ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:2208.015] J-comb: Combine high-resolution and low-resolution data

J-comb combines high-resolution data with large-scale missing information with low-resolution data containing the short spacing. Based on uvcombine (ascl:2208.014), it takes as input FITS files of low- and high-resolution images, the angular resolution of the input images, and the pixel size of the input images, and outputs a FITS file of the combined image.

[ascl:2009.007] J plots: Tool for characterizing 2D and 3D structures in the interstellar medium

J plots classifies and quantifies a pixelated structure, based on its principal moments of inertia, thus enabling automatic detection and objective comparisons of centrally concentrated structures (cores), elongated structures (filaments) and hollow circular structures (bubbles) from the main population of slightly irregular blobs that make up most astronomical images. Examples of how to analyze 2D or 3D datasets, enabling an unbiased analysis and comparison of simulated and observed structures are provided along with the Python code.

[ascl:2210.020] ixpeobssim: Imaging X-ray Polarimetry Explorer simulator and analyzer

The simulation and analysis framework ixpeobssim was specifically developed for the Imaging X-ray Polarimetry Explorer (IXPE). It produces realistic simulated observations, in the form of event lists in FITS format, that also contain a strict superset of the information included in the publicly released IXPE data products. The framework's core simulation capabilities are complemented by post-processing applications that support the spatial, spectral, and temporal models needed for analysis of typical polarized X-ray sources, allowing implementation of complex, polarization-aware analysis pipelines. Where applicable, the data formats are consistent with the common display and analysis tools used by the community, e.g., the binned count spectra can be fed into XSPEC (ascl:9910.005), along with the corresponding response functions, for doing standard spectral analysis. All ixpeobssim simulation and analysis tools are fully configurable via the command line.

[ascl:1801.002] iWander: Dynamics of interstellar wanderers

iWander assesses the origin of interstellar small bodies such as asteroids and comets. It includes a series of databases and tools that can be used in general for studying the dynamics of an interstellar vagabond object (small−body, interstellar spaceship and even stars).

[ascl:1406.016] IUEDR: IUE Data Reduction package

IUEDR reduces IUE data. It addresses the problem of working from the IUE Guest Observer tape or disk file through to a calibrated spectrum that can be used in scientific analysis and is a complete system for IUE data reduction. IUEDR was distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1307.012] ITERA: IDL Tool for Emission-line Ratio Analysis

ITERA, the IDL Tool for Emission-line Ratio Analysis, is an IDL widget tool that allows you to plot ratios of any strong atomic and ionized emission lines as determined by standard photoionization and shock models. These "line ratio diagrams" can then be used to determine diagnostics for nebulae excitation mechanisms or nebulae parameters such as density, temperature, metallicity, etc. ITERA can also be used to determine line sensitivities to such parameters, compare observations with the models, or even estimate unobserved line fluxes.

[ascl:1010.047] ISW and Weak Lensing Likelihood Code

ISW and Weak Lensing Likelihood code is the likelihood code that calculates the likelihood of Integrated Sachs Wolfe and Weak Lensing of Cosmic Microwave Background using the WMAP 3year CMB maps with mass tracers such as 2MASS (2-Micron All Sky Survey), SDSS LRG (Sloan Digital Sky Survey Luminous Red Galaxies), SDSS QSOs (Sloan Digital Sky Survey Quasars) and NVSS (NRAO VLA All Sky Survey) radio sources. The details of the analysis (*thus the likelihood code) can be understood by reading the papers ISW paper and Weak lensing paper. The code does brute force theoretical matter power spectrum and calculations with CAMB. See the paper for an introduction, descriptions, and typical results from some pre-WMAP data. The code is designed to be integrated into CosmoMC. For further information concerning the integration, see Code Modification for integration into COSMOMC.

[ascl:2009.004] ISPy3: Integrated-light Spectroscopy for Python3

The ISPy3 suite of Python routines models and analyzes integrated-light spectra of stars and stellar populations. The actual spectral modeling and related tasks such as setting up model atmospheres is done via external codes. Currently, the Kurucz codes (ATLAS/SYNTHE) and MARCS/TurboSpectrum are supported, though implementing other similar codes should be relatively straight forward.

