Results 551-600 of 3553 (3462 ASCL, 91 submitted)

[ascl:2202.015]
SPARTAN: SPectroscopic And photometRic fiTting tool for Astronomical aNalysis

SPARTAN fits the spectroscopy and photometry of distant galaxies. The code implements multiple interfaces to help in the configuration of the fitting and the inspection of the results. SPARTAN relies on pre-computed input files (such as stellar population and IGM extinction), available for download, to save time in the fitting process.

[ascl:2007.003]
SPARTA: Subhalo and PARticle Trajectory Analysis

SPARTA is a post-processing framework for particle-based cosmological simulations. The code is written in pure, MPI-parallelized C and is optimized for high performance. The main purpose of SPARTA is to understand the formation of structure in a dynamical sense, namely by analyzing the trajectories (or orbits) of dark matter particles around their halos. Within this framework, the user can add analysis modules that operate on individual trajectories or entire halos. The initial goal of SPARTA was to compute the splashback radius of halos, but numerous other applications have been implemented as well, including spherical overdensity calculations and tracking subhalos via their constituent particles.

[ascl:2007.022]
SPARTA: SPectroscopic vARiabiliTy Analysis

SPARTA analyzes periodically-variable spectroscopic observations. Intended for common astronomical uses, SPARTA facilitates analysis of single- and double-lined binaries, high-precision radial velocity extraction, and periodicity searches in complex, high dimensional data. It includes two modules, UNICOR and USuRPER. UNICOR analyzes spectra using 1-d CCF. It includes maximum-likelihood analysis of multi-order spectra and detection of systematic shifts. USuRPER (Unit Sphere Representation PERiodogram) is a phase-distance correlation (PDC) based periodogram and is designed for very high-dimensional data such as spectra.

[ascl:1511.011]
SparsePZ: Sparse Representation of Photometric Redshift PDFs

SparsePZ uses sparse basis representation to fully represent individual photometric redshift probability density functions (PDFs). This approach requires approximately half the parameters for the same multi-Gaussian fitting accuracy, and has the additional advantage that an entire PDF can be stored by using a 4-byte integer per basis function. Only 10-20 points per galaxy are needed to reconstruct both the individual PDFs and the ensemble redshift distribution, N(z), to an accuracy of 99.9 per cent when compared to the one built using the original PDFs computed with a resolution of δz = 0.01, reducing the required storage of 200 original values by a factor of 10-20. This basis representation can be directly extended to a cosmological analysis, thereby increasing computational performance without losing resolution or accuracy.

[ascl:2103.029]
SparseBLS: Box-Fitting Least Squares implementation for sparse data

SparseBLS uses the Box-fitting Least Squares (BLS) algorithm to detect transiting exoplanets in photometric data. SparseBLS does not bin data into phase bins and does not use a phase grid. Because its detection efficiency does not depend on the transit phase, it is significantly faster than BLS for sparse data and is well-suited for large photometric surveys producing unevenly-sampled sparse light curves, such as Gaia.

[ascl:1905.013]
SPARK: K-band Multi Object Spectrograph data reduction

SPARK (Software Package for Astronomical Reduction with KMOS), also called kmos-kit, reduces data from the K-band Multi Object Spectrograph (KMOS) for the VLT. In many cases, science data can be processed using a single recipe; alternately, all functions this recipe provides can be performed using other recipes provided as tools. Among the functions the recipes provide are sky subtraction, cube reconstruction with the application of flexure corrections, dividing out the telluric spectrum, applying an illumination correction, aligning the cubes, and then combinging them. The result is a set of files which contain the combined datacube and associated noise cube for each of the 24 integral field unit (IFUs). The pipeline includes simple error propagation.

[ascl:2107.010]
SpArcFiRe: SPiral ARC FInder and REporter

SpArcFiRe takes as input an image of a galaxy in FITS, JPG, or PNG format, identifies spiral arms, and extracts structural information about the spiral arms. Pixels in each arm segment are listed, enabling image analysis on each segment. The automated method also performs a least-squares fit of a logarithmic spiral arc to the pixels in that segment, giving per-arc parameters, such as the pitch angle, arm segment length, and location, and outputs images showing the steps SpArcFire took to detect arm segments.

