ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:1411.025] SPT Lensing Likelihood: South Pole Telescope CMB lensing likelihood code

The SPT lensing likelihood code, written in Fortran90, performs a Gaussian likelihood based upon the lensing potential power spectrum using a file from CAMB (ascl:1102.026) which contains the normalization required to get the power spectrum that the likelihood call is expecting.

[ascl:1201.013] SPS: SPIRE Photometer Simulator

The SPS software simulates the operation of the Spectral and Photometric Imaging Receiver on-board the ESA’s Herschel Space Observatory. It is coded using the Interactive Data Language (IDL), and produces simulated data at the level-0 stage (non-calibrated data in digitised units). The primary uses for the simulator are to:

  • optimize and characterize the photometer observing functions
  • aid in the development, validation, and characterization of the SPIRE data pipeline
  • provide a realistic example of SPIRE data, and thus to facilitate the development of specific analysis tools for specific science cases.
It should be noted that the SPS is not an officially supported product of the SPIRE ICC, and was originally developed for ICC use only. Consequently the SPS can be supported only on a "best efforts" basis.

[ascl:1806.013] SpS: Single-pulse Searcher

The presence of human-made interference mimicking the behavior of celestial radio pulses is a major challenge when searching for radio pulses emitted on millisecond timescales by celestial radio sources such as pulsars and fast radio bursts due to the highly imbalanced samples. Single-pulse Searcher (SpS) reduces the presence of radio interference when processing standard output from radio single-pulse searches to produce diagnostic plots useful for selecting good candidates. The modular software allows modifications for specific search characteristics. LOTAAS Single-pulse Searcher (L-SpS) is an implementation of different features of the software (such as a machine-learning approach) developed for a particular study: the LOFAR Tied-Array All-Sky Survey (LOTAAS).

[ascl:2309.018] Sprout: Moving mesh finite volume hydro code

The finite volume hydro code Sprout uses a simple expanding Cartesian grid to track outflows for several orders of magnitudes in expansion. It captures shocks whether they are aligned or misaligned with the grid, and provides second-order convergence for smooth flows. The code's expanding mesh capability reduces numerical diffusion drastically for outflows, especially when the analytic nature of the bulk flow is known beforehand. Sprout can be used to study fluid instabilities in expanding flows, such as in SN explosions and jets; it resolves fine fluid structures at small length scales and expand the mesh gradually as the structures grow.

[ascl:2206.028] Spritz: General relativistic magnetohydrodynamic code

The Spritz code is a fully general relativistic magnetohydrodynamic code based on the Einstein Toolkit (ascl:1102.014). The code solves the GRMHD equations in 3D Cartesian coordinates and on a dynamical spacetime. Spritz supports tabulated equations of state, takes finite temperature effects into account and allows for the inclusion of neutrino radiation.

[ascl:1506.008] SPRITE: Sparsity-based super-resolution algorithm

SPRITE (Sparse Recovery of InstrumenTal rEsponse) computes a well-resolved compact source image from several undersampled and noisy observations. The algorithm is based on sparse regularization; adding a sparse penalty in the recovery leads to far better accuracy in terms of ellipticity error, especially at low S/N.

[ascl:1411.015] SPOTROD: Semi-analytic model for transits of spotted stars

SPOTROD is a model for planetary transits of stars with an arbitrary limb darkening law and a number of homogeneous, circular spots on their surface. It facilitates analysis of anomalies due to starspot eclipses, and is a free, open source implementation written in C with a Python API.

[ascl:1809.006] spops: Spinning black-hole binary population synthesis

spops is a database of populations synthesis simulations of spinning black-hole binary systems, together with a python module to query it. Data are obtained with the startrack and precession [ascl:1611.004] numerical codes to consistently evolve binary stars from formation to gravitational-wave detection. spops allows quick exploration of the interplay between stellar physics and black-hole spin dynamics.

