting given two vectors with measurement errors.

[ascl:1803.009]
SETI-EC: SETI Encryption Code

The SETI Encryption code, written in Python, creates a message for use in testing the decryptability of a simulated incoming interstellar message. The code uses images in a portable bit map (PBM) format, then writes the corresponding bits into the message, and finally returns both a PBM image and a text (TXT) file of the entire message. The natural constants (c, G, h) and the wavelength of the message are defined in the first few lines of the code, followed by the reading of the input files and their conversion into 757 strings of 359 bits to give one page. Each header of a page, *i.e.*, the little-endian binary code translation of the tempo-spatial yardstick, is calculated and written on-the-fly for each page.

[ascl:2206.019]
SEVN: Stellar EVolution for N-body

The population synthesis code SEVN (Stellar EVolution for N-body) includes up-to-date stellar evolution (through look-up tables), binary evolution, and different recipes for core-collapse supernovae. SEVN also provides an up-to-date formalism for pair-instability and pulsational pair-instability supernovae, and is designed to interface with direct-summation N-body codes such as STARLAB (ascl:1010.076) and HiGPUs (ascl:1207.002).

[ascl:1508.006]
SExSeg: SExtractor segmentation

SExSeg forces SExtractor (ascl:1010.064) to run using a pre-defined segmentation map (the definition of objects and their borders). The defined segments double as isophotal apertures. SExSeg alters the detection image based on a pre-defined segmenation map while preparing your "analysis image" by subtracting the background in a separate SExtractor run (using parameters you specify). SExtractor is then run in "double-image" mode with the altered detection image and background-subtracted analysis image.

[ascl:1010.064]
SExtractor: Source Extractor

This new software optimally detects, de-blends, measures and classifies sources from astronomical images: SExtractor (Source Extractor). A very reliable star/galaxy separation can be achieved on most images using a neural network trained with simulated images. Salient features of SExtractor include its ability to work on very large images, with minimal human intervention, and to deal with a wide variety of object shapes and magnitudes. It is therefore particularly suited to the analysis of large extragalactic surveys.

[ascl:2212.010]
sf_deconvolve: PSF deconvolution and analysis

sf_deconvolve performs PSF deconvolution using a low-rank approximation and sparsity. It can handle a fixed PSF for the entire field or a stack of PSFs for each galaxy position. The code accepts Numpy binary files or FITS as input, takes the observed (*i.e.* with PSF effects and noise) stack of galaxy images and a known PSF, and attempts to reconstruct the original images. sf_deconvolve can be run in a terminal or in an active Python session, and includes options for initialization, optimization, low-Rank approximation, sparsity, PSF estimation, and other attributes.

[ascl:2001.003]
sf3dmodels: Star-forming regions 3D modelling package

sf3dmodels models star-forming regions; it brings together analytical models in order to compute their physical properties in a 3-dimensional grid. The package can couple different models in a single grid to recreate complex star forming systems such as those being revealed by current instruments. The output data can be read with LIME (ascl:1107.012) or RADMC-3D (ascl:1108.016) to carry out radiative transfer calculations of the modeled region.

[ascl:1304.013]
SFH: Star Formation History

SFH is an efficient IDL tool that quickly computes accurate predictions for the baryon budget history in a galactic halo.

[ascl:1712.007]
SFoF: Friends-of-friends galaxy cluster detection algorithm

SFoF is a friends-of-friends galaxy cluster detection algorithm that operates in either spectroscopic or photometric redshift space. The linking parameters, both transverse and along the line-of-sight, change as a function of redshift to account for selection effects.

[ascl:2302.004]
SFQEDtoolkit: Strong-field QED processes modeling for PIC and Monte Carlo codes

SFQEDtoolkit implements strong-field QED (SFQED) processes in existing particle-in-cell (PIC) and Monte Carlo codes to determine the dynamics of particles and plasmas in extreme electromagnetic fields, such as those present in the vicinity of compact astrophysical objects. The code uses advanced function approximation techniques to calculate high-energy photon emission and electron-positron pair creation probability rates and energy distributions within the locally-constant-field approximation (LCFA) as well as with more advanced models.

[ascl:1210.005]
SGNAPS: Software for Graphical Navigation, Analysis and Plotting of Spectra

SGNAPS allows the user to plot a one-dimensional spectrum, together with the corresponding two-dimensional and a reference spectrum (for example the sky spectrum). This makes it possible to check on the reality of spectral features that are present in the one-dimensional spectrum, which could be due to bad sky subtraction or fringing residuals. It is also possible to zoom in and out all three spectra, edit the one-dimensional spectrum, smooth it with a simple square window function, measure the signal to noise over a selected wavelength interval, and fit the position of a selected spectral line. SGNAPS also allows the astronomer to obtain quick redshift estimates by providing a tool to fit or mark the position of a spectral line, and a function that will compute a list of possible redshifts based on a list of known lines in galaxy spectra. SGNAPS is derived from the plotting tools of VIPGI and contains almost all of their capabilities.

NOTE: SGNAPS functionality has been transitioned to EZ.

[ascl:1712.015]
SgrbWorldModel: Short-duration Gamma-Ray Burst World Model

SgrbWorldModel, written in Fortran 90, presents an attempt at modeling the population distribution of the Short-duration class of Gamma-Ray Bursts (SGRBs) as detected by the NASA's now-defunct Burst And Transient Source Experiment (BATSE) onboard the Compton Gamma Ray Observatory (CGRO). It is assumed that the population distribution of SGRBs is well fit by a multivariate log-normal distribution, whose differential cosmological rate of occurrence follows the Star-Formation-Rate (SFR) convolved with a log-normal binary-merger delay-time distribution. The best-fit parameters of the model are then found by maximizing the likelihood of the observed data by the BATSE detectors via a native built-in Adaptive Metropolis-Hastings Markov-Chain Monte Carlo (AMH-MCMC)Sampler that is part of the code. A model for the detection algorithm of the BATSE detectors is also provided.

[ascl:1605.003]
Shadowfax: Moving mesh hydrodynamical integration code

Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).

[ascl:1204.010]
Shape: A 3D Modeling Tool for Astrophysics

Shape is a flexible interactive 3D morpho-kinematical modeling application for astrophysics. It reduces the restrictions on the physical assumptions, data type and amount required for a reconstruction of an object's morphology. It applies interactive graphics and allows astrophysicists to provide a-priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation.

[ascl:2107.015]
shapelens: Astronomical image analysis and shape estimation framework

The shapelens C++ library provides ways to load galaxies and star images from FITS files and catalogs and to analyze their morphology. The main purpose of this library is to make several weak-lensing shape estimators publicly available. All of them are based on the moments of the brightness distribution. The estimators include DEIMOS, for analytic deconvolution in moment space, DEIMOSElliptical, a practical implemention of DEIMOS with an automatically matched elliptical weight function, DEIMOSCircular, which is identical to DEIMOSElliptical but with a circular weight function, and others.

[ascl:1307.014]
Shapelets: Image Modelling

Shapelets are a complete, orthonormal set of 2D basis functions constructed from Laguerre or Hermite polynomials weighted by a Gaussian. A linear combination of these functions can be used to model any image, in a similar way to Fourier or wavelet synthesis. The shapelet decomposition is particularly efficient for images localized in space, and provide a high level of compression for individual galaxies in astronomical data. The basis has many elegant mathematical properties that make it convenient for image analysis and processing.

[ascl:2109.022]
ShapeMeasurementFisherFormalism: Fisher Formalism for Weak Lensing

ShapeMeasurementFisherFormalism is used to study Fisher Formalism predictions on galaxy weak lensing for LSST Dark Energy Science Collaboration. It can create predictions with user-defined parameters for one or two galaxies simulated from GalSim (ascl:1402.009).

[ascl:2206.026]
ShapePipe: Galaxy shape measurement pipeline

Farrens, S.; Guinot, A.; Kilbinger, M.; Liaudat, T.; Baumont, L.; Jimenez, X.; Peel, A.; Pujol, A.; Schmitz, M.; Starck, J. -L.; Vitorelli, A. Z.

ShapePipe processes single-exposure images and stacked images. Input images have to be calibrated beforehand for astrometry and photometry. The code can handle different image and file types, such as single-exposure mosaic, single-exposure single-CCD, stacked images, database catalog files, and PSF files, some of which are created by the pipeline during the analysis, among others. The end product of ShapePipe is a final catalog containing information for each galaxy, including its shape parameters and the ellipticity components :math:e_1 and :math:e_2. This catalog also contains shapes of artificially sheared images. This information is used in post-processing to compute calibrated shear estimates via metacalibration.

[ascl:1811.005]
Shark: Flexible semi-analytic galaxy formation model

Lagos, Claudia del P.; Tobar, Rodrigo J.; Robotham, Aaron S. G.; Obreschkow, Danail; Mitchell, Peter D.; Power, Chris; Elahi, Pascal J.

Shark is a flexible semi-analytic galaxy formation model for easy exploration of different physical processes. Shark has been implemented with several models for gas cooling, active galactic nuclei, stellar and photo-ionization feedback, and star formation (SF). The software can determine the stellar mass function and stellar–halo mass relation at z=0–4; cosmic evolution of the star formation rate density, stellar mass, atomic and molecular hydrogen; local gas scaling relations; and structural galaxy properties. It performs particularly well for the mass–size relation for discs/bulges, the gas–stellar mass and stellar mass–metallicity relations. Shark is written in C++11 and has been parallelized with OpenMP.

[ascl:2307.024]
SHARK: Gas and dust hydrodynamics with dust coagulation/fragmentation

SHARK solves the hydrodynamic equations for gas and dust mixtures accounting for dust coagulation and fragmentation (among other things). The code is written in Fortran and is capable of handling both 1D and 2D Cartesian geometries; 1D simulations with spherical geometry are also possible. SHARK is versatile and can be used to model various astrophysical environments.

[ascl:1508.010]
SHDOM: Spherical Harmonic Discrete Ordinate Method for atmospheric radiative transfer

The Spherical Harmonic Discrete Ordinate Method (SHDOM) radiative transfer model computes polarized monochromatic or spectral band radiative transfer in a one, two, or three-dimensional medium for either collimated solar and/or thermal emission sources of radiation. The model is written in a variant of Fortran 77 and in Fortran90 and requires a Fortran 90 compiler. Also included are programs for generating the optical property files input to SHDOM from physical properties of water cloud particles and aerosols.

[ascl:2107.016]
shear-stacking: Stacked shear profiles and tests based upon them

shear-stacking calculates stacked shear profiles and tests based upon them, e.g. consistency for different slices of lensed background galaxies. The basic concept is that the lensing signal in terms of surface mass density (instead of shear) should be entirely determined by the properties of the lens sample and have no dependence on source galaxy properties.

[ascl:2210.021]
SHEEP: Machine Learning pipeline for astronomy classification

The photometric redshift-aided classification pipeline SHEEP uses ensemble learning to classify astronomical sources into galaxies, quasars and stars. It uses tabular data and also allows the use of sparse data. The approach uses SDSS and WISE photometry, but SHEEP can also be used with other types of tabular data, such as radio fluxes or magnitudes.

[ascl:1108.017]
SHELLSPEC: Simple Radiative Transfer along Line of Sight in Moving Media

SHELLSPEC calculates lightcurves, spectra and images of interacting binaries and extrasolar planets immersed in a moving circumstellar environment which is optically thin. It solves simple radiative transfer along the line of sight in moving media. The assumptions include LTE and optional known state quantities and velocity fields in 3D. Optional (non)transparent objects such as a spot, disc, stream, jet, shell or stars as well as an empty space may be defined (embedded) in 3D and their composite synthetic spectrum calculated. Roche model can be used as a boundary condition for the radiative tranfer. A related code based on SHELLSPEC, Pyshellspec (ascl:2106.006), solves the inverse problem of finding the stellar and orbital parameters.

[ascl:1108.002]
SHERA: SHEar Reconvolution Analysis

Current and upcoming wide-field, ground-based, broad-band imaging surveys promise to address a wide range of outstanding problems in galaxy formation and cosmology. Several such uses of ground-based data, especially weak gravitational lensing, require highly precise measurements of galaxy image statistics with careful correction for the effects of the point-spread function (PSF). The SHERA (SHEar Reconvolution Analysis) software simulates ground-based imaging data with realistic galaxy morphologies and observing conditions, starting from space-based data (from COSMOS, the Cosmological Evolution Survey) and accounting for the effects of the space-based PSF. This code simulates ground-based data, optionally with a weak lensing shear applied, in a model-independent way using a general Fourier space formalism. The utility of this pipeline is that it allows for a precise, realistic assessment of systematic errors due to the method of data processing, for example in extracting weak lensing galaxy shape measurements or galaxy radial profiles, given user-supplied observational conditions and real galaxy morphologies. Moreover, the simulations allow for the empirical test of error estimates and determination of parameter degeneracies, via generation of many noise maps. The public release of this software, along with a large sample of cleaned COSMOS galaxy images (corrected for charge transfer inefficiency), should enable upcoming ground-based imaging surveys to achieve their potential in the areas of precision weak lensing analysis, galaxy profile measurement, and other applications involving detailed image analysis.

This code is no longer maintained and has been superseded by GalSim (ascl:1402.009).

[ascl:2306.043]
SHERLOCK: Explore Kepler, K2, and TESS data

The end-to-end SHERLOCK (Searching for Hints of Exoplanets fRom Lightcurves Of spaCe-based seeKers) pipeline allows users to explore data from space-based missions to search for planetary candidates. It can recover alerted candidates by the automatic pipelines such as SPOC and the QLP, Kepler objects of interest (KOIs) and TESS objects of interest (TOIs), and can search for candidates that remain unnoticed due to detection thresholds, lack of data exploration, or poor photometric quality. SHERLOCK has six different modules to perform its tasks; these modules can be executed by filling in an initial YAML file with some basic information and using a few lines of code sequentially to pass from one step to the next. Alternatively, the user may provide with the light curve in a csv file, where the time, normalized flux, and flux error are provided in columns in comma-separated format.

[ascl:1107.005]
Sherpa: CIAO Modeling and Fitting Package

Sherpa is the CIAO (ascl:1311.006) modeling and fitting application made available by the Chandra X-ray Center (CXC). It can be used for analysis of images, spectra and time series from many telescopes, including optical telescopes such as Hubble. Sherpa is flexible, modular and extensible. It has an IPython user interface and it is also an importable Python module. Sherpa models, optimization and statistic functions are available via both C++ and Python for software developers wishing to link such functions directly to their own compiled code.

The CIAO 4.3 Sherpa release supports fitting of 1-D X-ray spectra from Chandra and other X-ray missions, as well as 1-D non-X-ray data, including ASCII data arrays, radial profiles, and lightcurves. The options for grating data analysis include fitting the spectrum with multiple response files required for overlapping orders in LETG observations. Modeling of 2-D spatial data is fully supported, including the PSF and exposure maps. User specified models can be added to Sherpa with advanced "user model" functionality.

[ascl:1110.004]
SHTOOLS: Tools for Working with Spherical Harmonics

SHTOOLS performs (among others) spherical harmonic transforms and reconstructions, rotations of spherical harmonic coefficients, and multitaper spectral analyses on the sphere. The package accommodates any standard normalization of the spherical harmonic functions ("geodesy" 4π normalized, Schmidt semi-normalized, orthonormalized, and unnormalized), and either real or complex spherical harmonics can be employed. Spherical harmonic transforms are calculated by exact quadrature rules using either (1) the sampling theorem of Driscoll and Healy (1994) where data are equally sampled (or spaced) in latitude and longitude, or (2) Gauss-Legendre quadrature. A least squares inversion routine for irregularly sampled data is included as well. The Condon-Shortley phase factor of (-1)m can be used or excluded with the associated Legendre functions. The spherical harmonic transforms are accurate to approximately degree 2800, corresponding to a spatial resolution of better than 4 arc minutes. Routines are included for performing localized multitaper spectral analyses and standard gravity calculations, such as computation of the geoid, and the determination of the potential associated with finite-amplitude topography. The routines are fast. Spherical harmonic transforms and reconstructions take on the order of 1 second for bandwidths less than 600 and about 3 minutes for bandwidths close to 2800.

[ascl:1704.003]
Shwirl: Meaningful coloring of spectral cube data with volume rendering

Shwirl visualizes spectral data cubes with meaningful coloring methods. The program has been developed to investigate transfer functions, which combines volumetric elements (or voxels) to set the color, and graphics shaders, functions used to compute several properties of the final image such as color, depth, and/or transparency, as enablers for scientific visualization of astronomical data. The program uses Astropy (ascl:1304.002) to handle FITS files and World Coordinate System, Qt (and PyQt) for the user interface, and VisPy, an object-oriented Python visualization library binding onto OpenGL.

[ascl:1411.026]
sic: Sparse Inpainting Code

Feeney, Stephen M.; Marinucci, Domenico; McEwen, Jason D.; Peiris, Hiranya V.; Wandelt, Benjamin D.; Cammarota, Valentina

sic (Sparse Inpainting Code) generates Gaussian, isotropic CMB realizations, masks them, and recovers the large-scale masked data using sparse inpainting; it is written in Fortran90.

[ascl:1706.009]
sick: Spectroscopic inference crank

sick infers astrophysical parameters from noisy observed spectra. Phenomena that can alter the data (e.g., redshift, continuum, instrumental broadening, outlier pixels) are modeled and simultaneously inferred with the astrophysical parameters of interest. This package relies on emcee (ascl:1303.002); it is best suited for situations where a grid of model spectra already exists, and one would like to infer model parameters given some data.

[ascl:1905.024]
SICON: Stokes Inversion based on COnvolutional Neural networks

SICON (Stokes Inversion based on COnvolutional Neural networks) provides a three-dimensional cube of thermodynamical and magnetic properties from the interpretation of two-dimensional maps of Stokes profiles by use of a convolutional neural network. In addition to being much faster than parallelized inversion codes, SICON, when trained on synthetic Stokes profiles from two numerical simulations of different structures of the solar atmosphere, also provided a three-dimensional view of the physical properties of the region of interest in geometrical height, and pressure and Wilson depression properties that are decontaminated from the blurring effect of instrumental point spread functions.