[ascl:1105.006]
SPARC: Seismic Propagation through Active Regions and Convection

The Seismic Propagation through Active Regions and Convection (SPARC) code was developed by S. Hanasoge. The acoustic wavefield in SPARC is simulated by numerically solving the linearised 3-D Euler equations in Cartesian geometry (e.g., see Hanasoge, Duvall and Couvidat (2007)). Spatial derivatives are calculated using sixth-order compact finite differences (Lele,1992) and time evolution is achieved through the repeated application of an optimized second-order five-stage Runge-Kutta scheme (Hu, 1996). Periodic horizontal boundaries are used.

[ascl:2208.013]
SPAMMS: Spectroscopic PAtch Model for Massive Stars

Abdul-Masih, Michael; Sana, Hugues; Conroy, Kyle E.; Sundqvist, Jon; Prša, Andrej; Kochoska, Angela; Puls, Joachim

SPAMMS (Spectroscopic PAtch Model for Massive Stars), designed with geometrically deformed systems in mind, combines the eclipsing binary modelling code PHOEBE 2 (ascl:1106.002) and the NLTE radiative transfer code FASTWIND to produce synthetic spectra for systems at given phases, orientations and geometries. SPAMMS reproduces the morphology of observed spectral line profiles for overcontact systems and the Rossiter-Mclaughlin and Struve-Sahade effects.

[ascl:1812.005]
SPAMCART: Smoothed PArticle Monte CArlo Radiative Transfer

SPAMCART generates synthetic spectral energy distributions and intensity maps from smoothed particle hydrodynamics simulation snapshots. It follows discrete luminosity packets as they propagate through a density field, and computes the radiative equilibrium temperature of the ambient dust from their trajectories. The sources can be extended and/or embedded, and discrete and/or diffuse. The density is not mapped on to a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. The code strictly adheres to Kirchhoff's law of radiation. The algorithm is based on the Lucy Monte Carlo radiative transfer method and is fairly simple to implement, as it uses data structures that are already constructed for other purposes in modern particle codes

[ascl:1408.006]
SPAM: Source Peeling and Atmospheric Modeling

SPAM is a extension to AIPS for reducing high-resolution, low-frequency radio interferometric observations. Direction-dependent ionospheric calibration and image-plane ripple suppression are among the features that help to make high-quality sub-GHz images. Data reductions are captured in well-tested Python scripts that execute AIPS tasks directly (mostly during initial data reduction steps), call high-level functions that make multiple AIPS or ParselTongue calls, and require few manual operations.

[ascl:1907.007]
SPAM: Hu-Sawicki f(R) gravity imprints search

SPAM searches for imprints of Hu-Sawicki f(R) gravity on the rotation curves of the SPARC (Spitzer Photometry and Accurate Rotation Curves) sample using the MCMC sampler emcee (ascl:1303.002). The code provides attributes for inspecting the MCMC chains and translating names of parameters to indices. The SPAM package also contains plotting scripts.

[ascl:2103.003]
spalipy: Detection-based astronomical image registration

spalipy performs detection-based astronomical image registration in Python. A source image is transformed to the pixel-coordinate system of a template image using their respective detections as tie-points by finding matching quads of detections. spalipy also includes an optional additional warping of the initial affine transformation via splines to achieve accurate registration in the case of non-homogeneous coordinate transforms. This is particularly useful in the case of optically distorted or wide field-of-view images.