[ascl:1103.005] Splotch: Ray Tracer to Visualize SPH Simulations

Splotch is a light and fast, publicly available, ray-tracer software tool which supports the effective visualization of cosmological simulations data. The algorithm it relies on is designed to deal with point-like data, optimizing the ray-tracing calculation by ordering the particles as a function of their 'depth', defined as a function of one of the coordinates or other associated parameters. Realistic three-dimensional impressions are reached through a composition of the final colour in each pixel properly calculating emission and absorption of individual volume elements.

[ascl:1402.007] SPLAT: Spectral Analysis Tool

SPLAT is a graphical tool for displaying, comparing, modifying and analyzing astronomical spectra stored in NDF, FITS and TEXT files as well as in NDX format. It can read in many spectra at the same time and then display these as line plots. Display windows can show one or several spectra at the same time and can be interactively zoomed and scrolled, centered on specific wavelengths, provide continuous coordinate readout, produce printable hardcopy and be configured in many ways. Analysis facilities include the fitting of a polynomial to selected parts of a spectrum, the fitting of Gaussian, Lorentzian and Voigt profiles to emission and absorption lines and the filtering of spectra using average, median and line-shape window functions as well as wavelet denoising. SPLAT also supports a full range of coordinate systems for spectra, which allows coordinates to be displayed and aligned in many different coordinate systems (wavelength, frequency, energy, velocity) and transformed between these and different standards of rest (topocentric, heliocentric, dynamic and kinematic local standards of rest, etc). SPLAT is distributed as part of the Starlink (ascl:1110.012) software collection.

[ascl:1402.008] SPLAT-VO: Spectral Analysis Tool for the Virtual Observatory

SPLAT-VO is an extension of the SPLAT (Spectral Analysis Tool, ascl:1402.007) graphical tool for displaying, comparing, modifying and analyzing astronomical spectra; it includes facilities that allow it to work as part of the Virtual Observatory (VO). SPLAT-VO comes in two different forms, one for querying and downloading spectra from SSAP servers and one for interoperating with VO tools, such as TOPCAT (ascl:1101.010).

[ascl:1103.004] SPLASH: Interactive Visualization Tool for Smoothed Particle Hydrodynamics Simulations

SPLASH (formerly SUPERSPHPLOT) visualizes output from (astrophysical) simulations using the Smoothed Particle Hydrodynamics (SPH) method in one, two and three dimensions. Written in Fortran 90, it uses the PGPLOT graphics subroutine library for plotting. It is based around a command-line menu structure but utilizes the interactive capabilities of PGPLOT to manipulate data interactively in the plotting window. SPLASH is fully interactive; visualizations can be changed rapidly at the touch of a button (e.g. zooming, rotating, shifting cross section positions etc). Data is read directly from the code dump format giving rapid access to results and the visualization is advanced forwards and backwards through timesteps by single keystrokes. SPLASH uses the SPH kernel to render plots of not only density but other physical quantities, giving a smooth representation of the data.

[ascl:2006.016] SPISEA: Stellar Population Interface for Stellar Evolution and Atmospheres

SPISEA (Stellar Population Interface for Stellar Evolution and Atmospheres) generates single-age, single-metallicity populations (i.e., star clusters). The software (formerly called PyPopStar) provides control over different parameters, including cluster characteristics (age, metallicity, mass, distance); total extinction, differential extinction, and extinction law; stellar evolution and atmosphere models; stellar multiplicity and Initial Mass Function; and photometric filters. SPISEA can be used to create a cluster isochrone in many filters using different stellar models, generate a star cluster at any age with an unusual IMF and unresolved multiplicity, and make a spectrum of a star cluster in integrated light.

[ascl:1512.015] Spirality: Spiral arm pitch angle measurement

Spirality measures spiral arm pitch angles by fitting galaxy images to spiral templates of known pitch. Written in MATLAB, the code package also includes GenSpiral, which produces FITS images of synthetic spirals, and SpiralArmCount, which uses a one-dimensional Fast Fourier Transform to count the spiral arms of a galaxy after its pitch is determined.