[ascl:1703.007]
sidm-nbody: Monte Carlo N-body Simulation for Self-Interacting Dark Matter

Self-Interacting Dark Matter (SIDM) is a hypothetical model for cold dark matter in the Universe. A strong interaction between dark matter particles introduce a different physics inside dark-matter haloes, making the density profile cored, reduce the number of subhaloes, and trigger gravothermal collapse. sidm-nbody is an N-body simulation code with Direct Simulation Monte Carlo scattering for self interaction, and some codes to analyse gravothermal collapse of isolated haloes. The N-body simulation is based on GADGET 1.1.

[ascl:2303.015]
SIDM: Density profiles of self-interacting dark-matter halos with inhabitant galaxies

Jiang, Fangzhou; Benson, Andrew; Hopkins, Philip F.; Slone, Oren; Lisanti, Mariangela; Kaplinghat, Manoj; Peter, Annika H. G.; Zeng, Zhichao Carton; Du, Xiaolong; Yang, Shengqi; Shen, Xuejian

The SIDM model combines the isothermal Jeans model and the model of adiabatic halo contraction into a simple semi-analytic procedure for computing the density profile of self-interacting dark-matter (SIDM) haloes with the gravitational influence from the inhabitant galaxies. It agrees well with cosmological SIDM simulations over the entire core-forming stage and up to the onset of gravothermal core-collapse. The fast speed of the method facilitates analyses that would be challenging for numerical simulations.

[ascl:1110.023]
SiFTO: An Empirical Method for Fitting SN Ia Light Curves

SiFTO is an empirical method for modeling Type Ia supernova (SN Ia) light curves by manipulating a spectral template. We make use of high-redshift SN data when training the model, allowing us to extend it bluer than rest-frame U. This increases the utility of our high-redshift SN observations by allowing us to use more of the available data. We find that when the shape of the light curve is described using a stretch prescription, applying the same stretch at all wavelengths is not an adequate description. SiFTO therefore uses a generalization of stretch which applies different stretch factors as a function of both the wavelength of the observed filter and the stretch in the rest-frame B band. SiFTO has been compared to other published light-curve models by applying them to the same set of SN photometry, and it's been demonstrated that SiFTO and SALT2 perform better than the alternatives when judged by the scatter around the best-fit luminosity distance relationship. When SiFTO and SALT2 are trained on the same data set the cosmological results agree.

[ascl:1107.016]
SIGPROC: Pulsar Signal Processing Programs

SIGPROC is a package designed to standardize the initial analysis of the many types of fast-sampled pulsar data. Currently recognized machines are the Wide Band Arecibo Pulsar Processor (WAPP), the Penn State Pulsar Machine (PSPM), the Arecibo Observatory Fourier Transform Machine (AOFTM), the Berkeley Pulsar Processors (BPP), the Parkes/Jodrell 1-bit filterbanks (SCAMP) and the filterbank at the Ooty radio telescope (OOTY). The SIGPROC tools should help users look at their data quickly, without the need to write (yet) another routine to read data or worry about big/little endian compatibility (byte swapping is handled automatically).

[ascl:2103.025]
Silo: Saving scientific data to binary disk files

Mcabee, T.; Brown, S.; Ahern, S.; Matzke, R.; Miller, M.; Bonnell, K.; Reus, J.; Brugger, E.; Whitlock, B.

Silo reads and writes a wide variety of scientific data to binary disk files. The files Silo produces and the data within them can be easily shared and exchanged between wholly independently developed applications running on disparate computing platforms. Consequently, Silo facilitates the development of general purpose tools for processing scientific data. One of the more popular tools that process Silo data files is the VisIt visualization tool (ascl:1103.007).

Silo supports gridless (point) meshes, structured meshes, unstructured-zoo and unstructured-arbitrary-polyhedral meshes, block structured AMR meshes, constructive solid geometry (CSG) meshes, piecewise-constant (e.g., zone-centered) and piecewise-linear (e.g. node-centered) variables defined on the node, edge, face or volume elements of meshes as well as the decomposition of meshes into arbitrary subset hierarchies including materials and mixing materials. In addition, Silo supports a wide variety of other useful objects to address various scientific computing application needs. Although the Silo library is a serial library, it has features that enable it to be applied quite effectively and scalable in parallel.

[ascl:1603.001]
SILSS: SPHERE/IRDIS Long-Slit Spectroscopy pipeline

The ESO's VLT/SPHERE instrument includes a unique long-slit spectroscopy (LSS) mode coupled with Lyot coronagraphy in its infrared dual-band imager and spectrograph (IRDIS) for spectral characterization of young, giant exoplanets detected by direct imaging. The SILSS pipeline is a combination of the official SPHERE pipeline and additional custom IDL routines developed within the SPHERE consortium for the speckle subtraction and spectral extraction of a companion's spectrum; it offers a complete end-to-end pipeline, from raw data (science+calibrations) to a final spectrum of the companion. SILSS works on both the low-resolution (LRS) and medium-resolution (MRS) data, and allows correction for some of the known biases of the instrument. Documentation is included in the header of the main routine of the pipeline.

[ascl:1811.011]
SIM5: Library for ray-tracing and radiation transport in general relativity

The SIM5 library contains routines for relativistic raytracing and radiation transfer in GR. Written C with a Python interface, it has a special focus on raytracing from accretion disks, tori, hot spots or any other 3D configuration of matter in Kerr geometry, but it can be used with any other metric as well. It handles both optically thick and thin sources as well as transport of polarization of the radiation and calculates the propagation of light rays from the source to an observer through a curved spacetime. It supports parallelization and runs on GPUs.

[ascl:2204.011]
SimAb: Planet formation model

SimAb (Simulating Abundances) simulates planet formation, focusing on the atmosphere accretion of gas giant planets. The package can run the simulation in two different modes. The single simulation mode is run by specifying the initial conditions (the core mass, the initial orbital distance, the planetesimal ratio, and the dust grain fraction), and the mature planet mass and orbital distance. The multi run simulation mode requires specifying the mass and the final orbital distance of the mature planet; the simulation randomly assigns initial orbital distance, initial core mass, initial planetesimal ratio, and initial dust grain fraction. The package also provides Jupyter codes for plotting the results of the simulations.

[ascl:2308.003]
SIMBI: 3D relativistic gas dynamics code

SIMBI simulates heterogeneous relativistic gas dynamics up to 3d for special relativistic hydrodynamics and up to 2D Newtonian hydrodynamics. It supports user-defined mesh expansion and contraction, density, momentum, and energy density terms outside of grid; the code also supports source terms in the Euler equations and source terms at the boundaries. Boundary conditions, which include periodic, reflecting, outflow, and inflow boundaries, are given as an array of strings. If an inflow boundary condition is set but no inflow boundary source terms are given, SIMBI switches to outflow boundary conditions to prevent crashes. The code can track a single passive scalar, insert an immersed boundary, and is impermeable by default. SIMBI USES the Cython framework to blend together C++, CUDA, HIP, and Python.

[ascl:2012.018]
SimCADO: Observations simulator for infrared telescopes and instruments

SimCADO simulates observations with any NIR/Vis imaging system. Though the package was originally designed to simulate images for the European Extremely Large Telescope (ELT) and MICADO, with the proper input, it is capable of simulating observations from many different telescope and instrument configurations.

[ascl:1010.025]
SimFast21: Simulation of the Cosmological 21cm Signal

SimFast 21 generates a simulation of the cosmological 21cm signal. While limited to low spatial resolution, the next generation low-frequency radio interferometers that target 21 cm observations during the era of reionization and prior will have instantaneous fields-of-view that are many tens of square degrees on the sky. Predictions related to various statistical measurements of the 21 cm brightness temperature must then be pursued with numerical simulations of reionization with correspondingly large volume box sizes, of order 1000 Mpc on one side. The authors pursued a semi-numerical scheme to simulate the 21 cm signal during and prior to Reionization by extending a hybrid approach where simulations are performed by first laying down the linear dark matter density field, accounting for the non-linear evolution of the density field based on second-order linear perturbation theory as specified by the Zel'dovich approximation, and then specifying the location and mass of collapsed dark matter halos using the excursion-set formalism. The location of ionizing sources and the time evolving distribution of ionization field is also specified using an excursion-set algorithm. They account for the brightness temperature evolution through the coupling between spin and gas temperature due to collisions, radiative coupling in the presence of Lyman-alpha photons and heating of the intergalactic medium, such as due to a background of X-ray photons. The method is capable of producing the required large volume simulations with adequate resolution in a reasonable time so a large number of realizations can be obtained with variations in assumptions related to astrophysics and background cosmology that govern the 21 cm signal.

[ascl:2203.028]
SimLine: Radiative transfer in molecular lines

SimLine computes the profiles of molecular rotational transitions and atomic fine structure lines in spherically symmetric clouds with arbitrary density, temperature and velocity structure. The code is designed towards a maximum flexibility and very high accuracy based on a completely adaptive discretization of all quantities. The code can treat arbitrary species in spherically symmetric configurations with arbitrary velocity structures and optical depths between about -5 and 5000. Moreover, SimLine includes the treatment of turbulence and clumping effects in a local statistical approximation combined with a radial dependence of the correlation parameters. The code consists of two parts: the self-consistent solution of the balance equations for all level populations and energy densities at all radial points and the computation of the emergent line profiles observed from a telescope with finite beam width and arbitrary offset.

[ascl:2212.015]
SImMER: Stellar Image Maturation via Efficient Reduction

SImMER (Stellar Image Maturation via Efficient Reduction) reduces astronomical imaging data. It performs standard dark-subtraction and flat-fielding operations on data from, for example, the ShARCS camera on the Shane 3-m telescope at Lick Observatory and the PHARO camera on the Hale 5.1-m telescope at Palomar Observatory; its object-oriented design allows the software to be extended to other instruments. SImMER can also perform sky-subtraction, image registration, FWHM measurement, and contrast curve calculation, and can generate tables and plots. For widely separated stars which are of somewhat equal brightness, a “wide binary” mode allows the user to selects which star is the primary around which each image should be centered.

[ascl:1110.022]
simple_cosfitter: Supernova-centric Cosmological Fitter

This is an implementation of a fairly simple-minded luminosity distance fitter, intended for use with supernova data. The calculational technique is based on evaluating the $chi^2$ of the model fit on a grid and marginalization over various nuisance parameters. Of course, the nature of these things is that this code has gotten steadily more complex, so perhaps the simple moniker is no longer justified.

[ascl:2106.020]
simple_reg_dem: Differential Emission Measures in the solar corona

simple_reg_dem reconstructs differential emission measures (DEMs) in the solar corona. It overcomes issues, such as complexity, idiosyncratic output, convergence difficulty, and lack of speed, that exists in other methods. Initially written for extreme ultraviolet (EUV) data, the algorithm is notable for its simplicity, and is robust and extensible to any other wavelengths (*e.g.*, X-rays) where the DEM treatment is valid. It is available in the SolarSoft (ascl:1208.013) package.

[ascl:2305.017]
simple-m2m: Extensions to the standard M2M algorithm for full modeling of observational data

Made-to-measure (M2M) is a standard technique for modeling the dynamics of astrophysical systems in which the system is modeled with a set of N particles with weights that are slowly optimized to fit a set of constraints while integrating these particles forward in the gravitational potential. Simple-m2m extends this standard technique to allow parameters of the system other than the particle weights to be fit as well, including nuisance parameters that describe the observer's relation to the dynamical system (*e.g.*, the inclination) or parameters describing an external potential.

[ascl:2307.029]
SIMPLE: Intensity map generator

SIMPLE (Simple Intensity Map Producer for Line Emission) generates intensity maps that include observational effects such as noise, anisotropic smoothing, sky subtraction, and masking. Written in Python, it is based on a lognormal simulation of galaxies and random assignment of luminosities to these galaxies and generates mock intensity maps that can be used to study survey systematics and calculate covariance matrices of power spectra. The code is modular, allowing its components to be used independently.

[ascl:1606.010]
SimpLens: Interactive gravitational lensing simulator

SimpLens illustrates some of the theoretical ideas important in gravitational lensing in an interactive way. After setting parameters for elliptical mass distribution and external mass, SimpLens displays the mass profile and source position, the lens potential and image locations, and indicate the image magnifications and contours of virtual light-travel time. A lens profile can be made shallower or steeper with little change in the image positions and with only total magnification affected.

[ascl:2106.008]
simqso: Simulated quasar spectra generator

simqso generates mock quasar spectra and photometry. Simulated quasar spectra are built from a series of components. Common quasar models are built-in, such as a broken power-law continuum model and Gaussian emission line templates; however, the code allows user-defined features to be included. Mock spectra are generated at arbitrary resolution and can be used to produce broadband photometry representative of a number of surveys.

[ascl:1903.006]
SimSpin: Kinematic analysis of galaxy simulations

The R-package SimSpin measures the kinematics of a galaxy simulation as if it had been observed using an IFU. The functions included in the package can produce a kinematic data cube and measure the "observables" from this data cube, specifically the observable spin parameter λr. This package, once installed, is fully documented and tested.

[ascl:2205.025]
simulateSearch: High-time resolution data sets simulations for radio telescopes

simulateSearch simulates high time-resolution data in radio astronomy. The code is built around producing multiple binary data files that contain information on the radiometer noise and sources that are being simulated. These binary data files subsequently get combined and output PSRFITS

search mode files produced. The PSRFITS files can be processed using standard pulsar software packages such as PRESTO (ascl:1107.017).

[ascl:1904.016]
simuTrans: Gravity-darkened exoplanet transit simulator

simuTrans models transit light curves affected by gravity-darkened stars. The code defines a star on a grid by modeling the brightness of each point as blackbody emission, then sets a series of parameters and uses emcee (ascl:1303.002) to explore the posterior probability distribution for the remaining fitted parameters and determine their best-fit values.

[ascl:1307.013]
SIMX: Event simulator

SIMX simulates a photon-counting detector's response to an input source, including a simplified model of any telescope. The code is not a full ray-trace, but a convolution tool that uses standard descriptions of telescope PSF (via either a simple Gaussian parameter, an energy-dependent encircled-energy function, or an image of the PSF) and the detector response (using the OGIP response function) to model how sources will appear. simx uses a predefined set of PSFs, vignetting information, and instrumental responses and outputs to make the simulation. It is designed to be a 'approximation' tool to estimate issues such as source confusion, background effects, pileup, and other similar issues.

[ascl:1708.019]
SINFONI Pipeline: Data reduction pipeline for the Very Large Telescope SINFONI spectrograph

The SINFONI pipeline reduces data from the Very Large Telescope's SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) instrument. It can evaluate the detector linearity and generate a corresponding non linear pixel map, create a master dark and a hot-pixel map, a master flat and a map of pixels which have intensities greater than a given threshold. It can also compute the optical distortions and slitlets distances, and perform wavelength calibration, PSF, telluric standard and other science data reduction, and can coadd bad pixel maps, collapse a cube to an image over a given wavelength range, perform cube arithmetics, among other useful tasks.

[ascl:1010.026]
SingLe: A F90-package devoted to Softened Gravity in gaseous discs

**S**often**ingLe**ngth: Because Newton's law of Gravitation diverges as the relative separations |r'-r| tends to zero, it is common to add a positive constant λ also known as the "softening length", i.e. :

|r'-r|² ← |r'-r|² + λ².

SingLe determines the appropriate value of this Softening Length λ for a given disc local structure (thickness 2h and vertical stratification ρ), in the axially symmetric, flat disc limit, preserving at best the Newtonian character of the gravitational potential and associated forces. Mass density ρ(z) is assumed to be locally expandable in the z-direction according to:

ρ(z)= ρ_{0}[1 + a_{1}(z/h)^{2}+...+a_{q} (z/h)^{2q}+...+a_{N} (z/h)^{2 N}].

[ascl:1609.018]
SIP: Systematics-Insensitive Periodograms

SIP (Systematics-Insensitive Periodograms) extends the generative model used to create traditional sine-fitting periodograms for finding the frequency of a sinusoid by including systematic trends based on a set of eigen light curves in the generative model in addition to using a sum of sine and cosine functions over a grid of frequencies, producing periodograms with vastly reduced systematic features. Acoustic oscillations in giant stars and measurement of stellar rotation periods can be recovered from the SIP periodograms without detrending. The code can also be applied to detection other periodic phenomena, including eclipsing binaries and short-period exoplanet candidates.

[ascl:1212.008]
SIR: Stokes Inversion based on Response functions

SIR is a general-purpose code capable of dealing with gradients of the physical quantities with height. It admits one and two-component model atmospheres. It allows the recovery of the stratification of the temperature, the magnetic field vector, and the line of sight velocity through the atmosphere, and the micro- and macroturbulence velocities - which are assumed to be constant with depth. It is based on the response functions, which enter a Marquardt nonlinear least-squares algorithm in a natural way. Response functions are calculated at the same time as the full radiative transfer equation for polarized light is integrated, which determines values of many free parameters in a reasonable computation time. SIR demonstrates high stability, accuracy, and uniqueness of results, even when simulated observations present signal-to-noise ratios of the order of the lowest acceptable values in real observations.

[ascl:2307.013]
SIRENA: Energy reconstruction of X-ray photons for Athena X-IFU

SIRENA (Software Ifca for Reconstruction of EveNts for Athena X-IFU) reconstructs the energy of incoming X-ray photons after their detection in the X-IFU TES detector. It is integrated in the SIXTE (ascl:1903.002) end-to-end simulations environment where it currently runs over SIXTE simulated data. This is done by means of a tool called tesreconstruction, which is mainly a wrapper to pass a data file to the SIRENA tasks.

[ascl:2105.013]
SISPO: Imaging simulator for small solar system body missions

Pajusalu, Mihkel; Iakubivskyi, Iaroslav; Jörg Schwarzkopf, Gabriel; Väisänen, Timo; Bührer, Maximilian; Knuuttila, Olli; Teras, Hans; Palos, Mario F.; Praks, Jaan; Slavinskis, Andris

SISPO (Space Imaging Simulator for Proximity Operations) simulates trajectories, light parameters, and camera intrinsic parameters for small solar system body fly-by and terrestrial planet surface missions. The software provides realistic surface rendering and realistic dust- and gas-environment optical models for comets and active asteroids and also simulates common image aberrations such as simple geometric distortions and tangential astigmatism. SISPO uses Blender and its Cycles rendering engine, which provides physically based rendering capabilities and procedural micropolygon displacement texture generation.