[ascl:1806.010]
SpaghettiLens: Web-based gravitational lens modeling tool

SpaghettiLens allows citizen scientists to model gravitational lenses collaboratively; the software should also be easily adaptable to any other, reasonably similar problem. It lets volunteers execute a computer intensive task that cannot be easily executed client side and relies on citizen scientists collaborating. SpaghettiLens makes survey data available to citizen scientists, manages the model configurations generated by the volunteers, stores the resulting model configuration, and delivers the actual model. A model can be shared and discussed with other volunteers and revised, and new child models can be created, resulting in a branching version tree of models that explore different possibilities. Scientists can choose a collection of models; discussion among volunteers and scientists prune the tree to determine which models will receive further analysis.

[ascl:1401.002]
SpacePy: Python-Based Tools for the Space Science Community

SpacePy provides data analysis and visualization tools for the space science community. Written in Python, it builds on the capabilities of the NumPy and MatPlotLib packages to make basic data analysis, modeling and visualization easier. It contains modules for handling many complex time formats, obtaining data from the OMNI database, and accessing the powerful Onera library. It contains a library of commonly used empirical relationships, performs association analysis, coordinate transformations, radiation belt modeling, and CDF reading, and creates publication quality plots.

[ascl:2104.025]
SpaceHub: High precision few-body and large scale N-body simulations

SpaceHub uses unique algorithms for fast precise and accurate computations for few-body problems ranging from interacting black holes to planetary dynamics. This few-body gravity integration toolkit can treat black hole dynamics with extreme mass ratios, extreme eccentricities and very close encounters. SpaceHub offers a regularized Radau integrator with round off error control down to 64 bits floating point machine precision and can handle extremely eccentric orbits and close approaches in long-term integrations.

[ascl:1504.002]
SPA: Solar Position Algorithm

The Solar Position Algorithm (SPA) calculates the solar zenith and azimuth angles in the period from the year -2000 to 6000, with uncertainties of +/- 0.0003 degrees based on the date, time, and location on Earth. SPA is implemented in C; in addition to being available for download, an online calculator using this code is available at https://www.nrel.gov/midc/solpos/spa.html.

[ascl:1805.028]
SP_Ace: Stellar Parameters And Chemical abundances Estimator

SP_Ace (Stellar Parameters And Chemical abundances Estimator) estimates the stellar parameters Teff, log g, [M/H], and elemental abundances. It employs 1D stellar atmosphere models in Local Thermodynamic Equilibrium (LTE). The code is highly automated and suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). A web service for calculating these values with the software is also available.

[ascl:2301.024]
SOXS: Simulated Observations of X-ray Sources

ZuHone, John A.; Vikhlinin, Alexey; Tremblay, Grant R.; Randall, Scott W.; Andrade-Santos, Felipe; Bourdin, Herve

SOXS creates simulated X-ray observations of astrophysical sources. The package provides a comprehensive set of tools to design source models and convolve them with simulated models of X-ray observatories. In particular, SOXS is the primary simulation tool for simulations of Lynx and Line Emission Mapper observations. SOXS provides facilities for creating spectral models, simple spatial models for sources, astrophysical background and foreground models, as well as a Python implementation of the SIMPUT file format.

[ascl:2212.018]
SourceXtractor++: Extracts sources from astronomical images

SourceXtractor++ extracts a catalog of sources from astronomical images; it is the successor to SExtractor (ascl:1010.064). SourceXtractor++ has been completely rewritten in C++ and improves over its predecessor in many ways. It provides support for multiple “measurement” images, has an optimized multi-object, multi-frame model-fitting engine, and can define complex priors and dependencies for model parameters. It also offers efficient image data caching and multi-threaded processing, and has a modular design with support for third-party plug-ins.

[ascl:2008.004]
SOT: Spin-Orbit Tomography

Spin-Orbit Tomography (SOT) is a retrieval technique of a two-dimensional map of an Exo-Earth from time-series data of integrated reflection light. The software provides code for the Bayesian version of the static SOT and dynamic mapping (time-varying mapping) with full Bayesian modeling, and tutorials for L2 and Bayesian SOT are available in jupyter notebooks.