[ascl:1710.004] SPIPS: Spectro-Photo-Interferometry of Pulsating Stars

SPIPS (Spectro-Photo-Interferometry of Pulsating Stars) combines radial velocimetry, interferometry, and photometry to estimate physical parameters of pulsating stars, including presence of infrared excess, color excess, Teff, and ratio distance/p-factor. The global model-based parallax-of-pulsation method is implemented in Python. Derived parameters have a high level of confidence; statistical precision is improved (compared to other methods) due to the large number of data taken into account, accuracy is improved by using consistent physical modeling and reliability of the derived parameters is strengthened by redundancy in the data.

[ascl:2206.014] SpinSpotter: Stellar rotation periods from high-cadence photometry calculator

SpinSpotter calculates stellar rotation periods from high-cadence photometry. The code uses the autocorrelation function (ACF) to identify stellar rotation periods up to one-third the observational baseline of the data. SpinSpotter includes diagnostic tools that describe features in the ACF and allows tuning of the tolerance with which to accept a period detection.

[ascl:2210.002] SPINspiral: Parameter estimation for analyzing gravitational-wave signals

SPINspiral analyzes gravitational-wave signals from stellar-mass binary inspirals detected by ground-based interferometers such as LIGO and Virgo. It performs parameter estimation on these signals using Markov-chain Monte-Carlo (MCMC) techniques. This analysis includes the spins of the binary components. Written in C, the package is modular; its main routine is as small as possible and calls other routines, which perform tasks such as reading input, choosing and setting (starting or injection) parameters, and handling noise. Other routines compute overlaps and likelihoods, contain the MCMC core, and manage more general support functions and third-party routines.

[ascl:2303.010] spinsfast: Fast and exact spin-s spherical harmonic transforms

spinsfast is a fast spin-s spherical harmonic transform algorithm, which is flexible and exact for band-limited functions. It permits the computation of several distinct spin transforms simultaneously. Specifically, only one set of special functions is computed for transforms of quantities with any spin, namely the Wigner d matrices evaluated at π/2, which may be computed with efficient recursions. For any spin, the computation scales as O(L^3), where L is the band limit of the function.

[ascl:2009.006] SPInS: Stellar Parameters INferred Systematically

SPInS (Stellar Parameters INferred Systematically) provides the age, mass, and radius of a star, among other parameters, from a set of photometric, spectroscopic, interferometric, and/or asteroseismic observational constraints; it also generates error bars and correlations. Derived from AIMS (ascl:1611.014), it relies on a stellar model grid and uses a Bayesian approach to find the PDF of stellar parameters from a set of classical constraints. The heart of SPInS is a MCMC solver coupled with interpolation within a pre-computed stellar model grid. The code can consider priors such as the IMF or SFR and can characterize single stars or coeval stars, such as members of binary systems or of stellar clusters.

[ascl:2102.001] spinOS: SPectroscopic and INterferometric Orbital Solution finder

spinOS calculates binary orbital elements. Given a set of radial velocity measurements of a spectroscopic binary and/or relative position measurement of an astrometric binary, spinOS fits an orbital model by minimizing a chi squared metric. These routines are neatly packaged in a graphical user interface, developed using tkinter, facilitating use. Minimization is achieved by default using a Levenberg-Marquardt algorithm from lmfit [ascl:1606.014]. A Markov Chain Monte Carlo option is available to sample the posterior probability distribution in order to estimate errors on the orbital elements.

[ascl:1608.020] SPIDERz: SuPport vector classification for IDEntifying Redshifts

SPIDERz (SuPport vector classification for IDEntifying Redshifts) applies powerful support vector machine (SVM) optimization and statistical learning techniques to custom data sets to obtain accurate photometric redshift (photo-z) estimations. It is written for the IDL environment and can be applied to traditional data sets consisting of photometric band magnitudes, or alternatively to data sets with additional galaxy parameters (such as shape information) to investigate potential correlations between the extra galaxy parameters and redshift.