[ascl:2203.001]
SISTER: Starshade Imaging Simulation Toolkit for Exoplanet Reconnaissance

SISTER (Starshade Imaging Simulations Toolkit for Exoplanet Reconnaissance) predicts how an exoplanet system would look in an instrument that utilizes an Starshade to block the light from the host star. The tool allows for controlling a set of parameters of the whole instrument for: (1) the Starshade design, (2) the exoplanetary system, (3) the telescope and (4) the camera. SISTER includes plotting software, and can also store simulations on disk for plotting with other software.

[ascl:1111.008]
SITools2: A Framework for Archival Systems

SITools2 is a CNES generic tool performed by a joint effort between CNES and scientific laboratories. SITools provides a self-manageable data access layer deployed on already existing scientific laboratory databases. This new version of SITools is a JAVA-based framework, under open source license, that provides a portable archive system, highly configurable, easy to use by laboratories, with a plugin mechanism so developers can add their own applications.

[ascl:1903.002]
SIXTE: Simulation of X-ray Telescopes

SIXTE simulates X-Ray telescope observation; the software performs instrument performance analyses and produces simulated event files for mission and analysis studies. SIXTE strives to find a compromise between exactness of the simulation and speed. Using calibration files such as the PSF, RMF and ARF makes efficient simulations possible at comparably high speed, even though they include nonlinear effects such as pileup. Setups for some current and future missions, such as XMM-Newton and Athena, are included in the package; others can be added by the user with relatively little effort through specifying the main instrument characteristics in a flexible, human-readable XML-based format. Properties of X-ray sources to be simulated are described in a detector-independent format, i.e., the same input can be used for simulating observations with all available instruments, and the same input can also be used for simulations with the SIMX simulator. The input files are easily generated from standard data such as XSPEC (ascl:9910.005) spectral models or FITS images with tools provided with the SIXTE distribution. The input data scale well from single point sources up to very complicated setups.

[ascl:1102.020]
SKID: Finding Gravitationally Bound Groups in N-body Simulations

SKID finds gravitationally bound groups in N-body simulations. The SKID program will group different types of particles depending on the type of input binary file. This could be either dark matter particles, gas particles, star particles or gas and star particles depending on what is in the input tipsy binary file. Once groups with at least a certain minimum number of members have been determined, SKID will remove particles which are not bound to the group. SKID must use the original positions of all the particles to determine whether or not particles are bound. This procedure which we call unbinding, is again dependent on the type of grouping we are dealing with. There are two cases, one for dark matter only or star particles only (case 1 unbinding), the other for inputs including gas (also stars in a dark matter environment this is case 2 unbinding).

Skid version 1.3 is a much improved version of the old denmax-1.1 version. The new name was given to avoid confusion with the DENMAX program of Gelb & Bertschinger, and although it is based on the same idea it represents a substantial evolution in the method.

[ascl:1109.003]
SKIRT: Stellar Kinematics Including Radiative Transfer

SKIRT is a radiative transfer code based on the Monte Carlo technique. The name SKIRT, acronym for Stellar Kinematics Including Radiative Transfer, reflects the original motivation for its creation: it has been developed to study the effects of dust absorption and scattering on the observed kinematics of dusty galaxies. In a second stage, the SKIRT code was extended with a module to self-consistently calculate the dust emission spectrum under the assumption of local thermal equilibrium. This LTE version of SKIRT has been used to model the dust extinction and emission of various types of galaxies, as well as circumstellar discs and clumpy tori around active galactic nuclei. A new, extended version of SKIRT code can perform efficient 3D radiative transfer calculations including a self-consistent calculation of the dust temperature distribution and the associated FIR/submm emission with a full incorporation of the emission of transiently heated grains and PAH molecules.

[ascl:1609.014]
Sky3D: Time-dependent Hartree-Fock equation solver

Written in Fortran 90, Sky3D solves the static or dynamic equations on a three-dimensional Cartesian mesh with isolated or periodic boundary conditions and no further symmetry assumptions. Pairing can be included in the BCS approximation for the static case. The code can be easily modified to include additional physics or special analysis of the results and requires LAPACK and FFTW3.

[ascl:2109.007]
SkyCalc_ipy: SkyCalc wrapper for interactive Python

SkyCalc-iPy (SkyCalc for interactive Python) accesses atmospheric emission and transmission data generated by ESO’s SkyCalc tool interactively with Python. This package is based on the command line tool by ESO for accessing spectra on the ESO SkyCalc server.

[ascl:1109.019]
SkyCat: Visualization and Catalog and Data Access Tool

ESO's Data Management; Very Large Telescope (VLT) Project Divisions; Canadian Astronomical Data Center (CADC)

SkyCat is a tool that combines visualization of images and access to catalogs and archive data for astronomy. The tool, developed in Tcl/Tk, was originally conceived as a demo of the capabilities of the class library that was developed for the VLT. The Skycat sources currently consist of five packages:

• Tclutil - Generic Tcl and C++ utilities

• Astrotcl - Astronomical Tcl and C++ utilities

• RTD - Real-time Display classes and widgets

• Catlib - Catalog library and widgets

• Skycat - Skycat application and library package

All of the required packages are always included in the tarfile.

[ascl:1408.007]
Skycorr: Sky emission subtraction for observations without plain sky information

Noll, S.; Kausch, W.; Kimeswenger, S.; Barden, M.; Jones, A. M.; Modigliani, A.; Szyszka, C.; Taylor, J.

Skycorr is an instrument-independent sky subtraction code that uses physically motivated line group scaling in the reference sky spectrum by a fitting approach for an improved sky line removal in the object spectrum. Possible wavelength shifts between both spectra are corrected by fitting Chebyshev polynomials and advanced rebinning without resolution decrease. For the correction, the optimized sky line spectrum and the automatically separated sky continuum (without scaling) is subtracted from the input object spectrum. Tests show that Skycorr performs well (per cent level residuals) for data in different wavelength regimes and of different resolution, even in the cases of relatively long time lags between the object and the reference sky spectrum. Lower quality results are mainly restricted to wavelengths not dominated by airglow lines or pseudo continua by unresolved strong emission bands.

[ascl:2104.026]
Skye: Equation of state for fully ionized matter

The Skye framework develops and prototypes new EOS physics; it is not tied to a specific set of physics choices and can be extended for new effects by writing new terms in the free energy. It takes into account the effects of positrons, relativity, electron degeneracy, and non-linear mixing effects and more, and determines the point of Coulomb crystallization in a self-consistent manner. It is available in the MESA (ascl:1010.083) EOS module and as a standalone package.

[ascl:2012.011]
Skye: Excess clustering of transit times detection

Skye detects a statistically significant excess clustering of transit times, indicating that there are likely systematics at specific times that cause many false positive detections, for the Kepler DR25 planet candidate catalog. The technique could be used for any survey looking to statistically cull false alarms.

[ascl:1907.024]
Skyfield: High precision research-grade positions for planets and Earth satellites generator

Skyfield computes positions for the stars, planets, and satellites in orbit around the Earth. Its results should agree with the positions generated by the United States Naval Observatory and their Astronomical Almanac to within 0.0005 arcseconds (which equals half a “mas” or milliarcsecond). It computes geocentric coordinates or topocentric coordinates specific to your location on the Earth’s surface. Skyfield accepts AstroPy (ascl:1304.002) time objects as input and can return results in native AstroPy units but is not dependend on AstroPy nor its compiled libraries.

[ascl:2107.014]
Skylens++: Simulation package for optical astronomical observations

Skylens++ implements a Layer-based raytracing framework particularly well-suited for realistic simulations of weak and strong gravitational lensing. Source galaxies can be drawn from analytic models or deep space-based imaging. Lens planes can be populated with arbitrary deflectors, typically either from N-body simulations or analytic lens models. Both sources and lenses can be placed at freely configurable positions into the light cone, in effect allowing for multiple source and lens planes.

[ascl:2402.009]
SkyLine: Generate mock line-intensity maps

SkyLine generates mock line-intensity maps (both in 3D and 2D) in a lightcone from a halo catalog, accounting for the evolution of clustering and astrophysical properties, and observational effects such as spectral and angular resolutions, line-interlopers, and galactic foregrounds. Using a given astrophysical model for the luminosity of each line, the code paints the signal for each emitter and generates the map, adding coherently all contributions of interest. In addition, SkyLine can generate maps with the distribution of Luminous Red Galaxies and Emitting Line Galaxies.

[ascl:1010.066]
SkyMaker: Astronomical Image Simulations Made Easy

SkyMaker simulates astronomical images. It accepts object lists in ASCII generated by the Stuff program (ascl:1010.067) to produce realistic astronomical fields. SkyMaker is part of the EFIGI development project.

[ascl:2107.007]
Skymapper: Mapping astronomical survey data on the sky

Skymapper maps astronomical survey data from the celestial sphere onto 2D using a collection of matplotlib instructions. It facilitates interactive work as well as the creation of publication-quality plots with a python-based workflow many astronomers are accustomed to. The primary motivation is a truthful representation of samples and fields from the curved sky in planar figures, which becomes relevant when sizable portions of the sky are observed.

[ascl:1710.005]
SkyNet: Modular nuclear reaction network library

The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.

[ascl:1312.007]
SkyNet: Neural network training tool for machine learning in astronomy

SkyNet is an efficient and robust neural network training code for machine learning. It is able to train large and deep feed-forward neural networks, including autoencoders, for use in a wide range of supervised and unsupervised learning applications, such as regression, classification, density estimation, clustering and dimensionality reduction. SkyNet is implemented in C/C++ and fully parallelized using MPI.

[ascl:2104.016]
Skyoffset: Sky offset optimization and mosaicing toolkit

Skyoffset makes wide-field mosaics of FITS images. Principal features of Skyoffset are the ability to produce a mosaic with a continuous background level by solving for sky offsets that minimize the intensity differences between overlapping images, and its handling of hierarchies, making it ideal for optimizing backgrounds in large mosaics made with array cameras (such as CFHT’s MegaCam and WIRCam). Skyoffset uses MongoDB in conjunction with Mo’Astro (ascl:2104.012) to store metadata about each mosaic and SWarp (ascl:1010.068) to handle image combination and propagate uncertainty maps. Skyoffset can be integrated into Python pipelines and offers a convenient API and metadata storage in MongoDB. It was developed originally for the Andromeda Optical and Infrared Disk Survey (ANDROIDS).

[ascl:2109.016]
SkyPy: Simulating the astrophysical sky

Amara, Adam; de la Bella, Lucia F.; Birrer, Simon; Bridle, Sarah; Cordero, Juan Pablo; Favole, Ginevra; Harrison, Ian; Harry, Ian W.; Hartley, William G.; Krawczyk, Coleman; Lundgren, Andrew; Nord, Brian; Nuttall, Laura K.; Rollins, Richard P.; Sudek, Philipp; Tam, Sut-Ieng; Tessore, Nicolas; Tolley, Arthur E.; Umetsu, Keiichi; Williamson, Andrew R.; Wolz, Laura

SkyPy simulates the astrophysical sky. It provides functions that sample realizations of sources and their associated properties from probability distributions. Simulation pipelines are constructed from these models, while task scheduling and data dependencies are handled internally. The package's modular design, containing a library of physical and empirical models across a range of observables and a command line script to run end-to-end simulations, allows users to interface with external software.

[ascl:1511.003]
SkyView Virtual Telescope

The SkyView Virtual telescope provides access to survey datasets ranging from radio through the gamma-ray regimes. Over 100 survey datasets are currently available. The SkyView library referenced here is used as the basis for the SkyView web site (at http://skvyiew.gsfc.nasa.gov) but is designed for individual use by researchers as well.

SkyView's approach to access surveys is distinct from most other toolkits. Rather than providing links to the original data, SkyView attempts to immediately re-render the source data in the user-requested reference frame, projection, scaling, orientation, etc. The library includes a set of geometry transformation and mosaicking tools that may be integrated into other applications independent of SkyView.

[ascl:1312.014]
SL1M: Synthesis through L1 Minimization

SL1M deconvolves radio synthesis images based on direct inversion of the measured visibilities that can deal with the non-coplanar base line effect and can be applied to telescopes with direction dependent gains. The code is more computationally demanding than some existing methods, but is highly parallelizable and scale well to clusters of CPUs and GPUs. The algorithm is also extremely flexible, allowing the solution of the deconvolution problem on arbitrarily placed pixels.

[ascl:1403.025]
SLALIB: A Positional Astronomy Library

SLALIB is a library of routines that make accurate and reliable positional-astronomy applications easier to write. Most SLALIB routines are concerned with astronomical position and time, but a number have wider trigonometrical, numerical or general applications. A Fortran implementation of SLALIB under GPL licensing is available as part of Starlink (ascl:1110.012).

[submitted]
SLEPLET

Many fields in science and engineering measure data that inherently live on non-Euclidean geometries, such as the sphere. Techniques developed in the Euclidean setting must be extended to other geometries. Due to recent interest in geometric deep learning, analogues of Euclidean techniques must also handle general manifolds or graphs. Often, data are only observed over partial regions of manifolds, and thus standard whole-manifold techniques may not yield accurate predictions. In this thesis, a new wavelet basis is designed for datasets like these.

Although many definitions of spherical convolutions exist, none fully emulate the Euclidean definition. A novel spherical convolution is developed, designed to tackle the shortcomings of existing methods. The so-called sifting convolution exploits the sifting property of the Dirac delta and follows by the inner product of a function with the translated version of another. This translation operator is analogous to the Euclidean translation in harmonic space and exhibits some useful properties. In particular, the sifting convolution supports directional kernels; has an output that remains on the sphere; and is efficient to compute. The convolution is entirely generic and thus may be used with any set of basis functions. An application of the sifting convolution with a topographic map of the Earth demonstrates that it supports directional kernels to perform anisotropic filtering.

Slepian wavelets are built upon the eigenfunctions of the Slepian concentration problem of the manifold - a set of bandlimited functions which are maximally concentrated within a given region. Wavelets are constructed through a tiling of the Slepian harmonic line by leveraging the existing scale-discretised framework. A straightforward denoising formalism demonstrates a boost in signal-to-noise for both a spherical and general manifold example. Whilst these wavelets were inspired by spherical datasets, like in cosmology, the wavelet construction may be utilised for manifold or graph data.

[ascl:1611.021]
SlicerAstro: Astronomy (HI) extension for 3D Slicer

SlicerAstro extends 3D Slicer, a multi-platform package for visualization and medical image processing, to provide a 3-D interactive viewer with 3-D human-machine interaction features, based on traditional 2-D input/output hardware, and analysis capabilities.

[ascl:1105.004]
SLiM: A Code for the Simulation of Wave Propagation through an Inhomogeneous, Magnetised Solar Atmosphere

The semi-spectral linear MHD (SLiM) code follows the interaction of linear waves through an inhomogeneous three-dimensional solar atmosphere. The background model allows almost arbitrary perturbations of density, temperature, sound speed as well as magnetic and velocity fields. The code is useful in understanding the helioseismic signatures of various solar features, including sunspots.

[ascl:1409.010]
Slim: Numerical data compression for scientific data sets

Slim performs lossless compression on binary data files. Written in C++, it operates very rapidly and achieves better compression on noisy physics data than general-purpose tools designed primarily for text.

[ascl:1507.005]
slimplectic: Discrete non-conservative numerical integrator

slimplectic is a python implementation of a numerical integrator that uses a fixed time-step variational integrator formalism applied to the principle of stationary nonconservative action. It allows nonconservative effects to be included in the numerical evolution while preserving the major benefits of normally conservative symplectic integrators, particularly the accurate long-term evolution of momenta and energy. slimplectic is appropriate for exploring cosmological or celestial N-body dynamics problems where nonconservative interactions, e.g. dynamical friction or dissipative tides, can play an important role.

[ascl:2012.017]
SLIT: Sparse Lens Inversion Technique

SLIT (Sparse Lens Inversion Technique) provides a method for inversion of lensed images in the frame of strong gravitational lensing. The code requires the input image along with lens mass profile and a PSF. The user then has to chose a maximum number of iterations after which the algorithm will stop if not converged and a image size ratio to the input image to set the resolution of the reconstructed source. Results are displayed in pyplot windows.

[ascl:9906.001]
SLOPES: Least-squares linear regression lines for bivariate datasets

SLOPES computes six least-squares linear regression lines for bivariate datasets of the form (x_i,y_i) with unknown population distributions. Measurement errors, censoring (nondetections) or other complications are not treated. The lines are: the ordinary least-squares regression of y on x, OLS(Y|X); the inverse regression of x on y, OLS(X_Y); the angular bisector of the OLS lines; the orthogonal regression line; the reduced major axis, and the mean-OLS line. The latter four regressions treat the variables symmetrically, while the first two regressions are asymmetrical. Uncertainties for the regression coefficients of each method are estimated via asymptotic formulae, bootstrap resampling, and bivariate normal simulation. These methods, derivation of the regression coefficient uncertainties, and discussions of their use are provided in three papers listed below. The user is encouraged to read and reference these studies.

[ascl:1010.035]
SLR: Stellar Locus Regression

Stellar Locus Regression (SLR) is a simple way to calibrate colors at the 1-2% level, and magnitudes at the sub-5% level as limited by 2MASS, without the traditional use of standard stars. With SLR, stars in any field are "standards." This is an entirely new way to calibrate photometry. SLR exploits the simple fact that most stars lie along a well defined line in color-color space called the stellar locus. Cross-match point-sources in flattened images taken through different passbands and plot up all color vs color combinations, and you will see the stellar locus with little effort. SLR calibrates colors by fitting these colors to a standard line. Cross-match with 2MASS on top of that, and SLR will deliver calibrated magnitudes as well.

