[ascl:1102.005]
MRLENS: Multi-Resolution methods for gravitational LENSing

The MRLENS package offers a new method for the reconstruction of weak lensing mass maps. It uses the multiscale entropy concept, which is based on wavelets, and the False Discovery Rate which allows us to derive robust detection levels in wavelet space. We show that this new restoration approach outperforms several standard techniques currently used for weak shear mass reconstruction. This method can also be used to separate E and B modes in the shear field, and thus test for the presence of residual systematic effects. We concentrate on large blind cosmic shear surveys, and illustrate our results using simulated shear maps derived from N-Body Lambda-CDM simulations with added noise corresponding to both ground-based and space-based observations.

[ascl:1802.015]
mrpy: Renormalized generalized gamma distribution for HMF and galaxy ensemble properties comparisons

mrpy calculates the MRP parameterization of the Halo Mass Function. It calculates basic statistics of the truncated generalized gamma distribution (TGGD) with the TGGD class, including mean, mode, variance, skewness, pdf, and cdf. It generates MRP quantities with the MRP class, such as differential number counts and cumulative number counts, and offers various methods for generating normalizations. It can generate the MRP-based halo mass function as a function of physical parameters via the mrp_b13 function, and fit MRP parameters to data in the form of arbitrary curves and in the form of a sample of variates with the SimFit class. mrpy also calculates analytic hessians and jacobians at any point, and allows the user to alternate parameterizations of the same form via the reparameterize module.

[ascl:1504.016]
MRrelation: Posterior predictive mass distribution

MRrelation calculates the posterior predictive mass distribution for an individual planet. The probabilistic mass-radius relationship (M-R relation) is evaluated within a Bayesian framework, which both quantifies this intrinsic dispersion and the uncertainties on the M-R relation parameters.

[ascl:1112.010]
MRS3D: 3D Spherical Wavelet Transform on the Sphere

Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. We present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We tested the 3D wavelet transform and as a toy-application, applied a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and found we can successfully remove noise without much loss to the large scale structure. The new spherical 3D isotropic wavelet transform, called MRS3D, is ideally suited to analysing and denoising future 3D spherical cosmological surveys; it uses a novel discrete spherical Fourier-Bessel Transform. MRS3D is based on two packages, IDL and Healpix and can be used only if these two packages have been installed.

[ascl:1709.007]
MSSC: Multi-Source Self-Calibration

Multi-Source Self-Calibration (MSSC) provides direction-dependent calibration to standard phase referencing. The code combines multiple faint sources detected within the primary beam to derive phase corrections. Each source has its CLEAN model divided into the visibilities which results in multiple point sources that are stacked in the uv plane to increase the S/N, thus permitting self-calibration. This process applies only to wide-field VLBI data sets that detect and image multiple sources within one epoch.

[ascl:1701.006]
MSWAVEF: Momentum-Space Wavefunctions

MSWAVEF calculates hydrogenic and non-hydrogenic momentum-space electronic wavefunctions. Such wavefunctions are often required to calculate various collision processes, such as excitation and line broadening cross sections. The hydrogenic functions are calculated using the standard analytical expressions. The non-hydrogenic functions are calculated within quantum defect theory according to the method of Hoang Binh and van Regemorter (1997). Required Hankel transforms have been determined analytically for angular momentum quantum numbers ranging from zero to 13 using Mathematica. Calculations for higher angular momentum quantum numbers are possible, but slow (since calculated numerically). The code is written in IDL.

[ascl:1710.011]
mTransport: Two-point-correlation function calculator

mTransport computes the 2-point-correlation function of the curvature and tensor perturbations in multifield models of inflation in the presence of a curved field space. It is a Mathematica implementation of the transport method which encompasses scenarios with violations of slow-roll conditions and turns of the trajectory in field space. It can be used for an arbitrary mass spectrum, including massive modes, particle production and models with quasi-single-field dynamics.