[ascl:1711.019] SPIDERMAN: Fast code to simulate secondary transits and phase curves

SPIDERMAN calculates exoplanet phase curves and secondary eclipses with arbitrary surface brightness distributions in two dimensions. The code uses a geometrical algorithm to solve exactly the area of sections of the disc of the planet that are occulted by the star. Approximately 1000 models can be generated per second in typical use, which makes making Markov Chain Monte Carlo analyses practicable. The code is modular and allows comparison of the effect of multiple different brightness distributions for a dataset.

[ascl:1903.016] SpiceyPy: Python wrapper for the NAIF C SPICE Toolkit

SpiceyPy is a Python wrapper for the NAIF C SPICE Toolkit (ascl:1903.015). It is compatible with Python 2 and 3, and was written using ctypes.

[ascl:1903.015] SPICE: Observation Geometry System for Space Science Missions

The SPICE (Spacecraft Planet Instrument C-matrix [“Camera matrix”] Events) toolkit offers a set of building blocks for constructing tools supporting multi-mission, international space exploration programs and research in planetary science, heliophysics, Earth science, and for observations from terrestrial observatories. It computes many kinds of observation geometry parameters, including the ephemerides, orientations, sizes, and shapes of planets, satellites, comets and asteroids. It can also compute the orientation of a spacecraft, its various moving structures, and an instrument's field-of-view location on a planet's surface or atmosphere. It can determine when a specified geometric event occurs, such as when an object is in shadow or is in transit across another object. The SPICE toolkit is available in FORTRAN 77, ANSI C, IDL, and MATLAB.

[ascl:1709.001] SPHYNX: SPH hydrocode for subsonic hydrodynamical instabilities and strong shocks

SPHYNX addresses subsonic hydrodynamical instabilities and strong shocks; it is Newtonian, grounded on the Euler-Lagrange formulation of the smoothed-particle hydrodynamics technique, and density based. SPHYNX uses an integral approach for estimating gradients, a flexible family of interpolators to suppress pairing instability, and incorporates volume elements to provides better partition of the unity.

[ascl:1103.009] SPHRAY: A Smoothed Particle Hydrodynamics Ray Tracer for Radiative Transfer

SPHRAY, a Smoothed Particle Hydrodynamics (SPH) ray tracer, is designed to solve the 3D, time dependent, radiative transfer (RT) equations for arbitrary density fields. The SPH nature of SPHRAY makes the incorporation of separate hydrodynamics and gravity solvers very natural. SPHRAY relies on a Monte Carlo (MC) ray tracing scheme that does not interpolate the SPH particles onto a grid but instead integrates directly through the SPH kernels. Given initial conditions and a description of the sources of ionizing radiation, the code will calculate the non-equilibrium ionization state (HI, HII, HeI, HeII, HeIII, e) and temperature (internal energy/entropy) of each SPH particle. The sources of radiation can include point like objects, diffuse recombination radiation, and a background field from outside the computational volume. The MC ray tracing implementation allows for the quick introduction of new physics and is parallelization friendly. A quick Axis Aligned Bounding Box (AABB) test taken from computer graphics applications allows for the acceleration of the raytracing component. We present the algorithms used in SPHRAY and verify the code by performing all the test problems detailed in the recent Radiative Transfer Comparison Project of Iliev et. al. The Fortran 90 source code for SPHRAY and example SPH density fields are made available online.

[ascl:1502.012] SPHGR: Smoothed-Particle Hydrodynamics Galaxy Reduction

SPHGR (Smoothed-Particle Hydrodynamics Galaxy Reduction) is a python based open-source framework for analyzing smoothed-particle hydrodynamic simulations. Its basic form can run a baryonic group finder to identify galaxies and a halo finder to identify dark matter halos; it can also assign said galaxies to their respective halos, calculate halo & galaxy global properties, and iterate through previous time steps to identify the most-massive progenitors of each halo and galaxy. Data about each individual halo and galaxy is collated and easy to access.