[ascl:1106.012]
SLUG: Stochastically Lighting Up Galaxies

The effects of stochasticity on the luminosities of stellar populations are an often neglected but crucial element for understanding populations in the low mass or low star formation rate regime. To address this issue, we present SLUG, a new code to "Stochastically Light Up Galaxies". SLUG synthesizes stellar populations using a Monte Carlo technique that treats stochastic sampling properly including the effects of clustering, the stellar initial mass function, star formation history, stellar evolution, and cluster disruption. This code produces many useful outputs, including i) catalogs of star clusters and their properties, such as their stellar initial mass distributions and their photometric properties in a variety of filters, ii) two dimensional histograms of color-magnitude diagrams of every star in the simulation, iii) and the photometric properties of field stars and the integrated photometry of the entire simulated galaxy. After presenting the SLUG algorithm in detail, we validate the code through comparisons with starburst99 in the well-sampled regime, and with observed photometry of Milky Way clusters. Finally, we demonstrate the SLUG's capabilities by presenting outputs in the stochastic regime.

[ascl:2206.015]
Smart: Automatic differentiation of accelerations and variational equations

Smart provides pre-processing for LP-VIcode (ascl:1501.007). It computes the accelerations and variational equations given a generic user-defined potential function, eliminating the need to calculate manually the accelerations and variational equations.

[ascl:1210.021]
SMART: Spectroscopic Modeling Analysis and Reduction Tool

SMART is an IDL-based software tool, developed by the IRS Instrument Team at Cornell University, that allows users to reduce and analyze Spitzer data from all four modules of the Infrared Spectrograph, including the peak-up arrays. The software is designed to make full use of the ancillary files generated in the Spitzer Science Center pipeline so that it can either remove or flag artifacts and corrupted data and maximize the signal-to-noise ratio in the extraction routines. It can be run in both interactive and batch modes. SMART includes visualization tools for assessing data quality, basic arithmetic operations for either two-dimensional images or one-dimensional spectra, extraction of both point and extended sources, and a suite of spectral analysis tools.

[ascl:1603.007]
SMARTIES: Spheroids Modelled Accurately with a Robust T-matrix Implementation for Electromagnetic Scattering

SMARTIES calculates the optical properties of oblate and prolate spheroidal particles, with comparable capabilities and ease-of-use as Mie theory for spheres. This suite of MATLAB codes provides a fully documented implementation of an improved T-matrix algorithm for the theoretical modelling of electromagnetic scattering by particles of spheroidal shape. Included are scripts that cover a range of scattering problems relevant to nanophotonics and plasmonics, including calculation of far-field scattering and absorption cross-sections for fixed incidence orientation, orientation-averaged cross-sections and scattering matrix, surface-field calculations as well as near-fields, wavelength-dependent near-field and far-field properties, and access to lower-level functions implementing the T-matrix calculations, including the T-matrix elements which may be calculated more accurately than with competing codes.

[ascl:1202.013]
SME: Spectroscopy Made Easy

Spectroscopy Made Easy (SME) is IDL software and a compiled external library that fits an observed high-resolution stellar spectrum with a synthetic spectrum to determine stellar parameters. The SME external library is available for Mac, Linux, and Windows systems. Atomic and molecular line data formatted for SME may be obtained from VALD. SME can solve for empirical log(gf) and damping parameters, using an observed spectrum of a star (usually the Sun) as a constraint.

[ascl:1804.010]
SMERFS: Stochastic Markov Evaluation of Random Fields on the Sphere

SMERFS (Stochastic Markov Evaluation of Random Fields on the Sphere) creates large realizations of random fields on the sphere. It uses a fast algorithm based on Markov properties and fast Fourier Transforms in 1d that generates samples on an n *X* n grid in O(*n*^{2} log *n*) and efficiently derives the necessary conditional covariance matrices.

[ascl:1308.001]
SMILE: Orbital analysis and Schwarzschild modeling of triaxial stellar systems

SMILE is interactive software for studying a variety of 2D and 3D models, including arbitrary potentials represented by a basis-set expansion, a spherical-harmonic expansion with coefficients being smooth functions of radius (splines), or a set of fixed point masses. Its main features include:

- orbit integration in various 2d and 3d potentials (including N-body and basis-set representations of an arbitrary potential);
- methods for analysis of orbital class, fundamental frequencies, regular or chaotic nature of an orbit, computation of Lyapunov exponents;
- Poincaré sections (in 2d) and frequency maps (in 3d) for analyzing orbital structure of potential;
- construction of self-consistent Schwarzschild models; and
- convenient visualization and integrated GUI environment, and a console scriptable version.

[ascl:1904.005]
SMILI: Sparse Modeling Imaging Library for Interferometry

Akiyama, Kazunori; Tazaki, Fumie; Moriyama, Kotaro; Cho, Ilje; Ikeda, Shiro; Sasada, Mahito; Okino, Hiroki; Honma, Mareki

SMILI uses sparse sampling techniques and other regularization methods for interferometric imaging. The python-interfaced library is mainly designed for very long baseline interferometry, and has been under the active development primarily for the Event Horizon Telescope (EHT).

[ascl:1303.005]
SMMOL: Spherical Multi-level MOLecular line radiative transfer

SMMOL (Spherical Multi-level MOLecular line radiative transfer) is a molecular line radiative transfer code that uses Accelerated Lambda Iteration to solve the coupled level population and line transfer problem in spherical geometry. The code uses a discretized grid and a ray tracing methodology. SMMOL is designed for high optical depth regimes and can cope with maser emission as long as the spatial-velocity sampling is fine enough.

[ascl:2206.013]
smooth: Smoothing for N-body simulations

Smooth calculates several mean quantities for all particles in an N-Body simulation output file. The program produces a file for each type of output specified on the command line. This output file is in ASCII format with one smoothed quantity for each particle. The program uses a symmetric SPH (Smoothed Particle Hydrodynamics) smoothing kernel to find the mean quantities.

[ascl:2312.001]
smops: A sub-band model FITS image interpolator

smops interpolates input sub-band model FITS images, such as those produced by WSClean (ascl:1408.023), into more finely channelized sub-band model FITS images, thus generating model images at a higher frequency resolution. It is a Python-based command line tool. For example, given input model FITS images initially created from sub-dividing a given bandwidth into four, smops can subdivide that bandwidth further, resulting in more finely channelized model images, to a specified frequency resolution. This smooths out the stepwise behavior of models across frequency, which can improve the results of self-calibration with such models.

[ascl:1310.007]
SMURF: SubMillimeter User Reduction Facility

Jenness, Tim; Chapin, Edward L.; Berry, David S.; Gibb, Andy G.; Tilanus, Remo P. J.; Balfour, Jennifer; Tilanus, Vincent; Currie, Malcolm J.

SMURF reduces submillimeter single-dish continuum and heterodyne data. It is mainly targeted at data produced by the James Clerk Maxwell Telescope but data from other telescopes have been reduced using the package. SMURF is released as part of the bundle that comprises Starlink (ascl:1110.012) and most of the packages that use it. The two key commands are MAKEMAP for the creation of maps from sub millimeter continuum data and MAKECUBE for the creation of data cubes from heterodyne array instruments. The software can also convert data from legacy JCMT file formats to the modern form to allow it to be processed by MAKECUBE. SMURF is a core component of the ORAC-DR (ascl:1310.001) data reduction pipeline for JCMT.

[ascl:1010.027]
SNANA: A Public Software Package for Supernova Analysis

Kessler, Richard; Bernstein, Joseph P.; Cinabro, David; Dilday, Benjamin; Frieman, Joshua A.; Jha, Saurabh; Kuhlmann, Stephen; Miknaitis, Gajus; Sako, Masao; Taylor, Matt; VanderPlas, Jake

SNANA is a general analysis package for supernova (SN) light curves that contains a simulation, light curve fitter, and cosmology fitter. The software is designed with the primary goal of using SNe Ia as distance indicators for the determination of cosmological parameters, but it can also be used to study efficiencies for analyses of SN rates, estimate contamination from non-Ia SNe, and optimize future surveys. Several SN models are available within the same software architecture, allowing technical features such as K-corrections to be consistently used among multiple models, and thus making it easier to make detailed comparisons between models. New and improved light-curve models can be easily added. The software works with arbitrary surveys and telescopes and has already been used by several collaborations, leading to more robust and easy-to-use code. This software is not intended as a final product release, but rather it is designed to undergo continual improvements from the community as more is learned about SNe.

[ascl:1908.010]
SNAPDRAGONS: Stellar Numbers And Parameters Determined Routinely And Generated Observing N-body Systems

Hunt, Jason A. S.; Kawata, Daisuke; Grand, Robert J. J.; Minchev, Ivan; Pasetto, Stefano; Cropper, Mark

SNAPDRAGONS (Stellar Numbers And Parameters Determined Routinely And Generated Observing N-body Systems) is a simplified version of the population synthesis code Galaxia (ascl:1101.007), using a different process to generate the stellar catalog. It splits each N-body particle from the galaxy simulation into an appropriate number of stellar particles to create a mock catalog of observable stars from the N-body model. SNAPDRAGON uses the same isochrones and extinction map as Galaxia.

[ascl:1611.017]
SNCosmo: Python library for supernova cosmology

Barbary, Kyle; Barclay, Tom; Biswas, Rahul; Craig, Matt; Feindt, Ulrich; Friesen, Brian; Goldstein, Danny; Jha, Saurabh; Rodney, Steve; Sofiatti, Caroline; Thomas, Rollin C.; Wood-Vasey, Michael

SNCosmo synthesizes supernova spectra and photometry from SN models, and has functions for fitting and sampling SN model parameters given photometric light curve data. It offers fast implementations of several commonly used extinction laws and can be used to construct SN models that include dust. The SNCosmo library includes supernova models such as SALT2, MLCS2k2, Hsiao, Nugent, PSNID, SNANA and Whalen models, as well as a variety of built-in bandpasses and magnitude systems, and provides convenience functions for reading and writing peculiar data formats used in other packages. The library is extensible, allowing new models, bandpasses, and magnitude systems to be defined using an object-oriented interface.

[ascl:1505.033]
SNEC: SuperNova Explosion Code

SNEC (SuperNova Explosion Code) is a spherically-symmetric Lagrangian radiation-hydrodynamics code that follows supernova explosions through the envelope of their progenitor star, produces bolometric (and approximate multi-color) light curve predictions, and provides input to spectral synthesis codes for spectral modeling. SNEC's features include 1D (spherical) Lagrangian Newtonian hydrodynamics with artificial viscosity, stellar equation of state with a Saha solver ionization/recombination, equilibrium flux-limited photon diffusion with OPAL opacities and low-temperature opacities, and prediction of bolometric light curves and multi-color lightcurves (in the blackbody approximation).

[ascl:2109.020]
SNEWPY: Supernova Neutrino Early Warning Models for Python

Migenda, Jost; Kneller, James P.; O'Connor, Evan; BenZvi, Segev; Uberoi, Navya; Colomer Molla, Marta

SNEWPY uses simulated supernovae data to generate a time series of neutrino spectral fluences at Earth or the total time-integrated spectral fluence. The code can also process generated data through SNOwGLoBES (ascl:2109.019) and collate its output into the observable channels of each detector. Data from core-collapse, thermonuclear, and pair-instability supernovae simulations are included in the package.

[ascl:1107.001]
SNID: Supernova Identification

We present an algorithm to identify the type of an SN spectrum and to determine its redshift and age. This algorithm, based on the correlation techniques of Tonry & Davis, is implemented in the Supernova Identification (SNID) code. It is used by members of ongoing high-redshift SN searches to distinguish between type Ia and type Ib/c SNe, and to identify "peculiar" SNe Ia. We develop a diagnostic to quantify the quality of a correlation between the input and template spectra, which enables a formal evaluation of the associated redshift error. Furthermore, by comparing the correlation redshifts obtained using SNID with those determined from narrow lines in the SN host galaxy spectrum, we show that accurate redshifts (with a typical error less than 0.01) can be determined for SNe Ia without a spectrum of the host galaxy. Last, the age of an input spectrum is determined with a typical 3-day accuracy, shown here by using high-redshift SNe Ia with well-sampled light curves. The success of the correlation technique confirms the similarity of some SNe Ia at low and high redshifts. The SNID code, which is available to the community, can also be used for comparative studies of SN spectra, as well as comparisons between data and models.

[ascl:2107.006]
snmachine: Photometric supernova classification

Lochner, Michelle; Alves, Catarina; Peiris, Hiranya; McEwen, Jason; Allam Jr, Tarek; Biswas, Rahul; Holland, Johnny; Lahav, Ofer; Schuhmann, Robert; Setzer, Christian; Winter, Max

snmachine reads in photometric supernova light curves, extracts useful features from them, and subsequently performs supervised machine learning to classify supernovae based on their light curves. This python library is also flexible enough to easily extend to general transient classification.

[ascl:1505.022]
Snoopy: General purpose spectral solver

Snoopy is a spectral 3D code that solves the MHD and Boussinesq equations, such as compressibility, particles, and Braginskii viscosity, and several other physical effects. It's useful for turbulence study involving shear and rotation. Snoopy requires the FFTW library (ascl:1201.015), and can run on parallel machine using MPI OpenMP or both at the same time.

[ascl:1505.023]
SNooPy: TypeIa supernovae analysis tools

Burns, Christopher R.; Stritzinger, Maximilian; Phillips, M. M.; Kattner, ShiAnne; Persson, S. E.; Madore, Barry F.; Freedman, Wendy L.; Boldt, Luis; Campillay, Abdo; Contreras, Carlos; Folatelli, Gaston; Gonzalez, Sergio; Krzeminski, Wojtek; Morrell, Nidia; Salgado, Francisco; Suntzeff, Nicholas B.

The SNooPy package (also known as SNpy), written in Python, contains tools for the analysis of TypeIa supernovae. It offers interactive plotting of light-curve data and models (and spectra), computation of reddening laws and K-corrections, LM non-linear least-squares fitting of light-curve data, and various types of spline fitting, including Diercx and tension. The package also includes a SNIa lightcurve template generator in the CSP passbands, estimates of Milky-Way Extinction, and a module for dealing with filters and spectra.

[ascl:2109.030]
Snowball: Generalizable atmospheric mass loss calculator

Snowball models atmospheric loss in order to constrain an atmosphere's cumulative impact of historic X-ray and extreme ultraviolet radiation-driven mass loss. The escape model interpolates the BaSTI luminosity evolution grid to the observed mass and luminosity of the host star.

[ascl:2109.019]
SNOwGLoBES: SuperNova Observatories with GLoBES

SNOwGLoBES (SuperNova Observatories with GLoBES) computes interaction rates and distributions of observed quantities for supernova burst neutrinos in common detector materials. The code provides a very simple and fast code and data package for tests of observability of physics signatures in current and future detectors, and for evaluation of relative sensitivities of different detector configurations. The event estimates are made using available cross-sections and parameterized detector responses. Water, argon, scintillator and lead-based configurations are included. The package makes use of GLoBES (ascl:2109.018). SNOwGLoBES is not intended to replace full detector simulations; however output should be useful for many types of studies, and simulation results can be incorporated.

[ascl:1703.006]
SNRPy: Supernova remnant evolution modeling

SNRPy (Super Nova Remnant Python) models supernova remnant (SNR) evolution and is useful for understanding SNR evolution and to model observations of SNR for obtaining good estimates of SNR properties. It includes all phases for the standard path of evolution for spherically symmetric SNRs and includes alternate evolutionary models, including evolution in a cloudy ISM, the fractional energy loss model, and evolution in a hot low-density ISM. The graphical interface takes in various parameters and produces outputs such as shock radius and velocity vs. time, SNR surface brightness profile and spectrum.

[ascl:1805.017]
SNSEDextend: SuperNova Spectral Energy Distributions extrapolation toolkit

Pierel, Justin D. R.; Rodney, Steven A.; Avelino, Arturo; Bianco, Federica; Foley, Ryan J.; Friedman, Andrew; Hicken, Malcolm; Hounsell, Rebekah; Jha, Saurabh W.; Kessler, Richard; Kirshner, Robert; Mandel, Kaisey; Narayan, Gautham; Filippenko, Alexei V.; Scolnic, Daniel; Strolger, Louis-Gregory

SNSEDextend extrapolates core-collapse and Type Ia Spectral Energy Distributions (SEDs) into the UV and IR for use in simulations and photometric classifications. The user provides a library of existing SED templates (such as those in the authors' SN SED Repository) along with new photometric constraints in the UV and/or NIR wavelength ranges. The software then extends the existing template SEDs so their colors match the input data at all phases. SNSEDextend can also extend the SALT2 spectral time-series model for Type Ia SN for a "first-order" extrapolation of the SALT2 model components, suitable for use in survey simulations and photometric classification tools; as the code does not do a rigorous re-training of the SALT2 model, the results should not be relied on for precision applications such as light curve fitting for cosmology.

[ascl:1902.001]
SNTD: Supernova Time Delays

Supernova Time Delays (SNTD) simulates and measures time delay of multiply-imaged supernovae, and offers an improved characterization of the uncertainty caused by microlensing. Lensing time delays can be determined by fitting the multiple light curves of these objects; measuring these delays provide precise tests of lens models or constraints on the Hubble constant and other cosmological parameters that are independent of the local distance ladder. Fitting the effects of microlensing without an accurate prior often leads to biases in the time delay measurement and over-fitting to the data; this can be mitigated by using a Gaussian Process Regression (GPR) technique to determine the uncertainty due to microlensing. SNTD can produce accurate simulations for wide-field time domain surveys such as LSST and WFIRST.

[ascl:2106.023]
so_noise_models: Simons Observatory N(ell) noise models

so_noise_models is the N(ell) noise curve projection code for the Simons Observatory. The code, written in pure Python, consists of several independent sub-modules, representing each version of the noise code. The usage of the models can vary substantially from version to version. The package also includes demo code that that demonstrates usage of the noise models, such as by producing noise curve plots, effective noise power spectra for SO LAT component-separated CMB T, E, B, and Compton-y maps, and lensing noise curves from SO LAT component-separated CMB T, E, B maps.

[ascl:1504.021]
SOAP 2.0: Spot Oscillation And Planet 2.0

SOAP (Spot Oscillation And Planet) 2.0 simulates the effects of dark spots and bright plages on the surface of a rotating star, computing their expected radial velocity and photometric signatures. It includes the convective blueshift and its inhibition in active regions.