[ascl:1409.006] iSpec: Stellar atmospheric parameters and chemical abundances

iSpec is an integrated software framework written in Python for the treatment and analysis of stellar spectra and abundances. Spectra treatment functions include cosmic rays removal, continuum normalization, resolution degradation, and telluric lines identification. It can also perform radial velocity determination and correction and resampling. iSpec can also determine atmospheric parameters (i.e effective temperature, surface gravity, metallicity, micro/macroturbulence, rotation) and individual chemical abundances by using either the synthetic spectra fitting technique or equivalent widths method. The synthesis is performed with SPECTRUM (ascl:9910.002).

[ascl:1503.010] isochrones: Stellar model grid package

Isochrones, written in Python, simplifies common tasks often done with stellar model grids, such as simulating synthetic stellar populations, plotting evolution tracks or isochrones, or estimating the physical properties of a star given photometric and/or spectroscopic observations.

[ascl:1601.021] ISO: Isochrone construction

ISO transforms MESA history files into a uniform basis for interpolation and then constructs new stellar evolution tracks and isochrones from that basis. It is written in Fortran and requires MESA (ascl:1010.083), primarily for interpolation. Though designed to ingest MESA star history files, tracks from other stellar evolution codes can be incorporated by loading the tracks into the data structures used in the codes.

[ascl:1302.002] ISIS: Interactive Spectral Interpretation System for High Resolution X-Ray Spectroscopy

ISIS, the Interactive Spectral Interpretation System, is designed to facilitate the interpretation and analysis of high resolution X-ray spectra. It is being developed as a programmable, interactive tool for studying the physics of X-ray spectrum formation, supporting measurement and identification of spectral features, and interaction with a database of atomic structure parameters and plasma emission models.

[ascl:9909.003] ISIS: A method for optimal image subtraction

ISIS is a complete package to process CCD images using the image Optimal subtraction method (Alard & Lupton 1998, Alard 1999). The ISIS package can find the best kernel solution even in case of kernel variations as a function of position in the image. The relevant computing time is minimal in this case and is only slightly different from finding constant kernel solutions. ISIS includes as well a number of facilities to compute the light curves of variables objects from the subtracted images. The basic routines required to build the reference frame and make the image registration are also provided in the package.

[ascl:1708.029] iSEDfit: Bayesian spectral energy distribution modeling of galaxies

iSEDfit uses Bayesian inference to extract the physical properties of galaxies from their observed broadband photometric spectral energy distribution (SED). In its default mode, the inputs to iSEDfit are the measured photometry (fluxes and corresponding inverse variances) and a measurement of the galaxy redshift. Alternatively, iSEDfit can be used to estimate photometric redshifts from the input photometry alone.

After the priors have been specified, iSEDfit calculates the marginalized posterior probability distributions for the physical parameters of interest, including the stellar mass, star-formation rate, dust content, star formation history, and stellar metallicity. iSEDfit also optionally computes K-corrections and produces multiple "quality assurance" (QA) plots at each stage of the modeling procedure to aid in the interpretation of the prior parameter choices and subsequent fitting results. The software is distributed as part of the impro IDL suite.

[ascl:1809.010] Isca: Idealized global circulation modeling

Isca provides a framework for the idealized modeling of the global circulation of planetary atmospheres at varying levels of complexity and realism. Though Isca is an outgrowth of models designed for Earth's atmosphere, it may readily be extended into other planetary regimes. Various forcing and radiation options are available. At the simple end of the spectrum a Held-Suarez case is available. An idealized grey radiation scheme, a grey scheme with moisture feedback, a two-band scheme and a multi-band scheme are also available, all with simple moist effects and astronomically-based solar forcing. At the complex end of the spectrum the framework provides a direct connection to comprehensive atmospheric general circulation models.