[submitted]
muLAn (MICROlensing Analysis software): a public software to model gravitational microlensing events

muLAn is a Python modeling software developed to analyze and fit light curves of gravitational microlensing events. The software has been designed to be easy to use even for the newcomer in microlensing, thanks to external, synthetic and self-explanatory setup files containing all important commands and option settings. The user may choose to launch the code through command line instructions, or to import muLAn within another Python project like any standard Python package. It also comes with many useful routines (export publication-quality figures, data formatting and cleaning) and state-of-the-art statistical tools. The result of the modeling can be interpreted using an interactive html page which contains all information about the light curve model, caustics, source trajectory, best-fit parameters and chi-square. Parameters uncertainties and statistical properties (such as multi-modal features of the posterior density) can be assessed from correlation plots. The code includes all classical microlensing models (single and binary microlenses, ground- and space-based parallax effects, orbital motion, finite-source effects, limb-darkening, etc.) which can be combined into several time intervals of the analyzed light curve. Minimization methods include an Affine-Invariant Ensemble Sampler to generate a multivariate proposal function while running several Markov Chain Monte Carlo (MCMC) chains, for the set of parameters which is chosen to be fit; non-fitting parameters can be either kept fixed or set on a grid defined by the user. Furthermore, the software offers a model-free option to align all data sets together and allows to inspect the light curve before any modeling work. The code is modular: users can add their own model's computation or minimization routines by directly adding their Python files without modifying the main code. This flexibility aims to offer a valuable framework to develop automated open-source microlensing modeling codes.

[ascl:1803.006]
MulensModel: Microlensing light curves modeling

MulensModel calculates light curves of microlensing events. Both single and binary lens events are modeled and various higher-order effects can be included: extended source (with limb-darkening), annual microlensing parallax, and satellite microlensing parallax. The code is object-oriented and written in Python3, and requires AstroPy (ascl:1304.002).

[ascl:1506.004]
multiband_LS: Multiband Lomb-Scargle Periodograms

The multiband periodogram is a general extension of the well-known Lomb-Scargle approach for detecting periodic signals in time-domain data. In addition to advantages of the Lomb-Scargle method such as treatment of non-uniform sampling and heteroscedastic errors, the multiband periodogram significantly improves period finding for randomly sampled multiband light curves (e.g., Pan-STARRS, DES and LSST). The light curves in each band are modeled as arbitrary truncated Fourier series, with the period and phase shared across all bands.

[ascl:1109.006]
MultiNest: Efficient and Robust Bayesian Inference

We present further development and the first public release of our multimodal nested sampling algorithm, called MultiNest. This Bayesian inference tool calculates the evidence, with an associated error estimate, and produces posterior samples from distributions that may contain multiple modes and pronounced (curving) degeneracies in high dimensions. The developments presented here lead to further substantial improvements in sampling efficiency and robustness, as compared to the original algorithm presented in Feroz & Hobson (2008), which itself significantly outperformed existing MCMC techniques in a wide range of astrophysical inference problems. The accuracy and economy of the MultiNest algorithm is demonstrated by application to two toy problems and to a cosmological inference problem focusing on the extension of the vanilla $Lambda$CDM model to include spatial curvature and a varying equation of state for dark energy. The MultiNest software is fully parallelized using MPI and includes an interface to CosmoMC. It will also be released as part of the SuperBayeS package, for the analysis of supersymmetric theories of particle physics, at this http URL.

[ascl:1109.008]
Multipole Vectors: Decomposing Functions on a Sphere

We propose a novel representation of cosmic microwave anisotropy maps, where each multipole order l is represented by l unit vectors pointing in directions on the sky and an overall magnitude. These "multipole vectors and scalars" transform as vectors under rotations. Like the usual spherical harmonics, multipole vectors form an irreducible representation of the proper rotation group SO(3). However, they are related to the familiar spherical harmonic coefficients, alm, in a nonlinear way, and are therefore sensitive to different aspects of the CMB anisotropy. Nevertheless, it is straightforward to determine the multipole vectors for a given CMB map and we present an algorithm to compute them. Using the WMAP full-sky maps, we perform several tests of the hypothesis that the CMB anisotropy is statistically isotropic and Gaussian random. We find that the result from comparing the oriented area of planes defined by these vectors between multipole pairs 2<=l1!=l2<=8 is inconsistent with the isotropic Gaussian hypothesis at the 99.4% level for the ILC map and at 98.9% level for the cleaned map of Tegmark et al. A particular correlation is suggested between the l=3 and l=8 multipoles, as well as several other pairs. This effect is entirely different from the now familiar planarity and alignment of the quadrupole and octupole: while the aforementioned is fairly unlikely, the multipole vectors indicate correlations not expected in Gaussian random skies that make them unusually likely. The result persists after accounting for pixel noise and after assuming a residual 10% dust contamination in the cleaned WMAP map. While the definitive analysis of these results will require more work, we hope that multipole vectors will become a valuable tool for various cosmological tests, in particular those of cosmic isotropy.