[ascl:2301.015]
SOAP-GPU: Spectral time series simulations with GPU

SOAP-GPU is a revision of SOAP 2 (ascl:1504.021), which simulates spectral time series with the effect of active regions (spot, faculae or both). In addition to the traditional outputs of SOAP 2.0 (the cross-correlation function and extracted parameters: radial velocity, bisector span, full width at half maximum), SOAP-GPU generates the integrated spectra at each phase for given input spectra and spectral resolution. Additional capabilities include fast spectral simulation of stellar activity due to GPU acceleration, simulation of more complicated active region structures with superposition between active regions, and more realistic line bisectors, based on solar observations, that varies as function of mu angle for both quiet and active regions. In addition, SOAP-GPU accepts any input high resolution observed spectra. The PHOENIX synthetic spectral library are already implemented at the code level which allows users to simulate stellar activity for stars other than the Sun. Furthermore, SOAP-GPU simulates realistic spectral time series with either spot number/SDO image as additional inputs. The code is written in C and provides python scripts for input pre-processing and output post-processing.

[ascl:1403.026]
SOFA: Standards of Fundamental Astronomy

SOFA (Standards Of Fundamental Astronomy) is a collection of subprograms, in source-code form, that implement official IAU algorithms for fundamental astronomy computations. SOFA offers more than 160 routines for fundamental astronomy, including time scales (including dealing with leap seconds), Earth rotation, sidereal time, precession, nutation, polar motion, astrometry and transforms between various reference systems (e.g. BCRS, ICRS, GCRS, CIRS, TIRS, ITRS). The subprograms are supported by 55 vector/matrix routines, and are available in both Fortran77 and C implementations.

[ascl:2109.005]
SoFiA 2: An automated, parallel HI source finding pipeline

Westmeier, Tobias; Kitaeff, Slava; Pallot, Dave; Serra, Paolo; van der Hulst, Thijs; Jurek, Russell J.; Elagali, Ahmed; For, Bi-Qing; Kleiner, Dane; Koribalski, Bärbel S.; Lee-Waddell, Karen; Mould, Jeremy R.; Reynolds, Tristan N.; Rhee, Jonghwan; Staveley-Smith, Lister

SoFiA 2 is a fully automated spectral-line source finding pipeline originally intended for the detection of galaxies in large HI data cubes. It is a reimplementation of parts of the original SoFiA pipeline (ascl:1412.001) in the C programming language and uses OpenMP for multithreading, making it substantially faster and more memory-efficient than its predecessor. At its core, SoFiA 2 uses the Smooth + Clip algorithm for source finding which operates by spatially and spectrally smoothing the data on multiple scales and applying a user-defined flux threshold relative to the noise level in each iteration. A wide range of useful preconditioning and post-processing filters is available, including noise normalization, flagging of artifacts and reliability filtering. In addition to global data products and source catalogs in different formats, SoFiA 2 can also generate cutout images and spectra for each individual detection.

[ascl:1412.001]
SoFiA: Source Finding Application

Serra, Paolo; Westmeier, Tobias; Giese, Nadine; Jurek, Russell; Flöer, Lars; Popping, Attila; Winkel, Benjamin; van der Hulst, Thijs; Meyer, Martin; Koribalski, Bärbel; Staveley-Smith, Lister; Courtois, Hélène

SoFiA is a flexible source finding pipeline designed to detect and parameterize sources in 3D spectral-line data cubes. SoFiA combines several powerful source finding and parameterization algorithms, including wavelet denoising, spatial and spectral smoothing, source mask optimization, spectral profile fitting, and calculation of the reliability of detections. In addition to source catalogues in different formats, SoFiA can also generate a range of output data cubes and images, including source masks, moment maps, sub-cubes, position-velocity diagrams, and integrated spectra. The pipeline is controlled by simple parameter files and can either be invoked on the command line or interactively through a modern graphical user interface.

A reimplementation of this pipeline using OpenMPI, SoFiA 2 (ascl:2109.005), is available.

[submitted]
SoFiAX

SoFiAX is a web-based platform to merge and interact with the results of parallel execution of SoFiA HI source finding software [ascl:1412.001] and other steps of processing ASKAP Wallaby HI survey data.

[ascl:2210.015]
Solar-MACH: Multi-spacecraft longitudinal configuration plotter

Gieseler, Jan; Dresing, Nina; Palmroos, Christian; von Forstner, Johan L. Freiherr; Price, Daniel J.; Vainio, Rami; Kouloumvakos, Athanasios; Rodríguez-García, Laura; Trotta, Domenico; Génot, Vincent; Masson, Arnaud; Roth, Markus; Veronig, Astrid

Solar-MACH (Solar MAgnetic Connection HAUS) derives and visualizes the spatial configuration and solar magnetic connection of different observers (*i.e.*, spacecraft or planets) in the heliosphere at different times. It provides publication-ready figures for analyzing Solar Energetic Particle events (SEPs) or solar transients such as Coronal Mass Ejections (CMEs). Solar-MACH is available as a Python package; a Streamlit-enabled tool that runs in a browser is also available (solar-mach.github.io)

[ascl:2312.006]
SolarAxionFlux: Solar axion flux calculator for different solar models and opacity codes

SolarAxionFlux quantifies systematic differences and statistical uncertainties in the calculation of the solar axion flux from axion-photon and axion-electron interactions. Determining the limitations of these calculations can be used to identify potential improvements and help determine axion model parameters more accurately.

[ascl:2401.013]
SolarKAT: Solar imaging pipeline for MeerKAT

SolarKAT mitigates solar interference in MeerKAT data and recovers the visibilities rather than discarding them; this solar imaging pipeline takes 1GC calibrated data in Measurement Set format as input. Written in Python, the pipeline employs solar tracking, subtraction, and peeling techniques to enhance data quality by significantly reducing solar radio interference. This is achieved while preserving the flux measurements in the main field. SolarKAT is versatile and can be applied to general radio astronomy observations and solar radio astronomy; additionally, generated solar images can be used for weather forecasting. SolarKAT is deployed in Stimela (ascl:2305.007). It is based on existing radio astronomy software, including CASA (ascl:1107.013), breizorro (ascl:2305.009), WSclean (ascl:1408.023), Quartical (ascl:2305.006), and Astropy (ascl:1304.002).

[ascl:1208.013]
SolarSoft: Programming and data analysis environment for solar physics

SolarSoft is a set of integrated software libraries, data bases, and system utilities which provide a common programming and data analysis environment for Solar Physics. The SolarSoftWare (SSW) system is built from Yohkoh, SOHO, SDAC and Astronomy libraries and draws upon contributions from many members of those projects. It is primarily an IDL based system, although some instrument teams integrate executables written in other languages. The SSW environment provides a consistent look and feel at widely distributed co-investigator institutions to facilitate data exchange and to stimulate coordinated analysis. Commonalities and overlap in solar data and analysis goals are exploited to permit application of fundamental utilities to the data from many different solar instruments. The use of common libraries, utilities, techniques and interfaces minimizes the learning curve for investigators who are analyzing new solar data sets, correlating results from multiple experiments or performing research away from their home institution.

[ascl:2207.009]
SolAster: 'Sun-as-a-star' radial velocity variations

Ervin, Tamar; Halverson, Samuel; Burrows, Abigail; Murphy, Nei; Roy, Arpita; Haywood, Raphaelle D.; Rescigno, Federica; Bender, Chad F.; Lin, Andrea S. J.; Burt, Jennifer; Mahadevan, Suvrath

SolAster provides querying, analysis, and calculation methods to independently derive 'sun-as-a-star' RV variations using SDO/HMI data for any time span since SDO has begun observing. Scaling factors are provided in order to calculate RVs comparable to magnitudes measured by ground-based spectrographs (HARPS-N and NEID). In addition, there are routines to calculate magnetic observables to compare with RV variations and determine what is driving Solar activity.

[ascl:2209.019]
SolTrack: Compute the position of the Sun in topocentric coordinates

SolTrack computes the position of the Sun, the rise and set times and azimuths, and transit times and altitudes. It includes corrections for aberration and parallax, and has a simple routine to correct for atmospheric refraction, taking into account local atmospheric conditions. SolTrack is derived from the Fortran library libTheSky (ascl:2209.018). The package can be used to track the Sun on a low-specs machine, such as a microcontroller or PLC, and can be used for (highly) concentrated (photovoltaic) solar power or accurate solar-energy modeling.

[ascl:1701.012]
SONG: Second Order Non-Gaussianity

SONG computes the non-linear evolution of the Universe in order to predict cosmological observables such as the bispectrum of the Cosmic Microwave Background (CMB). More precisely, it is a second-order Boltzmann code, as it solves the Einstein and Boltzmann equations up to second order in the cosmological perturbations.

[ascl:1412.014]
SOPHIA: Simulations Of Photo Hadronic Interactions in Astrophysics

SOPHIA (Simulations Of Photo Hadronic Interactions in Astrophysics) solves problems connected to photohadronic processes in astrophysical environments and can also be used for radiation and background studies at high energy colliders such as LEP2 and HERA, as well as for simulations of photon induced air showers. SOPHIA implements well established phenomenological models, symmetries of hadronic interactions in a way that describes correctly the available exclusive and inclusive photohadronic cross section data obtained at fixed target and collider experiments.

[ascl:1810.017]
SOPHISM: Software Instrument Simulator

Blanco Rodríguez, J.; del Toro Iniesta, J. C.; Orozco Suárez, D.; Martínez Pillet, V.; Bonet, J. A.; Feller, A.; Hirzberger, J.; Lagg, A.; Piqueras, J.; Gasent Blesa, J. L.

SOPHISM models astronomical instrumentation from the entrance of the telescope to data acquisition at the detector, along with software blocks dealing with, for example, demodulation, inversion, and compression. The code performs most analyses done with light in astronomy, such as differential photometry, spectroscopy, and polarimetry. The simulator offers flexibility and implementation of new effects and subsystems, making it user-adaptable for a wide variety of instruments. SOPHISM can be used for all stages of instrument definition, design, operation, and lifetime tracking evaluation.

[ascl:1607.014]
SOPIE: Sequential Off-Pulse Interval Estimation

SOPIE (Sequential Off-Pulse Interval Estimation) provides functions to non-parametrically estimate the off-pulse interval of a source function originating from a pulsar. The technique is based on a sequential application of P-values obtained from goodness-of-fit tests for the uniform distribution, such as the Kolmogorov-Smirnov, Cramér-von Mises, Anderson-Darling and Rayleigh goodness-of-fit tests.

[ascl:1307.020]
SOPT: Sparse OPTimisation

SOPT (Sparse OPTimisation) is a C implementation of the Sparsity Averaging Reweighted Analysis (SARA) algorithm. The approach relies on the observation that natural images exhibit strong average sparsity; average sparsity outperforms state-of-the-art priors that promote sparsity in a single orthonormal basis or redundant frame, or that promote gradient sparsity.

[ascl:2108.025]
SORA: Stellar Occultation Reduction Analysis

SORA optimally analyzes stellar occultation data. The library includes processes starting on the prediction of such events to the resulting size, shape and position of the Solar System object and can be used to build pipelines to analyze stellar occultation data. A stellar occultation is defined by the occulting body (Body), the occulted star (Star), and the time of the occultation. On the other hand, each observational station (Observer) will be associated with their light curve (LightCurve). SORA has tasks that allow the user to determine the immersion and emersion times and project them to the tangent sky plane, using the information within the Observer, Body and Star Objects. That projection will lead to chords that will be used to obtain the object’s apparent size, shape and position at the moment of the occultation. Automatic processes optimize the reduction of typical events. However, users have full control over the parameters and methods and can make changes in every step of the process.

[ascl:2008.004]
SOT: Spin-Orbit Tomography

Spin-Orbit Tomography (SOT) is a retrieval technique of a two-dimensional map of an Exo-Earth from time-series data of integrated reflection light. The software provides code for the Bayesian version of the static SOT and dynamic mapping (time-varying mapping) with full Bayesian modeling, and tutorials for L2 and Bayesian SOT are available in jupyter notebooks.

[ascl:2212.018]
SourceXtractor++: Extracts sources from astronomical images

SourceXtractor++ extracts a catalog of sources from astronomical images; it is the successor to SExtractor (ascl:1010.064). SourceXtractor++ has been completely rewritten in C++ and improves over its predecessor in many ways. It provides support for multiple “measurement” images, has an optimized multi-object, multi-frame model-fitting engine, and can define complex priors and dependencies for model parameters. It also offers efficient image data caching and multi-threaded processing, and has a modular design with support for third-party plug-ins.

[ascl:2301.024]
SOXS: Simulated Observations of X-ray Sources

ZuHone, John A.; Vikhlinin, Alexey; Tremblay, Grant R.; Randall, Scott W.; Andrade-Santos, Felipe; Bourdin, Herve

SOXS creates simulated X-ray observations of astrophysical sources. The package provides a comprehensive set of tools to design source models and convolve them with simulated models of X-ray observatories. In particular, SOXS is the primary simulation tool for simulations of Lynx and Line Emission Mapper observations. SOXS provides facilities for creating spectral models, simple spatial models for sources, astrophysical background and foreground models, as well as a Python implementation of the SIMPUT file format.

[ascl:1805.028]
SP_Ace: Stellar Parameters And Chemical abundances Estimator

SP_Ace (Stellar Parameters And Chemical abundances Estimator) estimates the stellar parameters Teff, log g, [M/H], and elemental abundances. It employs 1D stellar atmosphere models in Local Thermodynamic Equilibrium (LTE). The code is highly automated and suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). A web service for calculating these values with the software is also available.

[ascl:1504.002]
SPA: Solar Position Algorithm

The Solar Position Algorithm (SPA) calculates the solar zenith and azimuth angles in the period from the year -2000 to 6000, with uncertainties of +/- 0.0003 degrees based on the date, time, and location on Earth. SPA is implemented in C; in addition to being available for download, an online calculator using this code is available at https://www.nrel.gov/midc/solpos/spa.html.

[ascl:2104.025]
SpaceHub: High precision few-body and large scale N-body simulations

SpaceHub uses unique algorithms for fast precise and accurate computations for few-body problems ranging from interacting black holes to planetary dynamics. This few-body gravity integration toolkit can treat black hole dynamics with extreme mass ratios, extreme eccentricities and very close encounters. SpaceHub offers a regularized Radau integrator with round off error control down to 64 bits floating point machine precision and can handle extremely eccentric orbits and close approaches in long-term integrations.

[ascl:1401.002]
SpacePy: Python-Based Tools for the Space Science Community

SpacePy provides data analysis and visualization tools for the space science community. Written in Python, it builds on the capabilities of the NumPy and MatPlotLib packages to make basic data analysis, modeling and visualization easier. It contains modules for handling many complex time formats, obtaining data from the OMNI database, and accessing the powerful Onera library. It contains a library of commonly used empirical relationships, performs association analysis, coordinate transformations, radiation belt modeling, and CDF reading, and creates publication quality plots.

[ascl:1806.010]
SpaghettiLens: Web-based gravitational lens modeling tool

SpaghettiLens allows citizen scientists to model gravitational lenses collaboratively; the software should also be easily adaptable to any other, reasonably similar problem. It lets volunteers execute a computer intensive task that cannot be easily executed client side and relies on citizen scientists collaborating. SpaghettiLens makes survey data available to citizen scientists, manages the model configurations generated by the volunteers, stores the resulting model configuration, and delivers the actual model. A model can be shared and discussed with other volunteers and revised, and new child models can be created, resulting in a branching version tree of models that explore different possibilities. Scientists can choose a collection of models; discussion among volunteers and scientists prune the tree to determine which models will receive further analysis.

[ascl:2103.003]
spalipy: Detection-based astronomical image registration

spalipy performs detection-based astronomical image registration in Python. A source image is transformed to the pixel-coordinate system of a template image using their respective detections as tie-points by finding matching quads of detections. spalipy also includes an optional additional warping of the initial affine transformation via splines to achieve accurate registration in the case of non-homogeneous coordinate transforms. This is particularly useful in the case of optically distorted or wide field-of-view images.

[ascl:1907.007]
SPAM: Hu-Sawicki f(R) gravity imprints search

SPAM searches for imprints of Hu-Sawicki f(R) gravity on the rotation curves of the SPARC (Spitzer Photometry and Accurate Rotation Curves) sample using the MCMC sampler emcee (ascl:1303.002). The code provides attributes for inspecting the MCMC chains and translating names of parameters to indices. The SPAM package also contains plotting scripts.

[ascl:1408.006]
SPAM: Source Peeling and Atmospheric Modeling

SPAM is a extension to AIPS for reducing high-resolution, low-frequency radio interferometric observations. Direction-dependent ionospheric calibration and image-plane ripple suppression are among the features that help to make high-quality sub-GHz images. Data reductions are captured in well-tested Python scripts that execute AIPS tasks directly (mostly during initial data reduction steps), call high-level functions that make multiple AIPS or ParselTongue calls, and require few manual operations.

[ascl:1812.005]
SPAMCART: Smoothed PArticle Monte CArlo Radiative Transfer

SPAMCART generates synthetic spectral energy distributions and intensity maps from smoothed particle hydrodynamics simulation snapshots. It follows discrete luminosity packets as they propagate through a density field, and computes the radiative equilibrium temperature of the ambient dust from their trajectories. The sources can be extended and/or embedded, and discrete and/or diffuse. The density is not mapped on to a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. The code strictly adheres to Kirchhoff's law of radiation. The algorithm is based on the Lucy Monte Carlo radiative transfer method and is fairly simple to implement, as it uses data structures that are already constructed for other purposes in modern particle codes

[ascl:2208.013]
SPAMMS: Spectroscopic PAtch Model for Massive Stars

Abdul-Masih, Michael; Sana, Hugues; Conroy, Kyle E.; Sundqvist, Jon; Prša, Andrej; Kochoska, Angela; Puls, Joachim

SPAMMS (Spectroscopic PAtch Model for Massive Stars), designed with geometrically deformed systems in mind, combines the eclipsing binary modelling code PHOEBE 2 (ascl:1106.002) and the NLTE radiative transfer code FASTWIND to produce synthetic spectra for systems at given phases, orientations and geometries. SPAMMS reproduces the morphology of observed spectral line profiles for overcontact systems and the Rossiter-Mclaughlin and Struve-Sahade effects.