[ascl:1403.009] ISAP: ISO Spectral Analysis Package

ISAP, written in IDL, simplifies the process of visualizing, subsetting, shifting, rebinning, masking, combining scans with weighted means or medians, filtering, and smoothing Auto Analysis Results (AARs) from post-pipeline processing of the Infrared Space Observatory's (ISO) Short Wavelength Spectrometer (SWS) and Long Wavelength Spectrometer (LWS) data. It can also be applied to PHOT-S and CAM-CVF data, and data from practically any spectrometer. The result of a typical ISAP session is expected to be a "simple spectrum" (single-valued spectrum which may be resampled to a uniform wavelength separation if desired) that can be further analyzed and measured either with other ISAP functions, native IDL functions, or exported to other analysis package (e.g., IRAF (ascl:9911.002), MIDAS (ascl:1302.017) if desired. ISAP provides many tools for further analysis, line-fitting, and continuum measurements, such as routines for unit conversions, conversions from wavelength space to frequency space, line and continuum fitting, flux measurement, synthetic photometry and models such as a zodiacal light model to predict and subtract the dominant foreground at some wavelengths.

[ascl:1303.029] iSAP: Interactive Sparse Astronomical Data Analysis Packages

iSAP consists of three programs, written in IDL, which together are useful for spherical data analysis. MR/S (MultiResolution on the Sphere) contains routines for wavelet, ridgelet and curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and Independent Component Analysis on the Sphere. MR/S has been designed for the PLANCK project, but can be used for many other applications. SparsePol (Polarized Spherical Wavelets and Curvelets) has routines for polarized wavelet, polarized ridgelet and polarized curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and blind source separation on the Sphere. SparsePol has been designed for the PLANCK project. MS-VSTS (Multi-Scale Variance Stabilizing Transform on the Sphere), designed initially for the FERMI project, is useful for spherical mono-channel and multi-channel data analysis when the data are contaminated by a Poisson noise. It contains routines for wavelet/curvelet denoising, wavelet deconvolution, multichannel wavelet denoising and deconvolution.

[ascl:1602.016] IRSFRINGE: Interactive tool for fringe removal from Spitzer IRS spectra

IRSFRINGE is an IDL-based GUI package that allows observers to interactively remove fringes from IRS spectra. Fringes that originate from the detector subtrates are observed in the IRS Short-High (SH) and Long-High (LH) modules. In the Long-Low (LL) module, another fringe component is seen as a result of the pre-launch change in one of the LL filters. The fringes in the Short-Low (SL) module are not spectrally resolved. the fringes are already largely removed in the pipeline processing when the flat field is applied. However, this correction is not perfect and remaining fringes can be removed with IRSFRINGE from data in each module. IRSFRINGE is available as a stand-alone package and is also part of the Spectroscopic Modeling, Analysis and Reduction Tool (SMART, ascl:1210.021).

[ascl:1205.007] Iris: The VAO SED Application

Iris is a downloadable Graphical User Interface (GUI) application which allows the astronomer to build and analyze wide-band Spectral Energy Distributions (SEDs). The components of Iris have been contributed by members of the VAO. Specview, contributed by STScI, provides a GUI for reading, editing, and displaying SEDs, as well as defining models and parameter values. Sherpa, contributed by the Chandra project at SAO, provides a library of models, fit statistics, and optimization methods; the underlying I/O library, SEDLib, is a VAO product written by SAO to current IVOA (International Virtual Observatory Alliance) data model standards. NED is a service provided by IPAC for easy location of data for a given extragalactic source, including SEDs. SedImporter converts non-standard SED data files into a format supported by Iris.

[ascl:1109.017] IRDR: InfraRed Data Reduction

We describe the InfraRed Data Reduction (IRDR) software package, a small ANSI C library of fast image processing routines for automated pipeline reduction of infrared (dithered) observations. We developed the software to satisfy certain design requirements not met in existing packages (e.g., full weight map handling) and to optimize the software for large data sets (non-interactive tasks that are CPU and disk efficient). The software includes stand-alone C programs for tasks such as running sky frame subtraction with object masking, image registration and coaddition with weight maps, dither offset measurement using cross-correlation, and object mask dilation. Although we currently use the software to process data taken with CIRSI (a near-IR mosaic imager), the software is modular and concise and should be easy to adapt/reuse for other work.