[ascl:1704.014]
Multipoles: Potential gain for binary lens estimation

Multipoles, written in Python, calculates the quadrupole and hexadecapole approximations of the finite-source magnification: quadrupole (Wk,rho,Gamma) and hexadecapole (Wk,rho,Gamma). The code is efficient and faster than previously available methods, and could be generalized for use on large portions of the light curves.

[ascl:1402.006]
Munipack: General astronomical image processing software

Munipack provides easy-to-use tools for all astronomical astrometry and photometry, access to Virtual Observatory as well as FITS files operations and a simple user interface along with a powerful processing engine. Its many features include a FITS images viewer that allows for basic (astronomical) operations with frames, advanced image processor supporting an infinite dynamic range and advanced color management, and astrometric calibration of images. The astrometry module uses robust statistical estimators and algorithms. The photometry module provides the classical method detection of stars and implements the aperture photometry, calibrated on the basis of photon statistics, and allows for the automatic detection and aperture photometry of stars; calibration on absolute fluxes is possible. The software also provides a standard way to correct for all the bias, dark and flat-field frames, and many other features.

[ascl:1605.007]
MUSCLE: MUltiscale Spherical-ColLapse Evolution

MUSCLE (MUltiscale Spherical ColLapse Evolution) produces low-redshift approximate N-body realizations accurate to few-Megaparsec scales. It applies a spherical-collapse prescription on multiple Gaussian-smoothed scales. It achieves higher accuracy than perturbative schemes (Zel'dovich and second-order Lagrangian perturbation theory - 2LPT), and by including the void-in-cloud process (voids in large-scale collapsing regions), solves problems with a single-scale spherical-collapse scheme.

[ascl:1610.004]
MUSE-DRP: MUSE Data Reduction Pipeline

The MUSE pipeline turns the complex raw data of the MUSE integral field spectrograph into a ready-to-use datacube for scientific analysis.

[ascl:1311.011]
MUSIC: MUlti-Scale Initial Conditions

MUSIC generates multi-scale initial conditions with multiple levels of refinements for cosmological ‘zoom-in’ simulations. The code uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). MUSIC achieves rms relative errors of the order of 10−4 for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier space-induced interference ringing.

[ascl:1203.009]
MYRIAD: N-body code for simulations of star clusters

MYRIAD is a C++ code for collisional N-body simulations of star clusters. The code uses the Hermite fourth-order scheme with block time steps, for advancing the particles in time, while the forces and neighboring particles are computed using the GRAPE-6 board. Special treatment is used for close encounters, binary and multiple sub-systems that either form dynamically or exist in the initial configuration. The structure of the code is modular and allows the appropriate treatment of more physical phenomena, such as stellar and binary evolution, stellar collisions and evolution of close black-hole binaries. Moreover, it can be easily modified so that the part of the code that uses GRAPE-6 could be replaced by another module that uses other accelerating-hardware like the Graphics Processing Units (GPUs). Appropriate choice of the free parameters give a good accuracy and speed for simulations of star clusters up to and beyond core collapse. The code accuracy becomes comparable and even better than the accuracy of existing codes when a number of close binary systems is dynamically created in a simulation; this is due to the high accuracy of the method that is used for close binary and multiple sub-systems. The code can be used for evolving star clusters containing equal-mass stars or star clusters with an initial mass function (IMF) containing an intermediate mass black hole (IMBH) at the center and/or a fraction of primordial binaries, which are systems of particular astrophysical interest.