[ascl:1105.006]
SPARC: Seismic Propagation through Active Regions and Convection

The Seismic Propagation through Active Regions and Convection (SPARC) code was developed by S. Hanasoge. The acoustic wavefield in SPARC is simulated by numerically solving the linearised 3-D Euler equations in Cartesian geometry (e.g., see Hanasoge, Duvall and Couvidat (2007)). Spatial derivatives are calculated using sixth-order compact finite differences (Lele,1992) and time evolution is achieved through the repeated application of an optimized second-order five-stage Runge-Kutta scheme (Hu, 1996). Periodic horizontal boundaries are used.

[ascl:2107.010]
SpArcFiRe: SPiral ARC FInder and REporter

SpArcFiRe takes as input an image of a galaxy in FITS, JPG, or PNG format, identifies spiral arms, and extracts structural information about the spiral arms. Pixels in each arm segment are listed, enabling image analysis on each segment. The automated method also performs a least-squares fit of a logarithmic spiral arc to the pixels in that segment, giving per-arc parameters, such as the pitch angle, arm segment length, and location, and outputs images showing the steps SpArcFire took to detect arm segments.

[ascl:1905.013]
SPARK: K-band Multi Object Spectrograph data reduction

SPARK (Software Package for Astronomical Reduction with KMOS), also called kmos-kit, reduces data from the K-band Multi Object Spectrograph (KMOS) for the VLT. In many cases, science data can be processed using a single recipe; alternately, all functions this recipe provides can be performed using other recipes provided as tools. Among the functions the recipes provide are sky subtraction, cube reconstruction with the application of flexure corrections, dividing out the telluric spectrum, applying an illumination correction, aligning the cubes, and then combinging them. The result is a set of files which contain the combined datacube and associated noise cube for each of the 24 integral field unit (IFUs). The pipeline includes simple error propagation.

[ascl:2103.029]
SparseBLS: Box-Fitting Least Squares implementation for sparse data

SparseBLS uses the Box-fitting Least Squares (BLS) algorithm to detect transiting exoplanets in photometric data. SparseBLS does not bin data into phase bins and does not use a phase grid. Because its detection efficiency does not depend on the transit phase, it is significantly faster than BLS for sparse data and is well-suited for large photometric surveys producing unevenly-sampled sparse light curves, such as Gaia.

[ascl:1511.011]
SparsePZ: Sparse Representation of Photometric Redshift PDFs

SparsePZ uses sparse basis representation to fully represent individual photometric redshift probability density functions (PDFs). This approach requires approximately half the parameters for the same multi-Gaussian fitting accuracy, and has the additional advantage that an entire PDF can be stored by using a 4-byte integer per basis function. Only 10-20 points per galaxy are needed to reconstruct both the individual PDFs and the ensemble redshift distribution, N(z), to an accuracy of 99.9 per cent when compared to the one built using the original PDFs computed with a resolution of δz = 0.01, reducing the required storage of 200 original values by a factor of 10-20. This basis representation can be directly extended to a cosmological analysis, thereby increasing computational performance without losing resolution or accuracy.

[ascl:2007.022]
SPARTA: SPectroscopic vARiabiliTy Analysis

SPARTA analyzes periodically-variable spectroscopic observations. Intended for common astronomical uses, SPARTA facilitates analysis of single- and double-lined binaries, high-precision radial velocity extraction, and periodicity searches in complex, high dimensional data. It includes two modules, UNICOR and USuRPER. UNICOR analyzes spectra using 1-d CCF. It includes maximum-likelihood analysis of multi-order spectra and detection of systematic shifts. USuRPER (Unit Sphere Representation PERiodogram) is a phase-distance correlation (PDC) based periodogram and is designed for very high-dimensional data such as spectra.

[ascl:2007.003]
SPARTA: Subhalo and PARticle Trajectory Analysis

SPARTA is a post-processing framework for particle-based cosmological simulations. The code is written in pure, MPI-parallelized C and is optimized for high performance. The main purpose of SPARTA is to understand the formation of structure in a dynamical sense, namely by analyzing the trajectories (or orbits) of dark matter particles around their halos. Within this framework, the user can add analysis modules that operate on individual trajectories or entire halos. The initial goal of SPARTA was to compute the splashback radius of halos, but numerous other applications have been implemented as well, including spherical overdensity calculations and tracking subhalos via their constituent particles.

[ascl:2202.015]
SPARTAN: SPectroscopic And photometRic fiTting tool for Astronomical aNalysis

SPARTAN fits the spectroscopy and photometry of distant galaxies. The code implements multiple interfaces to help in the configuration of the fitting and the inspection of the results. SPARTAN relies on pre-computed input files (such as stellar population and IGM extinction), available for download, to save time in the fitting process.

[ascl:1711.001]
SpcAudace: Spectroscopic processing and analysis package of Audela software

SpcAudace processes long slit spectra with automated pipelines and performs astrophysical analysis of the latter data. These powerful pipelines do all the required steps in one pass: standard preprocessing, masking of bad pixels, geometric corrections, registration, optimized spectrum extraction, wavelength calibration and instrumental response computation and correction. Both high and low resolution long slit spectra are managed for stellar and non-stellar targets. Many types of publication-quality figures can be easily produced: pdf and png plots or annotated time series plots. Astrophysical quantities can be derived from individual or large amount of spectra with advanced functions: from line profile characteristics to equivalent width and periodogram. More than 300 documented functions are available and can be used into TCL scripts for automation. SpcAudace is based on Audela open source software.

[ascl:1010.016]
SpDust/SpDust.2: Code to Calculate Spinning Dust Spectra

SpDust is an IDL program that evaluates the spinning dust emissivity for user-provided environmental conditions. A new version of the code became available in March, 2010.

[ascl:1203.003]
spec2d: DEEP2 DEIMOS Spectral Pipeline

The DEEP2 DEIMOS Data Reduction Pipeline ("spec2d") is an IDL-based, automated software package designed to reduce Keck/DEIMOS multi-slit spectroscopic observations, collected as part of the DEEP2 Galaxy Redshift Survey. The pipeline is best suited for handling data taken with the 1200 line/mm grating tilted towards the red (lambda_c ~ 7800Å). The spec2d reduction package takes the raw DEIMOS data as its input and produces a variety of outputs including 2-d slit spectra and 1-d object spectra.

[ascl:1407.003]
SPECDRE: Spectroscopy Data Reduction

Specdre performs spectroscopy data reduction and analysis. General features of the package include data cube manipulation, arc line calibration, resampling and spectral fitting. Particular care is taken with error propagation, including tracking covariance. SPECDRE is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:2311.003]
Special-Blurring: Compare quantum-spacetime foam models to GRB localizations

The IDL code Special-Blurring compares models of quantum-foam-induced blurring with the full dataset of gamma-ray burst localizations available from the NASA High Energy Astrophysics Science Research Archive (as of 1 November 2022). This includes GRB221009A, which was especially bright and detected in extremely high energy TeV gamma-rays. An upper limit of the parameter alpha (giving the maximal strength of quantum blurring) can be entered, which is scaled in the model of blurring (called "Phi") operating much like "seeing" from the ground in the optical, and those calculations are plotted against the observations.

[ascl:2301.028]
special: SPEctral Characterization of directly ImAged Low-mass companions

special (SPEctral Characterization of directly ImAged Low-mass companions) characterizes low-mass (M, L, T) dwarfs down to giant planets at optical/IR wavelengths. It can also be used more generally to characterize any type of object with a measured spectrum, provided a relevant input model grid, regardless of the observational method used to obtain the spectrum (direct imaging or not) and regardless of the format of the spectra (multi-band photometry, low-resolution or medium-resolution spectrum, or a combination thereof). It analyzes measured spectra, calculating the spectral correlation between channels of an IFS datacube and empirical spectral indices for MLT-dwarfs. It fits input spectra to either photo-/atmospheric model grids or a blackbody model, including additional parameters such as (extra) black body component(s), extinction and total-to-selective extinction ratio, and can use emcee (ascl:1303.002), nestle (ascl:2103.022), or UltraNest (ascl:1611.001) samplers infer posterior distributions on spectral model parameters in a Bayesian framework, among other tasks.

[ascl:2307.057]
species: Atmospheric characterization of directly imaged exoplanets

species (**spe**ctral **c**haracterization and **i**nference for **e**xoplanet **s**cience) provides a coherent framework for spectral and photometric analysis of directly imaged exoplanets and brown dwarfs which builds on publicly-available data and models from various resources. species contains tools for grid and free retrievals using Bayesian inference, synthetic photometry, interpolating a variety atmospheric and evolutionary model grids (including the possibility to add a custom grid), color-magnitude and color-color diagrams, empirical spectral analysis, spectral and photometric calibration, and analysis of emission lines.

[ascl:1404.014]
SpecPro: Astronomical spectra viewer and analyzer

SpecPro is an interactive program for viewing and analyzing spectra, particularly in the context of modern imaging surveys. In addition to displaying the 1D and 2D spectrum, SpecPro can simultaneously display available stamp images as well as the spectral energy distribution of a source. This extra information can help significantly in assessing a spectrum.

[ascl:1904.018]
Specstack: A simple spectral stacking tool

Specstack creates stacked spectra using a simple algorithm with sigma-clipping to combine the spectra of galaxies in the rest-frame into a single averaged spectrum. Though written originally for galaxy spectra, it also works for other types of objects. It is written in Python and is started from the command-line.

[ascl:1111.005]
SPECTCOL: Spectroscopic and Collisional Data Retrieval

Studies of astrophysical non-LTE media require the combination of atomic and molecular spectroscopic and collisional data often described differently in various databases. SPECTCOL is a tool that implements VAMDC standards, retrieve relevant information from different databases such as CDMS, HITRAN, BASECOL, and can upload local files. All transfer of data between the client and the databases use the VAMDC-XSAMS schema. The spectroscopic and collisional information is combined and useful outputs (ascii or xsams) are provided for the study of the interstellar medium.

[ascl:1701.003]
Spectra: Time series power spectrum calculator

Spectra calculates the power spectrum of a time series equally spaced or not based on the Spectral Correlation Coefficient (Ferraz-Mello 1981, Astron. Journal 86 (4), 619). It is very efficient for detection of low frequencies.

[ascl:2104.004]
Spectractor: Spectrum extraction tool for slitless spectrophotometry

Spectractor extracts spectra from slitless spectrophotometric images and measures the atmospheric transmission on the line of sight if standard stars are targeted. It has been optimized on CTIO images but can be configured to analyze any kind of slitless data that contains the order 0 and the order 1 of a spectrum. In particular, it can be used to estimate the atmospheric transmission of the Vera Rubin Observatory site using the dedicated Auxiliary Telescope.

[ascl:1609.017]
spectral-cube: Read and analyze astrophysical spectral data cubes

Spectral-cube provides an easy way to read, manipulate, analyze, and write data cubes with two positional dimensions and one spectral dimension, optionally with Stokes parameters. It is a versatile data container for building custom analysis routines. It provides a uniform interface to spectral cubes, robust to the wide range of conventions of axis order, spatial projections, and spectral units that exist in the wild, and allows easy extraction of cube sub-regions using physical coordinates. It has the ability to create, combine, and apply masks to datasets and is designed to work with datasets too large to load into memory, and provide basic summary statistic methods like moments and array aggregates.

[ascl:2209.017]
SpectraPy: Extract and reduce astronomical spectral data

SpectraPy collects algorithms and methods for data reduction of astronomical spectra obtained by a through slits spectrograph. It produces two-dimensional wavelength calibrated spectra corrected by instrument distortions. The library is designed to be spectrograph independent and can be used on both longslit (LS) and multi object spectrograph (MOS) data. SpectraPy comes with a set of already configured spectrographs, but it can be easily configured to reduce data of other instruments.

[ascl:1202.010]
SPECTRE: Manipulation of single-order spectra

SPECTRE's chief purpose is the manipulation of single-order spectra, and it performs many of the tasks contained in such IRAF routines as "splot" and "rv". It is not meant to replace the much more general capabilities of IRAF, but does some functions in a manner that some might find useful. A brief list of SPECTRE tasks are: spectrum smoothing; equivalent width calculation; continuum rectification; noise spike excision; and spectrum comparison. SPECTRE was written to manipulate coude spectra, and thus is probably most useful for working on high dispersion spectra. Echelle spectra can be gathered from various observatories, reduced to singly-dimensioned spectra using IRAF, then written out as FITS files, thus becoming accessible to SPECTRE. Three different spectra may be manipulated and displayed simultaneously. SPECTRE, written in standard FORTRAN77, can be used only with the SM graphics package.

[ascl:2204.012]
SpECTRE: Multi-scale, multi-physics problem solver

Deppe, Nils; Throwe, William; Kidder, Lawrence E.; Vu, Nils L.; Hébert, François; Moxon, Jordan; Armaza, Cristóbal; Bonilla, Gabriel S.; Kim, Yoonsoo; Kumar, Prayush; Lovelace, Geoffrey; Macedo, Alexandra; Nelli, Kyle C.; O'Shea, Eamonn; Pfeiffer, Harald P.; Scheel, Mark A.; Teukolsky, Saul A.; Wittek, Nikolas A.; Anantpurkar, Isha; Boyle, Michael; Carpenter, Alexander; Chaudhary, Himanshu; Foucart, Francois; Ghadiri, Noora; Giesler, Matthew; Guo, Jason S.; Iozzo, Dante A. B.; Legred, Isaac; Li, Dongjun; Ma, Sizheng; Melchor, Denyz; Morales, Marlo; Ramirez, Teresita; Rüter, Hannes R.; Sanchez, Jennifer; Thomas, Sierra; Vieira, Daniel; Wlodarczyk, Tom

SpECTRE solves multi-scale, multi-physics problems in astrophysics and gravitational physics, such as those associated with the multi-messenger astrophysics of neutron star mergers, core-collapse supernovae, and gamma-ray bursts. It runs at petascale and is designed for future exascale computers.

[ascl:2104.019]
SpectRes: Simple spectral resampling

SpectRes efficiently resamples spectra and their associated uncertainties onto an arbitrary wavelength grid. The Python function works with any grid of wavelength values, including non-uniform sampling, and preserves the integrated flux. This may be of use for binning data to increase the signal to noise ratio, obtaining synthetic photometry, or resampling model spectra to match the sampling of observational data.

[submitted]
spectroflat

Spectroflat is a generic python calibration library for spectro-polarimetric data. It can be plugged into existing python based data reduction pipelines or used as a standalone calibration and performance ananlzsis tool.

It includes smile distortion correction and flat field extraction.

[submitted]
spectrogrism

This module implements an ad-hoc grism-based spectrograph optical model. It provides a flexible chromatic mapping between the input focal plane and the output detector plane, based on an effective simplified ray-tracing model of the key optical elements defining the spectrograph (collimator, prism, grating, camera), described by a restricted number of physically-motivated distortion parameters.

[ascl:9910.002]
SPECTRUM: A stellar spectral synthesis program

SPECTRUM ((C) Richard O. Gray, 1992-2008) is a stellar spectral synthesis program which runs on a number of platforms, including most flavors of UNIX and LINUX. It will also run under Windwos 9x/ME/NT/2000/XP using the Cygwin tools or the distributed Windows binaries. The code for SPECTRUM has been written in the "C" language. SPECTRUM computes the LTE synthetic spectrum given a stellar atmosphere model. SPECTRUM can use as input the fully blanketed stellar atmosphere models of Robert Kurucz including the new models of Castelli and Kurucz, but any other stellar atmosphere model which can be cast into the format of Kurucz's models can be used as well. SPECTRUM can be programmed with "command-line switches" to give a number of different outputs. In the default mode, SPECTRUM computes the stellar-disk-integrated normalized-intensity spectrum, but in addition, SPECTRUM will compute the absolute monochromatic flux from the stellar atmosphere or the specific intensity from any point on the stellar surface.

[ascl:1902.012]
Specutils: Spectroscopic analysis and reduction

Specutils provides a basic interface for the loading, manipulation, and common forms of analysis of spectroscopic data. Its generic data containers and accompanying modules can be used to build a particular scientific workflow or higher-level analysis tool. It is an AstroPy (ascl:1304.002) affiliated package, and SpecViz (ascl:1902.011), which is built on top of Specutils, provides a visual, interactive interface to its analysis capabilities.

[ascl:1210.016]
Specview: 1-D spectral visualization and analysis of astronomical spectrograms

Specview is a tool for 1-D spectral visualization and analysis of astronomical spectrograms. Written in Java, it is capable of reading all the Hubble Space Telescope spectral data formats as well as data from several other instruments (such as IUE, FUSE, ISO, FORS and SDSS), preview spectra from MAST, and data from generic FITS and ASCII tables. It can read data from Virtual Observatory servers, and read and write spectrogram data in Virtual Observatory SED format. It can also read files in the SPC Galactic format used in the chemistry field. Once ingested, data can be plotted and examined with a large selection of custom settings. Specview supports instrument-specific data quality handling, flexible spectral units conversions, custom plotting attributes, plot annotations, tiled plots, hardcopy to JPEG files and PostScript file or printer, etc. Specview can be used to build wide-band SEDs, overplotting or combining data from the same astronomical source taken with different instruments and/or spectral bands. Data can be further processed with averaging, splicing, detrending, and Fourier filtering tools. Specview has a spectral model fitting capability that enables the user to work with multi-component models (including user-defined models) and fit models to data.

[ascl:1902.011]
SpecViz: 1D Spectral Visualization Tool

SpecViz interactively visualizes and analyzes 1D astronomical spectra. It reads data from FITS and ASCII tables and allows spectra to be easily plotted and examined. It supports instrument-specific data quality handling, flexible spectral units conversions, custom plotting attributes, plot annotations, tiled plots, among other features. SpecViz includes a measurement tool for spectral lines for performing and recording measurements and a model fitting capability for creating simple (e.g., single Gaussian) or multi-component models (e.g., multiple Gaussians for emission and absorption lines in addition to regions of flat continua). SpecViz is built on top of the Specutils (ascl:1902.012) Astropy-affiliated python library, providing a visual, interactive interface to the analysis capabilities in that library.

The functionality of SpecViz is now actively developed as part of Jdaviz (ascl:2307.001).