[ascl:2108.025]
SORA: Stellar Occultation Reduction Analysis

SORA optimally analyzes stellar occultation data. The library includes processes starting on the prediction of such events to the resulting size, shape and position of the Solar System object and can be used to build pipelines to analyze stellar occultation data. A stellar occultation is defined by the occulting body (Body), the occulted star (Star), and the time of the occultation. On the other hand, each observational station (Observer) will be associated with their light curve (LightCurve). SORA has tasks that allow the user to determine the immersion and emersion times and project them to the tangent sky plane, using the information within the Observer, Body and Star Objects. That projection will lead to chords that will be used to obtain the object’s apparent size, shape and position at the moment of the occultation. Automatic processes optimize the reduction of typical events. However, users have full control over the parameters and methods and can make changes in every step of the process.

[ascl:1307.020]
SOPT: Sparse OPTimisation

SOPT (Sparse OPTimisation) is a C implementation of the Sparsity Averaging Reweighted Analysis (SARA) algorithm. The approach relies on the observation that natural images exhibit strong average sparsity; average sparsity outperforms state-of-the-art priors that promote sparsity in a single orthonormal basis or redundant frame, or that promote gradient sparsity.

[ascl:1607.014]
SOPIE: Sequential Off-Pulse Interval Estimation

SOPIE (Sequential Off-Pulse Interval Estimation) provides functions to non-parametrically estimate the off-pulse interval of a source function originating from a pulsar. The technique is based on a sequential application of P-values obtained from goodness-of-fit tests for the uniform distribution, such as the Kolmogorov-Smirnov, Cramér-von Mises, Anderson-Darling and Rayleigh goodness-of-fit tests.

[ascl:1810.017]
SOPHISM: Software Instrument Simulator

Blanco Rodríguez, J.; del Toro Iniesta, J. C.; Orozco Suárez, D.; Martínez Pillet, V.; Bonet, J. A.; Feller, A.; Hirzberger, J.; Lagg, A.; Piqueras, J.; Gasent Blesa, J. L.

SOPHISM models astronomical instrumentation from the entrance of the telescope to data acquisition at the detector, along with software blocks dealing with, for example, demodulation, inversion, and compression. The code performs most analyses done with light in astronomy, such as differential photometry, spectroscopy, and polarimetry. The simulator offers flexibility and implementation of new effects and subsystems, making it user-adaptable for a wide variety of instruments. SOPHISM can be used for all stages of instrument definition, design, operation, and lifetime tracking evaluation.

[ascl:1412.014]
SOPHIA: Simulations Of Photo Hadronic Interactions in Astrophysics

SOPHIA (Simulations Of Photo Hadronic Interactions in Astrophysics) solves problems connected to photohadronic processes in astrophysical environments and can also be used for radiation and background studies at high energy colliders such as LEP2 and HERA, as well as for simulations of photon induced air showers. SOPHIA implements well established phenomenological models, symmetries of hadronic interactions in a way that describes correctly the available exclusive and inclusive photohadronic cross section data obtained at fixed target and collider experiments.

[ascl:1701.012]
SONG: Second Order Non-Gaussianity

SONG computes the non-linear evolution of the Universe in order to predict cosmological observables such as the bispectrum of the Cosmic Microwave Background (CMB). More precisely, it is a second-order Boltzmann code, as it solves the Einstein and Boltzmann equations up to second order in the cosmological perturbations.

[ascl:2209.019]
SolTrack: Compute the position of the Sun in topocentric coordinates

SolTrack computes the position of the Sun, the rise and set times and azimuths, and transit times and altitudes. It includes corrections for aberration and parallax, and has a simple routine to correct for atmospheric refraction, taking into account local atmospheric conditions. SolTrack is derived from the Fortran library libTheSky (ascl:2209.018). The package can be used to track the Sun on a low-specs machine, such as a microcontroller or PLC, and can be used for (highly) concentrated (photovoltaic) solar power or accurate solar-energy modeling.