SPHGR supports a wide range of simulations types including N-body, full cosmological volumes, and zoom-in runs. Support for multiple SPH code outputs is provided by pyGadgetReader (ascl:1411.001), mainly Gadget (ascl:0003.001) and TIPSY (ascl:1111.015).

[ascl:1311.005] Spheroid: Electromagnetic Scattering by Spheroids

Spheroid determines the size distribution of polarizing interstellar dust grains based on electromagnetic scattering by spheroidal particles. It contains subroutines to treat the case of complex refractive indices, and also includes checks for some limiting cases.

[ascl:1309.004] Spherical: Geometry operations and searches on spherical surfaces

The Spherical Library provides an efficient and accurate mathematical representation of shapes on the celestial sphere, such as sky coverage and footprints. Shapes of arbitrary complexity and size can be dynamically created from simple building blocks, whose exact area is also analytically computed. This methodology is also perfectly suited for censoring problematic parts of datasets, e.g., bad seeing, satellite trails or diffraction spikes of bright stars.

[ascl:2406.008] sphereint: Integrate data on a grid within a sphere

sphereint calculates the numerical volume in a sphere. It provides a weight for each grid position based on whether or not it is in (weight = 1), out (weight = 0), or partially in (weight in between 0 and 1) a sphere of a given radius. A cubic cell is placed around each grid position and the volume of the cell in the sphere (assuming a flat surface in the cell) is calculated and normalized by the cell volume to obtain the weight.

[ascl:1806.023] Spheral++: Coupled hydrodynamical and gravitational numerical simulations

Spheral++ provides a steerable parallel environment for performing coupled hydrodynamical and gravitational numerical simulations. Hydrodynamics and gravity are modeled using particle-based methods (SPH and N-Body). It uses an Adaptive Smoothed Particle Hydrodynamics (ASPH) algorithm, provides a total energy conserving compatible hydro mode, and performs fluid and solid material modeling and damage and fracture modeling in solids.

[ascl:2105.007] SpheCow: Galaxy and dark matter halo dynamical properties

SpheCow explores the structure and dynamics of any spherical model for galaxies and dark matter haloes. The lightweight and flexible code automatically calculates the dynamical properties, assuming an isotropic or Osipkov-Merritt anisotropic orbital structure, of any model with either an analytical density profile or an analytical surface density profile as a starting point. SpheCow contains readily usable implementations for many standard models, including the Plummer, Hernquist, NFW, Einasto, Sérsic and Nuker models. The code is easily extendable, allowing new models to be added in a straightforward way. The code is publicly available as a set of C++ routines and as a Python module.

[ascl:9912.001] SPH_1D: Hierarchical gravity/SPH treecode for simulations of interacting galaxies

We describe a fast tree algorithm for gravitational N-body simulation on SIMD parallel computers. The tree construction uses fast, parallel sorts. The sorted lists are recursively divided along their x, y and z coordinates. This data structure is a completely balanced tree (i.e., each particle is paired with exactly one other particle) and maintains good spatial locality. An implementation of this tree-building algorithm on a 16k processor Maspar MP-1 performs well and constitutes only a small fraction (approximately 15%) of the entire cycle of finding the accelerations. Each node in the tree is treated as a monopole. The tree search and the summation of accelerations also perform well. During the tree search, node data that is needed from another processor is simply fetched. Roughly 55% of the tree search time is spent in communications between processors. We apply the code to two problems of astrophysical interest. The first is a simulation of the close passage of two gravitationally, interacting, disk galaxies using 65,636 particles. We also simulate the formation of structure in an expanding, model universe using 1,048,576 particles. Our code attains speeds comparable to one head of a Cray Y-MP, so single instruction, multiple data (SIMD) type computers can be used for these simulations. The cost/performance ratio for SIMD machines like the Maspar MP-1 make them an extremely attractive alternative to either vector processors or large multiple instruction, multiple data (MIMD) type parallel computers. With further optimizations (e.g., more careful load balancing), speeds in excess of today's vector processing computers should be possible.