[ascl:2004.015] IRDAP: SPHERE-IRDIS polarimetric data reduction pipeline

IRDAP (IRDIS Data reduction for Accurate Polarimetry) accurately reduces SPHERE-IRDIS polarimetric data. It is a highly-automated end-to-end pipeline; its core feature is model-based correction of the instrumental polarization effects. IRDAP handles data taken both in field- and pupil-tracking mode and using the broadband filters Y, J, H and Ks. Data taken with the narrowband filters can be reduced as well, although with a somewhat worse accuracy. For pupil-tracking observations IRDAP can additionally apply angular differential imaging.

[ascl:1406.015] IRCAMDR: IRCAM3 Data Reduction Software

The UKIRT IRCAM3 data reduction and analysis software package, IRCAMDR (formerly ircam_clred) analyzes and displays any 2D data image stored in the standard Starlink (ascl:1110.012) NDF data format. It reduces and analyzes IRCAM1/2 data images of 62x58 pixels and IRCAM3 images of 256x256 size. Most of the applications will work on NDF images of any physical (pixel) dimensions, for example, 1024x1024 CCD images can be processed.

[ascl:1406.014] IRAS90: IRAS Data Processing

IRAS90 is a suite of programs for processing IRAS data. It takes advantage of Starlink's (ascl:1110.012) ADAM environment, which provides multi-platform availability of both data and the programs to process it, and the user friendly interface of the parameter entry system. The suite can determine positions in astrometric coordinates, draw grids, and offers other functions for standard astronomical measurement and standard projections.

[ascl:2106.040] IRAGNSEP: Spectral energy distribution fitting code

iragnsep performs IR SED fits separated into AGN and galaxy contributions, and measures host galaxy properties free of AGN contamination. The advantage of iragnsep is that, in addition to fitting observed broadband photometric fluxes, it also incorporates IR spectra in the fits which, if available, improves the robustness of the galaxy-AGN separation. For the galaxy component, iragnsep uses a library of galaxy templates. In terms of the AGN contribution, if the input dataset is a mixture of spectral and photometric data, iragnsep uses a combination of power-laws for the AGN continuum, and some broad features for the silicate emission. If instead the dataset contains photometric data alone, the AGN contribution is accounted for by using a library of AGN templates. The advanced fitting techniques used by iragnsep combined with the powerful model comparison tests allows iragnsep to provide a statistically robust interpretation of IR SEDs in terms of AGN-galaxy contributions, even when the AGN contribution is highly diluted by the host galaxy emission.

[ascl:9911.002] IRAF: Image Reduction and Analysis Facility

IRAF includes a broad selection of programs for general image processing and graphics, plus a large number of programs for the reduction and analysis of optical and IR astronomy data. Other external or layered packages are available for applications such as data acquisition or handling data from other observatories and wavelength regimes such as the Hubble Space Telescope (optical), EUVE (extreme ultra-violet), or ROSAT and AXAF (X-ray). These external packages are distributed separately from the main IRAF distribution but can be easily installed. The IRAF system also includes a complete programming environment for scientific applications, which includes a programmable Command Language scripting facility, the IMFORT Fortran/C programming interface, and the full SPP/VOS programming environment in which the portable IRAF system and all applications are written.

[ascl:1209.013] IRACproc: IRAC Post-BCD Processing

IRACproc is a software suite that facilitates the co-addition of dithered or mapped Spitzer/IRAC data to make them ready for further analysis with application to a wide variety of IRAC observing programs. The software runs within PDL, a numeric extension for Perl available from pdl.perl.org, and as stand alone perl scripts. In acting as a wrapper for the Spitzer Science Center's MOPEX software, IRACproc improves the rejection of cosmic rays and other transients in the co-added data. In addition, IRACproc performs (optional) Point Spread Function (PSF) fitting, subtraction, and masking of saturated stars.

[ascl:1512.001] IRACpm: Distortion correction for IRAC astrometric data

The IRACpm R package applies a 7-8 order distortion correction to IRAC astrometric data from the Spitzer Space Telescope and includes a function for measuring apparent proper motions between different Epochs. These corrections are applicable only to positions measured by APEX; cryogenic images benefit from a correction for varying intra-pixel sensitivity prior to the application of the distortion.