[ascl:2207.009]
SolAster: 'Sun-as-a-star' radial velocity variations

Ervin, Tamar; Halverson, Samuel; Burrows, Abigail; Murphy, Nei; Roy, Arpita; Haywood, Raphaelle D.; Rescigno, Federica; Bender, Chad F.; Lin, Andrea S. J.; Burt, Jennifer; Mahadevan, Suvrath

SolAster provides querying, analysis, and calculation methods to independently derive 'sun-as-a-star' RV variations using SDO/HMI data for any time span since SDO has begun observing. Scaling factors are provided in order to calculate RVs comparable to magnitudes measured by ground-based spectrographs (HARPS-N and NEID). In addition, there are routines to calculate magnetic observables to compare with RV variations and determine what is driving Solar activity.

[ascl:1208.013]
SolarSoft: Programming and data analysis environment for solar physics

SolarSoft is a set of integrated software libraries, data bases, and system utilities which provide a common programming and data analysis environment for Solar Physics. The SolarSoftWare (SSW) system is built from Yohkoh, SOHO, SDAC and Astronomy libraries and draws upon contributions from many members of those projects. It is primarily an IDL based system, although some instrument teams integrate executables written in other languages. The SSW environment provides a consistent look and feel at widely distributed co-investigator institutions to facilitate data exchange and to stimulate coordinated analysis. Commonalities and overlap in solar data and analysis goals are exploited to permit application of fundamental utilities to the data from many different solar instruments. The use of common libraries, utilities, techniques and interfaces minimizes the learning curve for investigators who are analyzing new solar data sets, correlating results from multiple experiments or performing research away from their home institution.

[ascl:2401.013]
SolarKAT: Solar imaging pipeline for MeerKAT

SolarKAT mitigates solar interference in MeerKAT data and recovers the visibilities rather than discarding them; this solar imaging pipeline takes 1GC calibrated data in Measurement Set format as input. Written in Python, the pipeline employs solar tracking, subtraction, and peeling techniques to enhance data quality by significantly reducing solar radio interference. This is achieved while preserving the flux measurements in the main field. SolarKAT is versatile and can be applied to general radio astronomy observations and solar radio astronomy; additionally, generated solar images can be used for weather forecasting. SolarKAT is deployed in Stimela (ascl:2305.007). It is based on existing radio astronomy software, including CASA (ascl:1107.013), breizorro (ascl:2305.009), WSclean (ascl:1408.023), Quartical (ascl:2305.006), and Astropy (ascl:1304.002).

[ascl:2312.006]
SolarAxionFlux: Solar axion flux calculator for different solar models and opacity codes

SolarAxionFlux quantifies systematic differences and statistical uncertainties in the calculation of the solar axion flux from axion-photon and axion-electron interactions. Determining the limitations of these calculations can be used to identify potential improvements and help determine axion model parameters more accurately.

[ascl:2210.015]
Solar-MACH: Multi-spacecraft longitudinal configuration plotter

Gieseler, Jan; Dresing, Nina; Palmroos, Christian; von Forstner, Johan L. Freiherr; Price, Daniel J.; Vainio, Rami; Kouloumvakos, Athanasios; Rodríguez-García, Laura; Trotta, Domenico; Génot, Vincent; Masson, Arnaud; Roth, Markus; Veronig, Astrid

Solar-MACH (Solar MAgnetic Connection HAUS) derives and visualizes the spatial configuration and solar magnetic connection of different observers (*i.e.*, spacecraft or planets) in the heliosphere at different times. It provides publication-ready figures for analyzing Solar Energetic Particle events (SEPs) or solar transients such as Coronal Mass Ejections (CMEs). Solar-MACH is available as a Python package; a Streamlit-enabled tool that runs in a browser is also available (solar-mach.github.io)

[submitted]
SoFiAX

SoFiAX is a web-based platform to merge and interact with the results of parallel execution of SoFiA HI source finding software [ascl:1412.001] and other steps of processing ASKAP Wallaby HI survey data.