[ascl:1404.017] Spextool: Spectral EXtraction tool

Spextool (Spectral EXtraction tool) is an IDL-based data reduction package for SpeX, a medium resolution near-infrared spectrograph on the NASA IRTF. It performs all of the steps necessary to produce spectra ready for analysis and publication including non-linearity corrections, flat fielding, wavelength calibration, telluric correction, flux calibration, and order merging.

[ascl:2007.017] SPEX: Spectral Executive

SPEX provides a uniform interface suitable for the X-ray spectral analysis of a number of solar (or other) instruments in the X and Gamma Ray energy ranges. Part of the SolarSoft (ascl:1208.013) library, this package is suitable for any datastream which can be placed in the form of response vs interval where the response is usually a counting rate (spectrum) and the interval is normally an accumulation over time. Together with an algorithm which can be used to relate a model input spectrum to the observed response, generally a response matrix, the dataset is amenable to analysis with this package. Currently the data from a large number of instruments, including SMM (HXRBS, GRS Gamma, GRS X1, and GRS X2), Yohkoh (HXT, HXS, GRS, and SXT,) CGRO (BATSE SPEC and BATSE LAD), WIND (TGRS), HIREX, and NEAR (PIN). SPEX's next generation software is available in OSPEX (ascl:2007.018), an object-oriented package that is also part of and dependent on SolarSoft.

[ascl:1308.014] SPEX: High-resolution cosmic X-ray spectra analysis

SPEX is optimized for the analysis and interpretation of high-resolution cosmic X-ray spectra. The software is especially suited for fitting spectra obtained by current X-ray observatories like XMM-Newton, Chandra, and Suzaku. SPEX can fit multiple spectra with different model components simultaneously and handles highly complex models with many free parameters.

[ascl:2007.004] spex_to_xspec: Convert SPEX output to XSPEC input

spex_to_xspec takes the output from the collisional ionisation equilibrium model in the SPEX spectral modelling and fitting package (ascl:1308.014), and converts it into a form usable by the XSPEC spectral fitting package (ascl:9910.005). For a list of temperatures it computes the line strengths and continuum spectra using SPEX. These are collated and written into an APEC-format table model which can be loaded into Xspec. By allowing SPEX models to be loaded into XSPEC, the program allows easy comparison between the results of the SPEX and APEC codes.

[ascl:2212.026] Spender: Neural spectrum encoder and decoder

Spender establishes a restframe for galaxy spectra that has higher resolution and larger wavelength range than the spectra from which it is trained. The model can be trained from spectra at different redshifts or even from different instruments without the need to standardize the observations. Spender also has an explicit, differentiable redshift dependence, which can be coupled with a redshift estimator for a fully data-driven spectrum analysis pipeline. The code describes the restframe spectrum by an autoencoder and transforms the restframe model to the observed redshift; it also matches the spectral resolution and line spread function of the instrument.

[ascl:1807.014] SPEGID: Single-Pulse Event Group IDentification

SPEGID (Single-Pulse Event Group IDentification) identifies astrophysical pulse candidates as trial single-pulse event groups (SPEGs) by first applying Density Based Spatial Clustering of Applications with Noise (DBSCAN) on trial single-pulse events and then merging the clusters that fall within the expected DM (Dispersion Measure) and time span of astrophysical pulses. SPEGID also calculates the peak score for each SPEG in the S/N versus DM space to identify the expected peak-like shape in the signal-to-noise (S/N) ratio versus DM curve of astrophysical pulses. Additionally, SPEGID groups SPEGs that appear at a consistent DM and therefore are likely emitted from the same source. After running SPEGID, periocity.py can be used to find (or verify) the underlying periodicity among a group of SPEGs (i.e., astrophysical pulse candidates).