[ascl:1310.008]
SPECX: Spectral Line Data Reduction Package

SPECX is a general purpose line data reduction system. It can read and write FITS data cubes but has specialist support for the GSD format data from the James Clerk Maxwell Telescope. It includes commands to store and retrieve intermediate spectra in storage registers and perform the fitting and removal of polynomial, harmonic and Gaussian baselines.

SPECX can filter and edit spectra and list and display spectra on a graphics terminal. It is able to perform Fourier transform and power spectrum calculations, process up to eight spectra (quadrants) simultaneously with either the same or different center, and assemble a number of reduced individual spectra into a map file and contour or greyscale any plane or planes of the resulting cube.

Two versions of SPECX are distributed. Version 6.x is the VMS and Unix version and is distributed as part of the Starlink software collection. Version 7.x is a complete rewrite of SPECX distributed for Windows.

[ascl:1807.014]
SPEGID: Single-Pulse Event Group IDentification

SPEGID (Single-Pulse Event Group IDentification) identifies astrophysical pulse candidates as trial single-pulse event groups (SPEGs) by first applying Density Based Spatial Clustering of Applications with Noise (DBSCAN) on trial single-pulse events and then merging the clusters that fall within the expected DM (Dispersion Measure) and time span of astrophysical pulses. SPEGID also calculates the peak score for each SPEG in the S/N versus DM space to identify the expected peak-like shape in the signal-to-noise (S/N) ratio versus DM curve of astrophysical pulses. Additionally, SPEGID groups SPEGs that appear at a consistent DM and therefore are likely emitted from the same source. After running SPEGID, periocity.py can be used to find (or verify) the underlying periodicity among a group of SPEGs (i.e., astrophysical pulse candidates).

[ascl:2212.026]
Spender: Neural spectrum encoder and decoder

Spender establishes a restframe for galaxy spectra that has higher resolution and larger wavelength range than the spectra from which it is trained. The model can be trained from spectra at different redshifts or even from different instruments without the need to standardize the observations. Spender also has an explicit, differentiable redshift dependence, which can be coupled with a redshift estimator for a fully data-driven spectrum analysis pipeline. The code describes the restframe spectrum by an autoencoder and transforms the restframe model to the observed redshift; it also matches the spectral resolution and line spread function of the instrument.

[ascl:2007.004]
spex_to_xspec: Convert SPEX output to XSPEC input

spex_to_xspec takes the output from the collisional ionisation equilibrium model in the SPEX spectral modelling and fitting package (ascl:1308.014), and converts it into a form usable by the XSPEC spectral fitting package (ascl:9910.005). For a list of temperatures it computes the line strengths and continuum spectra using SPEX. These are collated and written into an APEC-format table model which can be loaded into Xspec. By allowing SPEX models to be loaded into XSPEC, the program allows easy comparison between the results of the SPEX and APEC codes.

[ascl:1308.014]
SPEX: High-resolution cosmic X-ray spectra analysis

SPEX is optimized for the analysis and interpretation of high-resolution cosmic X-ray spectra. The software is especially suited for fitting spectra obtained by current X-ray observatories like XMM-Newton, Chandra, and Suzaku. SPEX can fit multiple spectra with different model components simultaneously and handles highly complex models with many free parameters.

[ascl:2007.017]
SPEX: Spectral Executive

SPEX provides a uniform interface suitable for the X-ray spectral analysis of a number of solar (or other) instruments in the X and Gamma Ray energy ranges. Part of the SolarSoft (ascl:1208.013) library, this package is suitable for any datastream which can be placed in the form of response vs interval where the response is usually a counting rate (spectrum) and the interval is normally an accumulation over time. Together with an algorithm which can be used to relate a model input spectrum to the observed response, generally a response matrix, the dataset is amenable to analysis with this package. Currently the data from a large number of instruments, including SMM (HXRBS, GRS Gamma, GRS X1, and GRS X2), Yohkoh (HXT, HXS, GRS, and SXT,) CGRO (BATSE SPEC and BATSE LAD), WIND (TGRS), HIREX, and NEAR (PIN). SPEX's next generation software is available in OSPEX (ascl:2007.018), an object-oriented package that is also part of and dependent on SolarSoft.

[ascl:1404.017]
Spextool: Spectral EXtraction tool

Spextool (Spectral EXtraction tool) is an IDL-based data reduction package for SpeX, a medium resolution near-infrared spectrograph on the NASA IRTF. It performs all of the steps necessary to produce spectra ready for analysis and publication including non-linearity corrections, flat fielding, wavelength calibration, telluric correction, flux calibration, and order merging.

[ascl:9912.001]
SPH_1D: Hierarchical gravity/SPH treecode for simulations of interacting galaxies

We describe a fast tree algorithm for gravitational N-body simulation on SIMD parallel computers. The tree construction uses fast, parallel sorts. The sorted lists are recursively divided along their x, y and z coordinates. This data structure is a completely balanced tree (i.e., each particle is paired with exactly one other particle) and maintains good spatial locality. An implementation of this tree-building algorithm on a 16k processor Maspar MP-1 performs well and constitutes only a small fraction (approximately 15%) of the entire cycle of finding the accelerations. Each node in the tree is treated as a monopole. The tree search and the summation of accelerations also perform well. During the tree search, node data that is needed from another processor is simply fetched. Roughly 55% of the tree search time is spent in communications between processors. We apply the code to two problems of astrophysical interest. The first is a simulation of the close passage of two gravitationally, interacting, disk galaxies using 65,636 particles. We also simulate the formation of structure in an expanding, model universe using 1,048,576 particles. Our code attains speeds comparable to one head of a Cray Y-MP, so single instruction, multiple data (SIMD) type computers can be used for these simulations. The cost/performance ratio for SIMD machines like the Maspar MP-1 make them an extremely attractive alternative to either vector processors or large multiple instruction, multiple data (MIMD) type parallel computers. With further optimizations (e.g., more careful load balancing), speeds in excess of today's vector processing computers should be possible.

[ascl:2105.007]
SpheCow: Galaxy and dark matter halo dynamical properties

SpheCow explores the structure and dynamics of any spherical model for galaxies and dark matter haloes. The lightweight and flexible code automatically calculates the dynamical properties, assuming an isotropic or Osipkov-Merritt anisotropic orbital structure, of any model with either an analytical density profile or an analytical surface density profile as a starting point. SpheCow contains readily usable implementations for many standard models, including the Plummer, Hernquist, NFW, Einasto, Sérsic and Nuker models. The code is easily extendable, allowing new models to be added in a straightforward way. The code is publicly available as a set of C++ routines and as a Python module.

[ascl:1806.023]
Spheral++: Coupled hydrodynamical and gravitational numerical simulations

Spheral++ provides a steerable parallel environment for performing coupled hydrodynamical and gravitational numerical simulations. Hydrodynamics and gravity are modeled using particle-based methods (SPH and N-Body). It uses an Adaptive Smoothed Particle Hydrodynamics (ASPH) algorithm, provides a total energy conserving compatible hydro mode, and performs fluid and solid material modeling and damage and fracture modeling in solids.

[ascl:1309.004]
Spherical: Geometry operations and searches on spherical surfaces

The Spherical Library provides an efficient and accurate mathematical representation of shapes on the celestial sphere, such as sky coverage and footprints. Shapes of arbitrary complexity and size can be dynamically created from simple building blocks, whose exact area is also analytically computed. This methodology is also perfectly suited for censoring problematic parts of datasets, e.g., bad seeing, satellite trails or diffraction spikes of bright stars.

[ascl:1311.005]
Spheroid: Electromagnetic Scattering by Spheroids

Spheroid determines the size distribution of polarizing interstellar dust grains based on electromagnetic scattering by spheroidal particles. It contains subroutines to treat the case of complex refractive indices, and also includes checks for some limiting cases.

[ascl:1502.012]
SPHGR: Smoothed-Particle Hydrodynamics Galaxy Reduction

SPHGR (Smoothed-Particle Hydrodynamics Galaxy Reduction) is a python based open-source framework for analyzing smoothed-particle hydrodynamic simulations. Its basic form can run a baryonic group finder to identify galaxies and a halo finder to identify dark matter halos; it can also assign said galaxies to their respective halos, calculate halo & galaxy global properties, and iterate through previous time steps to identify the most-massive progenitors of each halo and galaxy. Data about each individual halo and galaxy is collated and easy to access.

SPHGR supports a wide range of simulations types including N-body, full cosmological volumes, and zoom-in runs. Support for multiple SPH code outputs is provided by pyGadgetReader (ascl:1411.001), mainly Gadget (ascl:0003.001) and TIPSY (ascl:1111.015).

[ascl:1103.009]
SPHRAY: A Smoothed Particle Hydrodynamics Ray Tracer for Radiative Transfer

SPHRAY, a Smoothed Particle Hydrodynamics (SPH) ray tracer, is designed to solve the 3D, time dependent, radiative transfer (RT) equations for arbitrary density fields. The SPH nature of SPHRAY makes the incorporation of separate hydrodynamics and gravity solvers very natural. SPHRAY relies on a Monte Carlo (MC) ray tracing scheme that does not interpolate the SPH particles onto a grid but instead integrates directly through the SPH kernels. Given initial conditions and a description of the sources of ionizing radiation, the code will calculate the non-equilibrium ionization state (HI, HII, HeI, HeII, HeIII, e) and temperature (internal energy/entropy) of each SPH particle. The sources of radiation can include point like objects, diffuse recombination radiation, and a background field from outside the computational volume. The MC ray tracing implementation allows for the quick introduction of new physics and is parallelization friendly. A quick Axis Aligned Bounding Box (AABB) test taken from computer graphics applications allows for the acceleration of the raytracing component. We present the algorithms used in SPHRAY and verify the code by performing all the test problems detailed in the recent Radiative Transfer Comparison Project of Iliev et. al. The Fortran 90 source code for SPHRAY and example SPH density fields are made available online.

[ascl:1709.001]
SPHYNX: SPH hydrocode for subsonic hydrodynamical instabilities and strong shocks

SPHYNX addresses subsonic hydrodynamical instabilities and strong shocks; it is Newtonian, grounded on the Euler-Lagrange formulation of the smoothed-particle hydrodynamics technique, and density based. SPHYNX uses an integral approach for estimating gradients, a flexible family of interpolators to suppress pairing instability, and incorporates volume elements to provides better partition of the unity.

[ascl:1903.015]
SPICE: Observation Geometry System for Space Science Missions

The SPICE (Spacecraft Planet Instrument C-matrix [“Camera matrix”] Events) toolkit offers a set of building blocks for constructing tools supporting multi-mission, international space exploration programs and research in planetary science, heliophysics, Earth science, and for observations from terrestrial observatories. It computes many kinds of observation geometry parameters, including the ephemerides, orientations, sizes, and shapes of planets, satellites, comets and asteroids. It can also compute the orientation of a spacecraft, its various moving structures, and an instrument's field-of-view location on a planet's surface or atmosphere. It can determine when a specified geometric event occurs, such as when an object is in shadow or is in transit across another object. The SPICE toolkit is available in FORTRAN 77, ANSI C, IDL, and MATLAB.

[ascl:1903.016]
SpiceyPy: Python wrapper for the NAIF C SPICE Toolkit

Annex, Andrew; Carcich, Brian; Murakami, Shin-ya; Kulumani, Shankar; de Val-Borro, Miguel; Stefko, Marcel; Diaz del Rio, Jorge; Seignovert, B.

SpiceyPy is a Python wrapper for the NAIF C SPICE Toolkit (ascl:1903.015). It is compatible with Python 2 and 3, and was written using ctypes.

[ascl:1711.019]
SPIDERMAN: Fast code to simulate secondary transits and phase curves

SPIDERMAN calculates exoplanet phase curves and secondary eclipses with arbitrary surface brightness distributions in two dimensions. The code uses a geometrical algorithm to solve exactly the area of sections of the disc of the planet that are occulted by the star. Approximately 1000 models can be generated per second in typical use, which makes making Markov Chain Monte Carlo analyses practicable. The code is modular and allows comparison of the effect of multiple different brightness distributions for a dataset.

[ascl:1608.020]
SPIDERz: SuPport vector classification for IDEntifying Redshifts

SPIDERz (SuPport vector classification for IDEntifying Redshifts) applies powerful support vector machine (SVM) optimization and statistical learning techniques to custom data sets to obtain accurate photometric redshift (photo-z) estimations. It is written for the IDL environment and can be applied to traditional data sets consisting of photometric band magnitudes, or alternatively to data sets with additional galaxy parameters (such as shape information) to investigate potential correlations between the extra galaxy parameters and redshift.

[ascl:2102.001]
spinOS: SPectroscopic and INterferometric Orbital Solution finder

Fabry, Matthias; Hawcroft, Calum; Mahy, Laurent; Marchant, Pablo; Le Bouquin, Jean-Baptiste; Sana, Hugues

spinOS calculates binary orbital elements. Given a set of radial velocity measurements of a spectroscopic binary and/or relative position measurement of an astrometric binary, spinOS fits an orbital model by minimizing a chi squared metric. These routines are neatly packaged in a graphical user interface, developed using tkinter, facilitating use. Minimization is achieved by default using a Levenberg-Marquardt algorithm from lmfit [ascl:1606.014]. A Markov Chain Monte Carlo option is available to sample the posterior probability distribution in order to estimate errors on the orbital elements.

[ascl:2009.006]
SPInS: Stellar Parameters INferred Systematically

SPInS (Stellar Parameters INferred Systematically) provides the age, mass, and radius of a star, among other parameters, from a set of photometric, spectroscopic, interferometric, and/or asteroseismic observational constraints; it also generates error bars and correlations. Derived from AIMS (ascl:1611.014), it relies on a stellar model grid and uses a Bayesian approach to find the PDF of stellar parameters from a set of classical constraints. The heart of SPInS is a MCMC solver coupled with interpolation within a pre-computed stellar model grid. The code can consider priors such as the IMF or SFR and can characterize single stars or coeval stars, such as members of binary systems or of stellar clusters.

[ascl:2303.010]
spinsfast: Fast and exact spin-s spherical harmonic transforms

spinsfast is a fast spin-s spherical harmonic transform algorithm, which is flexible and exact for band-limited functions. It permits the computation of several distinct spin transforms simultaneously. Specifically, only one set of special functions is computed for transforms of quantities with any spin, namely the Wigner d matrices evaluated at π/2, which may be computed with efficient recursions. For any spin, the computation scales as O(L^3), where L is the band limit of the function.

[ascl:2210.002]
SPINspiral: Parameter estimation for analyzing gravitational-wave signals

SPINspiral analyzes gravitational-wave signals from stellar-mass binary inspirals detected by ground-based interferometers such as LIGO and Virgo. It performs parameter estimation on these signals using Markov-chain Monte-Carlo (MCMC) techniques. This analysis includes the spins of the binary components. Written in C, the package is modular; its main routine is as small as possible and calls other routines, which perform tasks such as reading input, choosing and setting (starting or injection) parameters, and handling noise. Other routines compute overlaps and likelihoods, contain the MCMC core, and manage more general support functions and third-party routines.

[ascl:2206.014]
SpinSpotter: Stellar rotation periods from high-cadence photometry calculator

SpinSpotter calculates stellar rotation periods from high-cadence photometry. The code uses the autocorrelation function (ACF) to identify stellar rotation periods up to one-third the observational baseline of the data. SpinSpotter includes diagnostic tools that describe features in the ACF and allows tuning of the tolerance with which to accept a period detection.

[ascl:1710.004]
SPIPS: Spectro-Photo-Interferometry of Pulsating Stars

SPIPS (Spectro-Photo-Interferometry of Pulsating Stars) combines radial velocimetry, interferometry, and photometry to estimate physical parameters of pulsating stars, including presence of infrared excess, color excess, Teff, and ratio distance/p-factor. The global model-based parallax-of-pulsation method is implemented in Python. Derived parameters have a high level of confidence; statistical precision is improved (compared to other methods) due to the large number of data taken into account, accuracy is improved by using consistent physical modeling and reliability of the derived parameters is strengthened by redundancy in the data.

[ascl:1512.015]
Spirality: Spiral arm pitch angle measurement

Shields, Douglas W.; Boe, Benjamin; Pfountz, Casey; Davis, Benjamin L.; Hartley, Matthew; Pour Imani, Hamed; Slade, Zac; Kennefick, Daniel; Kennefick, Julia

Spirality measures spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. Written in MATLAB, the code package also includes GenSpiral, which produces FITS images of synthetic spirals, and SpiralArmCount, which uses a one-dimensional Fast Fourier Transform to count the spiral arms of a galaxy after its pitch is determined.

[ascl:2006.016]
SPISEA: Stellar Population Interface for Stellar Evolution and Atmospheres

SPISEA (Stellar Population Interface for Stellar Evolution and Atmospheres) generates single-age, single-metallicity populations (*i.e.*, star clusters). The software (formerly called PyPopStar) provides control over different parameters, including cluster characteristics (age, metallicity, mass, distance); total extinction, differential extinction, and extinction law; stellar evolution and atmosphere models; stellar multiplicity and Initial Mass Function; and photometric filters. SPISEA can be used to create a cluster isochrone in many filters using different stellar models, generate a star cluster at any age with an unusual IMF and unresolved multiplicity, and make a spectrum of a star cluster in integrated light.

[ascl:1103.004]
SPLASH: Interactive Visualization Tool for Smoothed Particle Hydrodynamics Simulations

SPLASH (formerly SUPERSPHPLOT) visualizes output from (astrophysical) simulations using the Smoothed Particle Hydrodynamics (SPH) method in one, two and three dimensions. Written in Fortran 90, it uses the PGPLOT graphics subroutine library for plotting. It is based around a command-line menu structure but utilizes the interactive capabilities of PGPLOT to manipulate data interactively in the plotting window. SPLASH is fully interactive; visualizations can be changed rapidly at the touch of a button (e.g. zooming, rotating, shifting cross section positions etc). Data is read directly from the code dump format giving rapid access to results and the visualization is advanced forwards and backwards through timesteps by single keystrokes. SPLASH uses the SPH kernel to render plots of not only density but other physical quantities, giving a smooth representation of the data.