[ascl:1412.001]
SoFiA: Source Finding Application

Serra, Paolo; Westmeier, Tobias; Giese, Nadine; Jurek, Russell; Flöer, Lars; Popping, Attila; Winkel, Benjamin; van der Hulst, Thijs; Meyer, Martin; Koribalski, Bärbel; Staveley-Smith, Lister; Courtois, Hélène

SoFiA is a flexible source finding pipeline designed to detect and parameterize sources in 3D spectral-line data cubes. SoFiA combines several powerful source finding and parameterization algorithms, including wavelet denoising, spatial and spectral smoothing, source mask optimization, spectral profile fitting, and calculation of the reliability of detections. In addition to source catalogues in different formats, SoFiA can also generate a range of output data cubes and images, including source masks, moment maps, sub-cubes, position-velocity diagrams, and integrated spectra. The pipeline is controlled by simple parameter files and can either be invoked on the command line or interactively through a modern graphical user interface.

A reimplementation of this pipeline using OpenMPI, SoFiA 2 (ascl:2109.005), is available.

[ascl:2109.005]
SoFiA 2: An automated, parallel HI source finding pipeline

Westmeier, Tobias; Kitaeff, Slava; Pallot, Dave; Serra, Paolo; van der Hulst, Thijs; Jurek, Russell J.; Elagali, Ahmed; For, Bi-Qing; Kleiner, Dane; Koribalski, Bärbel S.; Lee-Waddell, Karen; Mould, Jeremy R.; Reynolds, Tristan N.; Rhee, Jonghwan; Staveley-Smith, Lister

SoFiA 2 is a fully automated spectral-line source finding pipeline originally intended for the detection of galaxies in large HI data cubes. It is a reimplementation of parts of the original SoFiA pipeline (ascl:1412.001) in the C programming language and uses OpenMP for multithreading, making it substantially faster and more memory-efficient than its predecessor. At its core, SoFiA 2 uses the Smooth + Clip algorithm for source finding which operates by spatially and spectrally smoothing the data on multiple scales and applying a user-defined flux threshold relative to the noise level in each iteration. A wide range of useful preconditioning and post-processing filters is available, including noise normalization, flagging of artifacts and reliability filtering. In addition to global data products and source catalogs in different formats, SoFiA 2 can also generate cutout images and spectra for each individual detection.

[ascl:1403.026]
SOFA: Standards of Fundamental Astronomy

SOFA (Standards Of Fundamental Astronomy) is a collection of subprograms, in source-code form, that implement official IAU algorithms for fundamental astronomy computations. SOFA offers more than 160 routines for fundamental astronomy, including time scales (including dealing with leap seconds), Earth rotation, sidereal time, precession, nutation, polar motion, astrometry and transforms between various reference systems (e.g. BCRS, ICRS, GCRS, CIRS, TIRS, ITRS). The subprograms are supported by 55 vector/matrix routines, and are available in both Fortran77 and C implementations.

[ascl:2301.015]
SOAP-GPU: Spectral time series simulations with GPU

SOAP-GPU is a revision of SOAP 2 (ascl:1504.021), which simulates spectral time series with the effect of active regions (spot, faculae or both). In addition to the traditional outputs of SOAP 2.0 (the cross-correlation function and extracted parameters: radial velocity, bisector span, full width at half maximum), SOAP-GPU generates the integrated spectra at each phase for given input spectra and spectral resolution. Additional capabilities include fast spectral simulation of stellar activity due to GPU acceleration, simulation of more complicated active region structures with superposition between active regions, and more realistic line bisectors, based on solar observations, that varies as function of mu angle for both quiet and active regions. In addition, SOAP-GPU accepts any input high resolution observed spectra. The PHOENIX synthetic spectral library are already implemented at the code level which allows users to simulate stellar activity for stars other than the Sun. Furthermore, SOAP-GPU simulates realistic spectral time series with either spot number/SDO image as additional inputs. The code is written in C and provides python scripts for input pre-processing and output post-processing.