[ascl:2405.001] SPEDAS: Space Physics Environment Data Analysis System

The SPEDAS (Space Physics Environment Data Analysis Software) framework supports multi-mission data ingestion, analysis and visualization for the Space Physics community. It standardizes the retrieval of data from distributed repositories, the scientific processing with a powerful set of legacy routines, the quick visualization with full output control and the graph creation for use in papers and presentations. SPEDAS includes a GUI for ease of use by novice users, works on multiple platforms, and though based on IDL, can be used with or without an IDL license. The framework supports plugin modules for multiple projects such as THEMIS, MMS, and WIND, and provides interfaces for software modules developed by the individual teams of those missions. A Python implementation of the framework, PySPEDAS (ascl:2405.005), is also available.

[ascl:1310.008] SPECX: Spectral Line Data Reduction Package

SPECX is a general purpose line data reduction system. It can read and write FITS data cubes but has specialist support for the GSD format data from the James Clerk Maxwell Telescope. It includes commands to store and retrieve intermediate spectra in storage registers and perform the fitting and removal of polynomial, harmonic and Gaussian baselines.

SPECX can filter and edit spectra and list and display spectra on a graphics terminal. It is able to perform Fourier transform and power spectrum calculations, process up to eight spectra (quadrants) simultaneously with either the same or different center, and assemble a number of reduced individual spectra into a map file and contour or greyscale any plane or planes of the resulting cube.

Two versions of SPECX are distributed. Version 6.x is the VMS and Unix version and is distributed as part of the Starlink software collection. Version 7.x is a complete rewrite of SPECX distributed for Windows.

[ascl:1902.011] SpecViz: 1D Spectral Visualization Tool

SpecViz interactively visualizes and analyzes 1D astronomical spectra. It reads data from FITS and ASCII tables and allows spectra to be easily plotted and examined. It supports instrument-specific data quality handling, flexible spectral units conversions, custom plotting attributes, plot annotations, tiled plots, among other features. SpecViz includes a measurement tool for spectral lines for performing and recording measurements and a model fitting capability for creating simple (e.g., single Gaussian) or multi-component models (e.g., multiple Gaussians for emission and absorption lines in addition to regions of flat continua). SpecViz is built on top of the Specutils (ascl:1902.012) Astropy-affiliated python library, providing a visual, interactive interface to the analysis capabilities in that library.

The functionality of SpecViz is now actively developed as part of Jdaviz (ascl:2307.001).

[ascl:1210.016] Specview: 1-D spectral visualization and analysis of astronomical spectrograms

Specview is a tool for 1-D spectral visualization and analysis of astronomical spectrograms. Written in Java, it is capable of reading all the Hubble Space Telescope spectral data formats as well as data from several other instruments (such as IUE, FUSE, ISO, FORS and SDSS), preview spectra from MAST, and data from generic FITS and ASCII tables. It can read data from Virtual Observatory servers, and read and write spectrogram data in Virtual Observatory SED format. It can also read files in the SPC Galactic format used in the chemistry field. Once ingested, data can be plotted and examined with a large selection of custom settings. Specview supports instrument-specific data quality handling, flexible spectral units conversions, custom plotting attributes, plot annotations, tiled plots, hardcopy to JPEG files and PostScript file or printer, etc. Specview can be used to build wide-band SEDs, overplotting or combining data from the same astronomical source taken with different instruments and/or spectral bands. Data can be further processed with averaging, splicing, detrending, and Fourier filtering tools. Specview has a spectral model fitting capability that enables the user to work with multi-component models (including user-defined models) and fit models to data.