[ascl:1102.001]
N-MODY: A Code for Collisionless N-body Simulations in Modified Newtonian Dynamics

N-MODY is a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.

[ascl:1411.014]
NAFE: Noise Adaptive Fuzzy Equalization

NAFE (Noise Adaptive Fuzzy Equalization) is an image processing method allowing for visualization of fine structures in SDO AIA high dynamic range images. It produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform.

[ascl:1409.009]
Nahoon: Time-dependent gas-phase chemical model

Nahoon is a gas-phase chemical model that computes the chemical evolution in a 1D temperature and density structure. It uses chemical networks downloaded from the KInetic Database for Astrochemistry (KIDA) but the model can be adapted to any network. The program is written in Fortran 90 and uses the DLSODES (double precision) solver from the ODEPACK package to solve the coupled stiff differential equations. The solver computes the chemical evolution of gas-phase species at a fixed temperature and density and can be used in one dimension (1D) if a grid of temperature, density, and visual extinction is provided. Grains, both neutral and negatively charged, and electrons are considered as chemical species and their concentrations are computed at the same time as those of the other species. Nahoon contains a test to check the temperature range of the validity of the rate coefficients and avoid extrapolations outside this range. A test is also included to check for duplication of chemical reactions, defined over complementary ranges of temperature.

[ascl:1708.022]
Naima: Derivation of non-thermal particle distributions through MCMC spectral fitting

Naima computes non-thermal radiation from relativistic particle populations. It includes tools to perform MCMC fitting of radiative models to X-ray, GeV, and TeV spectra using emcee (ascl:1303.002), an affine-invariant ensemble sampler for Markov Chain Monte Carlo. Naima is an Astropy (ascl:1304.002) affiliated package.

[ascl:1803.004]
nanopipe: Calibration and data reduction pipeline for pulsar timing

nanopipe is a data reduction pipeline for calibration, RFI removal, and pulse time-of-arrival measurement from radio pulsar data. It was developed primarily for use by the NANOGrav project. nanopipe is written in Python, and depends on the PSRCHIVE (ascl:1105.014) library.

[ascl:1102.006]
NBODY Codes: Numerical Simulations of Many-body (N-body) Gravitational Interactions

I review the development of direct N-body codes at Cambridge over nearly 40 years, highlighting the main stepping stones. The first code (NBODY1) was based on the simple concepts of a force polynomial combined with individual time steps, where numerical problems due to close encounters were avoided by a softened potential. Fortuitously, the elegant Kustaanheimo-Stiefel two-body regularization soon permitted small star clusters to be studied (NBODY3). Subsequent extensions to unperturbed three-body and four-body regularization proved beneficial in dealing with multiple interactions. Investigations of larger systems became possible with the Ahmad-Cohen neighbor scheme which was used more than 20 years ago for expanding universe models of 4000 galaxies (NBODY2). Combining the neighbor scheme with the regularization procedures enabled more realistic star clusters to be considered (NBODY5). After a period of simulations with no apparent technical progress, chain regularization replaced the treatment of compact subsystems (NBODY3, NBODY5). More recently, the Hermite integration method provided a major advance and has been implemented on the special-purpose HARP computers (NBODY4) together with an alternative version for workstations and supercomputers (NBODY6). These codes also include a variety of algorithms for stellar evolution based on fast lookup functions. The treatment of primordial binaries contains efficient procedures for chaotic two-body motion as well as tidal circularization, and special attention is paid to hierarchical systems and their stability. This family of N-body codes constitutes a powerful tool for dynamical simulations which is freely available to the astronomical community, and the massive effort owes much to collaborators.

[ascl:1502.010]
nbody6tt: Tidal tensors in N-body simulations

nbody6tt, based on Aarseth's nbody6 (ascl:1102.006) code, includes the treatment of complex galactic tides in a direct N-body simulation of a star cluster through the use of tidal tensors (tt) and offers two complementary methods. The first allows consideration of any kind of galaxy and orbit, thus offering versatility; this method cannot be used to study tidal debris, as it relies on the tidal approximation (linearization of the tidal force). The second method is not limited by this and does not require a galaxy simulation; the user defines a numerical function which takes position and time as arguments, and the galactic potential is returned. The space and time derivatives of the potential are used to (i) integrate the motion of the cluster on its orbit in the galaxy (starting from user-defined initial position and velocity vector), and (ii) compute the tidal acceleration on the stars.