[ascl:2311.008] IQRM: IQRM interference flagging algorithm for radio pulsar and transient searches

IQRM implements the Inter-Quartile Range Mitigation (IQRM) interference flagging algorithm for radio pulsar and transient searches. This module provides only the algorithm that infers a channel mask from some spectral statistic that measures the level of RFI contamination in a time-frequency data block. It should be useful as a reference implementation to developers who wish to integrate IQRM into an existing pipeline or search code.

[ascl:2310.009] IQRM-APOLLO: Clean narrow-band RFI using Inter-Quartile Range Mitigation (IQRM) algorithm

IQRM-APOLLO cleans narrow-band radio frequency interference (RFI) using the Inter-Quartile Range Mitigation (IQRM) algorithm. By masking this interference, the code reduces the number of false positive pulsar candidates and increases sensitivity for pulsar detection. The IQRM algorithm is an outlier detection algorithm that is both non-parametric and robust to the presences of trends in time series data. Using short-duration data blocks, IQRM-APOLLO computes a spectral statistic that correlates with the presence of RFI, removing high outliers from the input signal.

[ascl:1804.002] ipole: Semianalytic scheme for relativistic polarized radiative transport

ipole is a ray-tracing code for covariant, polarized radiative transport particularly useful for modeling Event Horizon Telescope sources, though may also be used for other relativistic transport problems. The code extends the ibothros scheme for covariant, unpolarized transport using two representations of the polarized radiation field: in the coordinate frame, it parallel transports the coherency tensor, and in the frame of the plasma, it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is as spacetime- and coordinate- independent as possible; the emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, ipole is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth.

[ascl:2410.004] iPIC3D: Multi-scale plasma simulations of plasma

iPIC3D performs kinetic plasma simulations at magnetohydrodynamics time scales. This three-dimensional parallel code uses the implicit Particle-in-Cell method; implicit integration in time of the Vlasov–Maxwell system removes the numerical stability constraints. Written in C++, iPIC3D can be run with CUDA acceleration and supports MPI, OpenMP, and multi-node multi-GPU simulations.

[ascl:1303.022] ionFR: Ionospheric Faraday rotation

ionFR calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. The code uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. ionFR can be used for the calibration of radio polarimetric observations; its accuracy had been demonstrated using LOFAR pulsar observations.

[ascl:1612.013] InversionKit: Linear inversions from frequency data

InversionKit is an interactive Java program that performs rotational and structural linear inversions from frequency data.

[ascl:1403.010] Inverse Beta: Inverse cumulative density function (CDF) of a Beta distribution

The Beta Inverse code solves the inverse cumulative density function (CDF) of a Beta distribution, allowing one to sample from the Beta prior directly. The Beta distribution is well suited as a prior for the distribution of the orbital eccentricities of extrasolar planets; imposing a Beta prior on orbital eccentricity is valuable for any type of observation of an exoplanet where eccentricity can affect the model parameters (e.g. transits, radial velocities, microlensing, direct imaging). The Beta prior is an excellent description of the current, empirically determined distribution of orbital eccentricities and thus employing it naturally incorporates an observer’s prior experience of what types of orbits are probable or improbable. The default parameters in the code are currently set to the Beta distribution which best describes the entire population of exoplanets with well-constrained orbits.

[ascl:1101.004] InterpMC: Caching and Interpolated Likelihoods -- Accelerating Cosmological Monte Carlo Markov Chains

We describe a novel approach to accelerating Monte Carlo Markov Chains. Our focus is cosmological parameter estimation, but the algorithm is applicable to any problem for which the likelihood surface is a smooth function of the free parameters and computationally expensive to evaluate. We generate a high-order interpolating polynomial for the log-likelihood using the first points gathered by the Markov chains as a training set. This polynomial then accurately computes the majority of the likelihoods needed in the latter parts of the chains. We implement a simple version of this algorithm as a patch (InterpMC) to CosmoMC and show that it accelerates parameter estimatation by a factor of between two and four for well-converged chains. The current code is primarily intended as a "proof of concept", and we argue that there is considerable room for further performance gains. Unlike other approaches to accelerating parameter fits, we make no use of precomputed training sets or special choices of variables, and InterpMC is almost entirely transparent to the user.