[ascl:1402.008]
SPLAT-VO: Spectral Analysis Tool for the Virtual Observatory

SPLAT-VO is an extension of the SPLAT (Spectral Analysis Tool, ascl:1402.007) graphical tool for displaying, comparing, modifying and analyzing astronomical spectra; it includes facilities that allow it to work as part of the Virtual Observatory (VO). SPLAT-VO comes in two different forms, one for querying and downloading spectra from SSAP servers and one for interoperating with VO tools, such as TOPCAT (ascl:1101.010).

[ascl:1402.007]
SPLAT: Spectral Analysis Tool

SPLAT is a graphical tool for displaying, comparing, modifying and analyzing astronomical spectra stored in NDF, FITS and TEXT files as well as in NDX format. It can read in many spectra at the same time and then display these as line plots. Display windows can show one or several spectra at the same time and can be interactively zoomed and scrolled, centered on specific wavelengths, provide continuous coordinate readout, produce printable hardcopy and be configured in many ways. Analysis facilities include the fitting of a polynomial to selected parts of a spectrum, the fitting of Gaussian, Lorentzian and Voigt profiles to emission and absorption lines and the filtering of spectra using average, median and line-shape window functions as well as wavelet denoising. SPLAT also supports a full range of coordinate systems for spectra, which allows coordinates to be displayed and aligned in many different coordinate systems (wavelength, frequency, energy, velocity) and transformed between these and different standards of rest (topocentric, heliocentric, dynamic and kinematic local standards of rest, etc). SPLAT is distributed as part of the Starlink (ascl:1110.012) software collection.

[ascl:1103.005]
Splotch: Ray Tracer to Visualize SPH Simulations

Splotch is a light and fast, publicly available, ray-tracer software tool which supports the effective visualization of cosmological simulations data. The algorithm it relies on is designed to deal with point-like data, optimizing the ray-tracing calculation by ordering the particles as a function of their 'depth', defined as a function of one of the coordinates or other associated parameters. Realistic three-dimensional impressions are reached through a composition of the final colour in each pixel properly calculating emission and absorption of individual volume elements.

[ascl:1809.006]
spops: Spinning black-hole binary population synthesis

Gerosa, Davide; Berti, Emanuele; O'Shaughnessy, Richard; Belczynski, Krzysztof; Kesden, Michael; Wysocki, Daniel; Gladysz, Wojciech

spops is a database of populations synthesis simulations of spinning black-hole binary systems, together with a python module to query it. Data are obtained with the startrack and precession [ascl:1611.004] numerical codes to consistently evolve binary stars from formation to gravitational-wave detection. spops allows quick exploration of the interplay between stellar physics and black-hole spin dynamics.

[ascl:1411.015]
SPOTROD: Semi-analytic model for transits of spotted stars

SPOTROD is a model for planetary transits of stars with an arbitrary limb darkening law and a number of homogeneous, circular spots on their surface. It facilitates analysis of anomalies due to starspot eclipses, and is a free, open source implementation written in C with a Python API.

[ascl:1506.008]
SPRITE: Sparsity-based super-resolution algorithm

SPRITE (Sparse Recovery of InstrumenTal rEsponse) computes a well-resolved compact source image from several undersampled and noisy observations. The algorithm is based on sparse regularization; adding a sparse penalty in the recovery leads to far better accuracy in terms of ellipticity error, especially at low S/N.

[ascl:2206.028]
Spritz: General relativistic magnetohydrodynamic code

The Spritz code is a fully general relativistic magnetohydrodynamic code based on the Einstein Toolkit (ascl:1102.014). The code solves the GRMHD equations in 3D Cartesian coordinates and on a dynamical spacetime. Spritz supports tabulated equations of state, takes finite temperature effects into account and allows for the inclusion of neutrino radiation.

[ascl:2309.018]
Sprout: Moving mesh finite volume hydro code

The finite volume hydro code Sprout uses a simple expanding Cartesian grid to track outflows for several orders of magnitudes in expansion. It captures shocks whether they are aligned or misaligned with the grid, and provides second-order convergence for smooth flows. The code's expanding mesh capability reduces numerical diffusion drastically for outflows, especially when the analytic nature of the bulk flow is known beforehand. Sprout can be used to study fluid instabilities in expanding flows, such as in SN explosions and jets; it resolves fine fluid structures at small length scales and expand the mesh gradually as the structures grow.

[ascl:1806.013]
SpS: Single-pulse Searcher

The presence of human-made interference mimicking the behavior of celestial radio pulses is a major challenge when searching for radio pulses emitted on millisecond timescales by celestial radio sources such as pulsars and fast radio bursts due to the highly imbalanced samples. Single-pulse Searcher (SpS) reduces the presence of radio interference when processing standard output from radio single-pulse searches to produce diagnostic plots useful for selecting good candidates. The modular software allows modifications for specific search characteristics. LOTAAS Single-pulse Searcher (L-SpS) is an implementation of different features of the software (such as a machine-learning approach) developed for a particular study: the LOFAR Tied-Array All-Sky Survey (LOTAAS).

[ascl:1201.013]
SPS: SPIRE Photometer Simulator

The SPS software simulates the operation of the Spectral and Photometric Imaging Receiver on-board the ESA’s Herschel Space Observatory. It is coded using the Interactive Data Language (IDL), and produces simulated data at the level-0 stage (non-calibrated data in digitised units). The primary uses for the simulator are to:

- optimize and characterize the photometer observing functions
- aid in the development, validation, and characterization of the SPIRE data pipeline
- provide a realistic example of SPIRE data, and thus to facilitate the development of specific analysis tools for specific science cases.

[ascl:1411.025]
SPT Lensing Likelihood: South Pole Telescope CMB lensing likelihood code

The SPT lensing likelihood code, written in Fortran90, performs a Gaussian likelihood based upon the lensing potential power spectrum using a file from CAMB (ascl:1102.026) which contains the normalization required to get the power spectrum that the likelihood call is expecting.

[ascl:1705.005]
SPTCLASS: SPecTral CLASSificator code

SPTCLASS assigns semi-automatic spectral types to a sample of stars. The main code includes three spectral classification schemes: the first one is optimized to classify stars in the mass range of TTS (K5 or later, hereafter LATE-type scheme); the second one is optimized to classify stars in the mass range of IMTTS (F late to K early, hereafter Gtype scheme), and the third one is optimized to classify stars in the mass range of HAeBe (F5 or earlier, hereafter HAeBe scheme). SPTCLASS has an interactive module that allows the user to select the best result from the three schemes and analyze the input spectra.

[ascl:1303.015]
SSE: Single Star Evolution

SSE is a rapid single-star evolution (SSE) code; these analytical formulae cover all phases of evolution from the zero-age main-sequence up to and including remnant phases. It is valid for masses in the range 0.1-100 Msun and metallicity can be varied. The SSE package contains a prescription for mass loss by stellar winds. It also follows the evolution of rotational angular momentum for the star.

[ascl:2207.034]
SSHT: Fast spin spherical harmonic transforms

SSHT performs fast and exact spin spherical harmonic transforms; functionality is also provided to perform fast and exact adjoint transforms, forward and inverse transforms, and spherical harmonic transforms for a number of alternative sampling schemes. The code can interface with DUCC (ascl:2008.023) and use it as a backend for spherical harmonic transforms and rotations.

[ascl:2008.007]
sslf: A simple spectral-line finder

sslf is a simple, effective and useful spectral line finder for 1D data. It utilizes the continuous wavelet transform from SciPy, which is a productive way to find even weak spectral lines.

[ascl:1807.032]
SSMM: Slotted Symbolic Markov Modeling for classifying variable star signatures

SSMM (Slotted Symbolic Markov Modeling) reduces time-domain stellar variable observations to classify stellar variables. The method can be applied to both folded and unfolded data, and does not require time-warping for waveform alignment. Written in Matlab, the performance of the supervised classification code is quantifiable and consistent, and the rate at which new data is processed is dependent only on the computational processing power available.

[ascl:1901.006]
ssos: Solar system objects detection pipeline

The ssos pipeline detects and identifies known and unknown Solar System Objects (SSOs) in astronomical images. ssos requires at least 3 images with overlapping field-of-views in the sky taken within a reasonable amount of time (*e.g.*, 2 hours, 1 night). SSOs are detected mainly by judging the apparent motion of all sources in the images. The pipeline serves as a wrapper for the SExtractor (ascl:1010.064) and SCAMP (ascl:1010.063) software suites and allows different source extraction strategies to be chosen. All sources in the images are subject to a highly configurable filter pipeline. ssos is a versatile, light-weight, and easy-to-use software for surveys or PI-observation campaigns lacking a dedicated SSO detection pipeline.

[ascl:2104.014]
SSSpaNG: Stellar Spectra as Sparse Non-Gaussian Processes

SSSpaNG is a data-driven Gaussian Process model of the spectra of APOGEE red clump stars, whose parameters are inferred using Gibbs sampling. By pooling information between stars to infer their covariance it permits clear identification of the correlations between spectral pixels. Harnessing this correlation structure, a complete spectrum for each red clump star can be inferred, inpainting missing regions and de-noising by a factor of at least 2-3 for low-signal-to-noise stars.

[ascl:2306.008]
sstrax: Fast stellar stream modelling in JAX

sstrax provides fast simulations of Milky Way stellar stream formation. Using JAX (ascl:2111.002) acceleration to support code compilation, sstrax forward models all aspects of stream formation, including evolution in gravitational potentials, tidal disruption and observational models, in a fully modular way. Although sstrax is a standalone python package, it was also developed to integrate directly with the Albatross (ascl:2306.009) inference pipeline, which performs inference on all relevant aspects of the stream model.

[ascl:1912.019]
STACKER: Stack sources in interferometric data

STACKER stacks sources in interferometric data, *i.e.*, averaging emission from different sources. The library allows stacking to be done directly on visibility data as well as in the image domain. The code is in format of a CASA (ascl:1107.013) task and implements uv- and image-stacking algorithms; it also provides several useful tasks for stacking related data processing. It allows introduction and stacking of random sources to estimate bias and noise, and also allows removal of a model of bright sources from the data.

[ascl:1105.012]
Stagger: MHD Method for Modeling Star Formation

Stagger is an astrophysical MHD code actively used to model star formation. It is equipped with a multi-frequency radiative transfer module and a comprehensive equation of state module that includes a large number of atomic and molecular species, to be able to compute realistic 3-D models of the near-surface layers of stars. The current version of the code allows a discretization that explicitly conserves mass, momentum, energy, and magnetic flux. The tensor formulation of the viscosity ensures that the viscous force is insensitive to the coordinate system orientation, thereby avoiding artificial grid-alignment.

[ascl:1801.003]
Stan: Statistical inference

Stan facilitates statistical inference at the frontiers of applied statistics and provides both a modeling language for specifying complex statistical models and a library of statistical algorithms for computing inferences with those models. These components are exposed through interfaces in environments such as R, Python, and the command line.

[ascl:2402.008]
star_shadow: Analyze eclipsing binary light curves, find eccentricity, and more

star_shadow automatically analyzes space based light curves of eclipsing binaries and provide a measurement of eccentricity, among other parameters. It measures the timings of eclipses using the time derivatives of the light curves, using a model of orbital harmonics obtained from an initial iterative prewhitening of sinusoids. Since the algorithm extracts the harmonics from the rest of the sinusoidal variability eclipse timings can be measured even in the presence of other (astrophysical) signals, thus determining the orbital eccentricity automatically from the light curve along with information about the other variability present in the light curve. The output includes, but is not limited to, a sinusoid plus linear model of the light curve, the orbital period, the eccentricity, argument of periastron, and inclination.

[ascl:2109.012]
STAR-MELT: STellar AccrRetion Mapping with Emission Line Tomography

Campbell-White, Justy; Sicilia-Aguilar, Aurora; Manara, Carlo F.; Matsumura, Soko; Fang, Min; Frasca, Antonio; Roccatagliata, Veronica

STAR-MELT extracts and identifies emission lines from FITS files by matching to a compiled reference database of lines. Line profiles are fitted and quantified, allowing for calculations of physical properties across each individual observation. Temporal variations in lines can readily be displayed and quantified. STAR-MELT is also useful for different applications of spectral analysis where emission line identification is required. Standard data formats for spectra are automatically compatible, with user-defined custom formats also available. Any reference database (atomic or molecular) can also be used for line identification.

[ascl:1111.010]
Starbase Data Tables: An ASCII Relational Database for Unix

Database management is an increasingly important part of astronomical data analysis. Astronomers need easy and convenient ways of storing, editing, filtering, and retrieving data about data. Commercial databases do not provide good solutions for many of the everyday and informal types of database access astronomers need. The Starbase database system with simple data file formatting rules and command line data operators has been created to answer this need. The system includes a complete set of relational and set operators, fast search/index and sorting operators, and many formatting and I/O operators. Special features are included to enhance the usefulness of the database when manipulating astronomical data. The software runs under UNIX, MSDOS and IRAF.

[ascl:1805.009]
STARBLADE: STar and Artefact Removal with a Bayesian Lightweight Algorithm from Diffuse Emission

STARBLADE (STar and Artefact Removal with a Bayesian Lightweight Algorithm from Diffuse Emission) separates superimposed point-like sources from a diffuse background by imposing physically motivated models as prior knowledge. The algorithm can also be used on noisy and convolved data, though performing a proper reconstruction including a deconvolution prior to the application of the algorithm is advised; the algorithm could also be used within a denoising imaging method. STARBLADE learns the correlation structure of the diffuse emission and takes it into account to determine the occurrence and strength of a superimposed point source.

[ascl:2309.012]
StarbugII: JWST PSF photometry for crowded fields

The python photometry suite StarbugII provides accurate photometry on point-like sources embedded in complex diffuse emissions. The tool has a simple modular interface with a wide range of photometric routines including embedded source detection, aperture and PSF photometry, diffuse background emission estimation, catalog matching and artificial star testing. The core is built around Photutils (ascl:1609.011).

[ascl:1104.003]
Starburst99: Synthesis Models for Galaxies with Active Star Formation

Leitherer, Claus; Schaerer, Daniel; Goldader, Jeff; Gonzalez-Delgado, Rosa; Robert, Carmelle; Foo Kune, Denis; de Mello, Duilia; Devost, Daniel; Heckman, Timothy M.; Aloisi, Alessandra; Martins, Lucimara; Vazquez, Gerardo

Starburst99 is a comprehensive set of model predictions for spectrophotometric and related properties of galaxies with active star formation. The models are presented in a homogeneous way for five metallicities between Z = 0.040 and 0.001 and three choices of the initial mass function. The age coverage is 10^6 to 10^9 yr. Spectral energy distributions are used to compute colors and other quantities.

[submitted]
StarburstPy: Python Wrapper for Starburst99

StarburstPy is a python wrapper for Starburst99 (ascl:1104.003). The code contains methods for setting all inputs, running Starburst99, and reading output data into python dictionaries.

[ascl:2106.012]
StarcNet: Convolutional neural network for classifying galaxy images into morphological classes

Pérez, Gustavo; Messa, Matteo; Calzetti, Daniela; Maji, Subhransu; Jung, Dooseok E.; Adamo, Angela; Sirressi, Mattia

StarcNet (STAR Cluster classification NETwork) classifies star clusters from galaxy images taken by the Hubble Space Telescope (HST); it uses a convolutional neural network (CNN) trained to classify five-band galaxy images into four morphological classes. Written in PyTorch, StarcNet runs using mosaics (.fits files with the galaxy photometric information) and catalogs (.tab files with object coordinates), and includes the option to also download the galaxy mosaics from a single .tar.gz file per galaxy (as from the Legacy ExtraGalactic UV Survey).

[ascl:1010.074]
StarCrash: 3-d Evolution of Self-gravitating Fluid Systems

StarCrash is a parallel fortran code based on Smoothed Particle Hydrodynamics (SPH) techniques to calculate the 3-d evolution of self-gravitating fluid systems. The code in particularly suited to the study of stellar interactions, such as mergers of binary star systems and stellar collisions. The StarCrash code comes with several important features, including:

- Several routines which construct the initial conditions appropriate to a wide variety of physical systems

- An efficient parallel neighbor-finding algorithm for calculating hydrodynamic quantities

- A parallel gravitational field solver based on FFT convolution techniques, which uses the FFTW software libraries

- Relaxation Techniques for single stars and synchronized binaries

- Three different artificial viscosity treatments to calculate the thermodynamic evolution of the matter

- An optional gravitational radiation back-reaction treatment, which calculates the damping force from gravity wave losses to lowest relativistic order in a spatially accurate way

[ascl:2004.009]
stardate: Measure precise stellar ages

stardate measures precise stellar ages by combining isochrone fitting with gyrochronology (rotation-based ages) to increase the precision of stellar ages on the main sequence. The best possible ages provided by stardate will be for stars with rotation periods, though ages can also be predicted for stars without rotation periods. stardate is an extension to isochrones that incorporates gyrochronology and the code reverts back to isochrones when no rotation period is provided.

[ascl:2202.023]
Starduster: Radiative transfer and deep learning multi-wavelength SED model

The deep learning model Starduster emulates dust radiative transfer simulations, which significantly accelerates the computation of dust attenuation and emission. Starduster contains two specific generative models, which explicitly take into account the features of the dust attenuation curves and dust emission spectra. Both generative models should be trained by a set of characteristic outputs of a radiative transfer simulation. The obtained neural networks can produce realistic galaxy spectral energy distributions that satisfy the energy balance condition of dust attenuation and emission. Applications of Starduster include SED-fitting and SED-modeling from semi-analytic models.

[ascl:0011.001]
StarFinder: A code for stellar field analysis

Diolaiti, Emiliano; Bendinelli, Orazio; Bonaccini, Domenico; Close, Laird M.; Currie, Doug G.; Parmeggiani, Gianluigi

StarFinder is an IDL code for the deep analysis of stellar fields, designed for Adaptive Optics well-sampled images with high and low Strehl ratio. The Point Spread Function is extracted directly from the frame, to take into account the actual structure of the instrumental response and the atmospheric effects. The code is written in IDL language and organized in the form of a self-contained widget-based application, provided with a series of tools for data visualization and analysis. A description of the method and some applications to Adaptive Optics data are presented.

Would you like to view a random code?