[ascl:1504.021]
SOAP 2.0: Spot Oscillation And Planet 2.0

SOAP (Spot Oscillation And Planet) 2.0 simulates the effects of dark spots and bright plages on the surface of a rotating star, computing their expected radial velocity and photometric signatures. It includes the convective blueshift and its inhibition in active regions.

[ascl:2106.023]
so_noise_models: Simons Observatory N(ell) noise models

so_noise_models is the N(ell) noise curve projection code for the Simons Observatory. The code, written in pure Python, consists of several independent sub-modules, representing each version of the noise code. The usage of the models can vary substantially from version to version. The package also includes demo code that that demonstrates usage of the noise models, such as by producing noise curve plots, effective noise power spectra for SO LAT component-separated CMB T, E, B, and Compton-y maps, and lensing noise curves from SO LAT component-separated CMB T, E, B maps.

[ascl:1902.001]
SNTD: Supernova Time Delays

Supernova Time Delays (SNTD) simulates and measures time delay of multiply-imaged supernovae, and offers an improved characterization of the uncertainty caused by microlensing. Lensing time delays can be determined by fitting the multiple light curves of these objects; measuring these delays provide precise tests of lens models or constraints on the Hubble constant and other cosmological parameters that are independent of the local distance ladder. Fitting the effects of microlensing without an accurate prior often leads to biases in the time delay measurement and over-fitting to the data; this can be mitigated by using a Gaussian Process Regression (GPR) technique to determine the uncertainty due to microlensing. SNTD can produce accurate simulations for wide-field time domain surveys such as LSST and WFIRST.

[ascl:1805.017]
SNSEDextend: SuperNova Spectral Energy Distributions extrapolation toolkit

Pierel, Justin D. R.; Rodney, Steven A.; Avelino, Arturo; Bianco, Federica; Foley, Ryan J.; Friedman, Andrew; Hicken, Malcolm; Hounsell, Rebekah; Jha, Saurabh W.; Kessler, Richard; Kirshner, Robert; Mandel, Kaisey; Narayan, Gautham; Filippenko, Alexei V.; Scolnic, Daniel; Strolger, Louis-Gregory

SNSEDextend extrapolates core-collapse and Type Ia Spectral Energy Distributions (SEDs) into the UV and IR for use in simulations and photometric classifications. The user provides a library of existing SED templates (such as those in the authors' SN SED Repository) along with new photometric constraints in the UV and/or NIR wavelength ranges. The software then extends the existing template SEDs so their colors match the input data at all phases. SNSEDextend can also extend the SALT2 spectral time-series model for Type Ia SN for a "first-order" extrapolation of the SALT2 model components, suitable for use in survey simulations and photometric classification tools; as the code does not do a rigorous re-training of the SALT2 model, the results should not be relied on for precision applications such as light curve fitting for cosmology.

[ascl:1703.006]
SNRPy: Supernova remnant evolution modeling

SNRPy (Super Nova Remnant Python) models supernova remnant (SNR) evolution and is useful for understanding SNR evolution and to model observations of SNR for obtaining good estimates of SNR properties. It includes all phases for the standard path of evolution for spherically symmetric SNRs and includes alternate evolutionary models, including evolution in a cloudy ISM, the fractional energy loss model, and evolution in a hot low-density ISM. The graphical interface takes in various parameters and produces outputs such as shock radius and velocity vs. time, SNR surface brightness profile and spectrum.

[ascl:2109.019]
SNOwGLoBES: SuperNova Observatories with GLoBES

SNOwGLoBES (SuperNova Observatories with GLoBES) computes interaction rates and distributions of observed quantities for supernova burst neutrinos in common detector materials. The code provides a very simple and fast code and data package for tests of observability of physics signatures in current and future detectors, and for evaluation of relative sensitivities of different detector configurations. The event estimates are made using available cross-sections and parameterized detector responses. Water, argon, scintillator and lead-based configurations are included. The package makes use of GLoBES (ascl:2109.018). SNOwGLoBES is not intended to replace full detector simulations; however output should be useful for many types of studies, and simulation results can be incorporated.