[ascl:2112.005] Interferopy: Analyzing datacubes from radio-to-submm observations

Interferopy analyzes datacubes from radio-to-submm observations. It provides a homogenous interface to common tasks, making it easy to go from reduced datacubes to essential measurements and publication-quality plots. Its core functionalities are widely applicable and have been successfully tested on (but are not limited to) ALMA, NOEMA, VLA and JCMT data.

[ascl:1907.027] intensitypower: Spectrum multipoles modeler

intensitypower measures and models the auto- and cross-power spectrum multipoles of galaxy catalogs and radio intensity maps presented in spherical coordinates. It can also convert the multipoles to power spectrum wedges P(k,mu) and 2D power spectra P(k_perp,k_par). The code assumes the galaxy catalog is a set of discrete points and the radio intensity map is a pixelized continuous field which includes angular pixelization using healpix, binning in redshift channels, smoothing by a Gaussian telescope beam, and the addition of a Gaussian noise in each cell. The galaxy catalog and radio intensity map are transferred onto an FFT grid, and power spectrum multipoles are measured including curved-sky effects. Both maps include redshift-space distortions.

[submitted] INSPECTA: INtegrated SDHDF Processing Engine in C for Telescope data Analysis

INSPECTA (formerly sdhdfProc) is a software package to read, manipulate and process radio astronomy data in Spectral-Domain Hierarchical Data Format (SDHDF). It is available as part of the 'sdhdf_tools' repository.

[ascl:2202.025] INSANE: INflationary potential Simulator and ANalysis Engine

INSANE (INflationary potential Simulator and ANalysis Engine) takes either a numeric inflationary potential or a symbolic one, calculates the background evolution and then, using the Mukhanov-Sasaki equations, calculates the primordial power spectrum it yields. The package can analyze the results to extract the spectral index n_s, the index running alpha, the running of running and possibly higher moments. The package contains two main modules: BackgroundSolver solves the background equations, and the MsSolver module solves and analyses the MS equations.

[ascl:1801.005] InitialConditions: Initial series solutions for perturbations in our Universe

InitialConditions finds the initial series solutions for perturbations in our Universe. This includes all scalar (1 adiabatic, 4 isocurvature and 2 magnetic modes), vector (1 vorticity mode, 1 magnetic mode), and tensor (1 gravitational wave mode and 1 magnetic mode) perturbations including terms up to second order in the neutrino mass. It can handle the standard species (cdm, baryons, photons), and two neutrino mass eigenstates (1 light, 1 heavy).

[ascl:1711.002] inhomog: Biscale kinematical backreaction analytical evolution

The inhomog library provides Raychaudhuri integration of cosmological domain-wise average scale factor evolution using an analytical formula for kinematical backreaction Q_D evolution. The inhomog main program illustrates biscale examples. The library routine lib/Omega_D_precalc.c is callable by RAMSES (ascl:1011.007) using the RAMSES extension ramses-scalav.

[ascl:1201.017] Inflation: Monte-Carlo Code for Slow-Roll Inflation

Inflation is a numerical code to generate power spectra and other observables through numerical solutions to flow equations. The code generates tensor and scalar power spectra as a function of wavenumber and various other parameters at specific wavenumbers of interest (such as for CMB, scalar perturbations at smaller scales, gravitational wave detection at direct detection frequencies). The output can be easily ported to publicly available Markov Chain codes to constrain cosmological parameters with data.

[ascl:2212.021] Infinity: Calculate accretion disk radiation forces onto moving particles

Infinity sets an observer in a black hole - accretion disk system. The black hole can be either Schwarzschild (nonrotating) or Kerr (rotating) by choice of the user. This observer can be on the surface of the disk, in its exterior or its interior (if the disk is not opaque). Infinity then scans the entire sky around the observer and investigates whether photons emitted by the hot accretion disk material can reach them. After recording the incoming radiation, the program calculates the stress-energy tensor of the radiation. Afterwards, the program calculates the radiation flux and hence, the radiation force exerted on target particles of various velocity profiles.