[ascl:1902.012] Specutils: Spectroscopic analysis and reduction

Specutils provides a basic interface for the loading, manipulation, and common forms of analysis of spectroscopic data. Its generic data containers and accompanying modules can be used to build a particular scientific workflow or higher-level analysis tool. It is an AstroPy (ascl:1304.002) affiliated package, and SpecViz (ascl:1902.011), which is built on top of Specutils, provides a visual, interactive interface to its analysis capabilities.

[ascl:2412.013] Spectuner: Automated line identification of interstellar molecules

Spectuner identifies spectral lines of interstellar molecules automatically. The code uses XCLASS (ascl:1810.016) for the spectral line model and SciPy for the peak finder. Spectral fitting is performed using article swarm optimization and the peak matching loss function. From frequency in a unit of MHz and temperature in a unit of K, Spectuner returns the combined spectrum, identification of the combined spectrum, and the identification of all candidates.

[ascl:9910.002] SPECTRUM: A stellar spectral synthesis program

SPECTRUM ((C) Richard O. Gray, 1992-2008) is a stellar spectral synthesis program which runs on a number of platforms, including most flavors of UNIX and LINUX. It will also run under Windwos 9x/ME/NT/2000/XP using the Cygwin tools or the distributed Windows binaries. The code for SPECTRUM has been written in the "C" language. SPECTRUM computes the LTE synthetic spectrum given a stellar atmosphere model. SPECTRUM can use as input the fully blanketed stellar atmosphere models of Robert Kurucz including the new models of Castelli and Kurucz, but any other stellar atmosphere model which can be cast into the format of Kurucz's models can be used as well. SPECTRUM can be programmed with "command-line switches" to give a number of different outputs. In the default mode, SPECTRUM computes the stellar-disk-integrated normalized-intensity spectrum, but in addition, SPECTRUM will compute the absolute monochromatic flux from the stellar atmosphere or the specific intensity from any point on the stellar surface.

[submitted] Spectroscopic Analysis of O and B-Type Stars, Neutron Stars, and White Dwarfs Using SDSS Data and Astroquery

This project presents a comprehensive spectroscopic analysis of O and B-type stars, neutron stars, and white dwarfs, with a focus on the detection of helium (He) and oxygen (O) in stellar atmospheres. By leveraging data from the Sloan Digital Sky Survey (SDSS) and utilizing tools such as Astropy, Astroquery, and Specutils, the project aims to identify key spectral lines of helium and oxygen, as well as the formation of heliox (OHe) molecules. The methodology involves querying SDSS for relevant spectral data, filtering and analyzing it based on stellar classification, and visualizing the results using advanced techniques. The findings contribute to the understanding of stellar evolution, chemical processes, and the role of these elements in various stellar classes. Additionally, the project incorporates interactive data exploration with Aladin Lite and Simbad, offering a robust framework for future astrophysical research.

[submitted] spectrogrism

This module implements an ad-hoc grism-based spectrograph optical model. It provides a flexible chromatic mapping between the input focal plane and the output detector plane, based on an effective simplified ray-tracing model of the key optical elements defining the spectrograph (collimator, prism, grating, camera), described by a restricted number of physically-motivated distortion parameters.

[ascl:2411.014] spectroflat: Generic Python calibration library for spectro-polarimetric data

Spectroflat flat fields spectro-polarimetric data. It can be plugged into existing Python-based data reduction pipelines or used as a standalone calibration and performance analysis tool. The code includes smile distortion correction and flat field extraction. The library expects the spatial domain on the vertical-axis and the spectral domain on the horizontal axis. Spectroflat does not include any file reading/writing routines and expects numpy arrays as input.

[ascl:2104.019] SpectRes: Simple spectral resampling

SpectRes efficiently resamples spectra and their associated uncertainties onto an arbitrary wavelength grid. The Python function works with any grid of wavelength values, including non-uniform sampling, and preserves the integrated flux. This may be of use for binning data to increase the signal to noise ratio, obtaining synthetic photometry, or resampling model spectra to match the sampling of observational data.

Would you like to view a random code?