[ascl:2109.030]
Snowball: Generalizable atmospheric mass loss calculator

Snowball models atmospheric loss in order to constrain an atmosphere's cumulative impact of historic X-ray and extreme ultraviolet radiation-driven mass loss. The escape model interpolates the BaSTI luminosity evolution grid to the observed mass and luminosity of the host star.

[ascl:1505.023]
SNooPy: TypeIa supernovae analysis tools

Burns, Christopher R.; Stritzinger, Maximilian; Phillips, M. M.; Kattner, ShiAnne; Persson, S. E.; Madore, Barry F.; Freedman, Wendy L.; Boldt, Luis; Campillay, Abdo; Contreras, Carlos; Folatelli, Gaston; Gonzalez, Sergio; Krzeminski, Wojtek; Morrell, Nidia; Salgado, Francisco; Suntzeff, Nicholas B.

The SNooPy package (also known as SNpy), written in Python, contains tools for the analysis of TypeIa supernovae. It offers interactive plotting of light-curve data and models (and spectra), computation of reddening laws and K-corrections, LM non-linear least-squares fitting of light-curve data, and various types of spline fitting, including Diercx and tension. The package also includes a SNIa lightcurve template generator in the CSP passbands, estimates of Milky-Way Extinction, and a module for dealing with filters and spectra.

[ascl:1505.022]
Snoopy: General purpose spectral solver

Snoopy is a spectral 3D code that solves the MHD and Boussinesq equations, such as compressibility, particles, and Braginskii viscosity, and several other physical effects. It's useful for turbulence study involving shear and rotation. Snoopy requires the FFTW library (ascl:1201.015), and can run on parallel machine using MPI OpenMP or both at the same time.

[ascl:2107.006]
snmachine: Photometric supernova classification

Lochner, Michelle; Alves, Catarina; Peiris, Hiranya; McEwen, Jason; Allam Jr, Tarek; Biswas, Rahul; Holland, Johnny; Lahav, Ofer; Schuhmann, Robert; Setzer, Christian; Winter, Max

snmachine reads in photometric supernova light curves, extracts useful features from them, and subsequently performs supervised machine learning to classify supernovae based on their light curves. This python library is also flexible enough to easily extend to general transient classification.

[ascl:1107.001]
SNID: Supernova Identification

We present an algorithm to identify the type of an SN spectrum and to determine its redshift and age. This algorithm, based on the correlation techniques of Tonry & Davis, is implemented in the Supernova Identification (SNID) code. It is used by members of ongoing high-redshift SN searches to distinguish between type Ia and type Ib/c SNe, and to identify "peculiar" SNe Ia. We develop a diagnostic to quantify the quality of a correlation between the input and template spectra, which enables a formal evaluation of the associated redshift error. Furthermore, by comparing the correlation redshifts obtained using SNID with those determined from narrow lines in the SN host galaxy spectrum, we show that accurate redshifts (with a typical error less than 0.01) can be determined for SNe Ia without a spectrum of the host galaxy. Last, the age of an input spectrum is determined with a typical 3-day accuracy, shown here by using high-redshift SNe Ia with well-sampled light curves. The success of the correlation technique confirms the similarity of some SNe Ia at low and high redshifts. The SNID code, which is available to the community, can also be used for comparative studies of SN spectra, as well as comparisons between data and models.

[ascl:2109.020]
SNEWPY: Supernova Neutrino Early Warning Models for Python

Migenda, Jost; Kneller, James P.; O'Connor, Evan; BenZvi, Segev; Uberoi, Navya; Colomer Molla, Marta

SNEWPY uses simulated supernovae data to generate a time series of neutrino spectral fluences at Earth or the total time-integrated spectral fluence. The code can also process generated data through SNOwGLoBES (ascl:2109.019) and collate its output into the observable channels of each detector. Data from core-collapse, thermonuclear, and pair-instability supernovae simulations are included in the package.

Previous1234567891011**12**131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172Next

Would you like to view a random code?