[ascl:1007.002] INFALL: A code for calculating the mean initial and final density profiles around a virialized dark matter halo

Infall is a code for calculating the mean initial and final density profiles around a virialized dark matter halo. The initial profile is derived from the statistics of the initial Gaussian random field, accounting for the problem of peaks within peaks using the extended Press-Schechter model. Spherical collapse then yields the typical density and velocity profiles of the gas and dark matter that surrounds the final, virialized halo. In additional to the mean profile, ±1-σ profiles are calculated and can be used as an estimate of the scatter.

[ascl:1210.023] inf_solv: Kerr inflow solver

The efficiency of thin disk accretion onto black holes depends on the inner boundary condition, specifically the torque applied to the disk at the last stable orbit. This is usually assumed to vanish. This code estimates the torque on a magnetized disk using a steady magnetohydrodynamic inflow model originally developed by Takahashi et al. The efficiency e can depart significantly from the classical thin disk value. In some cases e > 1, i.e., energy is extracted from the black hole.

[ascl:1806.005] Indri: Pulsar population synthesis toolset

Indri models the population of single (not in binary or hierarchical systems) neutron stars. Given a starting distribution of parameters (birth place, velocity, magnetic field, and period), the code moves a set of stars through the time (by evolving spin period and magnetic field) and the space (by propagating through the Galactic potential). Upon completion of the evolution, a set of observables is computed (radio flux, position, dispersion measure) and compared with a radio survey such as the Parkes Multibeam Survey. The models' parameters are optimised by using the Markov Chain Monte Carlo technique.

[ascl:1010.046] indexf: Line-strength Indices in Fully Calibrated FITS Spectra

This program measures line-strength indices in fully calibrated FITS spectra. By "fully calibrated" one should understand wavelength and relative flux-calibrated data. Note that the different types of line-strength indices that can be measured with indexf (see below) do not require absolute flux calibration. If even a relative flux-calibration is absent (or deficient), the derived indices should be transformed to an appropriate spectrophotometric system. The program can also compute index errors resulting from the propagation of random errors (e.g. photon statistics, read-out noise). This option is only available if the user provides the error spectrum as an additional input FITS file to indexf. The error spectrum must contain the unbiased standard deviation (and not the variance!) for each pixel of the data spectrum. In addition, indexf also estimates the effect of errors on radial velocity. For this purpose, the program performs Monte Carlo simulations by measuring each index using randomly drawn radial velocities (following a Gaussian distribution of a given standard deviation). If no error file is employed, the program can perform numerical simulations with synthetic error spectra, the latter generated from the original data spectra and assuming randomly generated S/N ratios.

[ascl:2307.019] IMRPhenomD: Phenomenological waveform model

The IMRPhenomD model generates gravitational wave signals for merging black hole binaries with non-precessing spins. The waveforms are produced in the frequency domain and include the inspiral, merger and ringdown parts for the dominant spherical harmonic mode of the signal. Part of LALSuite (ascl:2012.021) and also available as an independent code, IMRPhenomD is written in C and is calibrated against data from numerical relativity simulations. A re-implementation of IMRPhenomD in Python, PyIMRPhenomD (ascl:2307.023), is available.

[ascl:2307.018] IMRIpy: Intermediate Mass Ratio Inspirals simulator

IMRIpy simulates an Intermediate Mass Ratio Inspiral (IMRI) by gravitational wave emission with a Dark Matter(DM) halo or a (baryonic) Accretion Disk around the central Intermediate Mass Black Hole(IMBH). It can use different density profiles (such as DM spikes), and different interactions, such as dynamical friction with and without HaloFeedback models or accretion, to produce the simulation.

[ascl:1808.004] ImPlaneIA: Image Plane Approach to Interferometric Analysis

Aperture masking interferometric data analysis involves measuring phases and amplitudes of fringes formed by interference between holes in the pupil mask. These fringe observables can be measured by computing an analytic model of the point spread function and fitting the relevant set of spatial frequencies directly in the image plane, without recourse to numerical Fourier transforms. The ImPlaneIA pipeline converts aperture masking images to fringe observables by fitting fringes in the image plane, calibrates data from a target of interest with one or more point source calibrators, and contains some basic model-fitting routines. The pipeline can accept different mask geometries, instruments, and observing modes.

Would you like to view a random code?