[ascl:1010.019]
NBSymple: A Double Parallel, Symplectic N-body Code Running on Graphic Processing Units

NBSymple is a numerical code which numerically integrates the equation of motions of N 'particles' interacting via Newtonian gravitation and move in an external galactic smooth field. The force evaluation on every particle is done by mean of direct summation of the contribution of all the other system's particle, avoiding truncation error. The time integration is done with second-order and sixth-order symplectic schemes. NBSymple has been parallelized twice, by mean of the Computer Unified Device Architecture to make the all-pair force evaluation as fast as possible on high-performance Graphic Processing Units NVIDIA TESLA C 1060, while the O(N) computations are distributed on various CPUs by mean of OpenMP Application Program. The code works both in single precision floating point arithmetics or in double precision. The use of single precision allows the use at best of the GPU performances but, of course, limits the precision of simulation in some critical situations. We find a good compromise in using a software reconstruction of double precision for those variables that are most critical for the overall precision of the code.

[ascl:1411.023]
NDF: Extensible N-dimensional Data Format Library

The Extensible N-Dimensional Data Format (NDF) stores bulk data in the form of N-dimensional arrays of numbers. It is typically used for storing spectra, images and similar datasets with higher dimensionality. The NDF format is based on the Hierarchical Data System (HDS) and is extensible; not only does it provide a comprehensive set of standard ancillary items to describe the data, it can also be extended indefinitely to handle additional user-defined information of any type. The NDF library is used to read and write files in the NDF format. It is distributed with the Starlink software (ascl:1110.012).

[ascl:1101.002]
NDSPMHD Smoothed Particle Magnetohydrodynamics Code

This paper presents an overview and introduction to Smoothed Particle Hydrodynamics and Magnetohydrodynamics in theory and in practice. Firstly, we give a basic grounding in the fundamentals of SPH, showing how the equations of motion and energy can be self-consistently derived from the density estimate. We then show how to interpret these equations using the basic SPH interpolation formulae and highlight the subtle difference in approach between SPH and other particle methods. In doing so, we also critique several `urban myths' regarding SPH, in particular the idea that one can simply increase the `neighbour number' more slowly than the total number of particles in order to obtain convergence. We also discuss the origin of numerical instabilities such as the pairing and tensile instabilities. Finally, we give practical advice on how to resolve three of the main issues with SPMHD: removing the tensile instability, formulating dissipative terms for MHD shocks and enforcing the divergence constraint on the particles, and we give the current status of developments in this area. Accompanying the paper is the first public release of the NDSPMHD SPH code, a 1, 2 and 3 dimensional code designed as a testbed for SPH/SPMHD algorithms that can be used to test many of the ideas and used to run all of the numerical examples contained in the paper.

[ascl:1411.013]
NEAT: Nebular Empirical Analysis Tool

NEAT is a fully automated code which carries out a complete analysis of lists of emission lines to estimate the amount of interstellar extinction, calculate representative temperatures and densities, compute ionic abundances from both collisionally excited lines and recombination lines, and finally to estimate total elemental abundances using an ionization correction scheme. NEAT uses a Monte Carlo technique to robustly propagate uncertainties from line flux measurements through to the derived abundances.

[ascl:1608.019]
NEBULAR: Spectrum synthesis for mixed hydrogen-helium gas in ionization equilibrium

NEBULAR synthesizes the spectrum of a mixed hydrogen helium gas in collisional ionization equilibrium. It is not a spectral fitting code, but it can be used to resample a model spectrum onto the wavelength grid of a real observation. It supports a wide range of temperatures and densities. NEBULAR includes free-free, free-bound, two-photon and line emission from HI, HeI and HeII. The code will either return the composite model spectrum, or, if desired, the unrescaled atomic emission coefficients. It is written in C++ and depends on the GNU Scientific Library (GSL).

[ascl:1010.004]
Needatool: A Needlet Analysis Tool for Cosmological Data Processing

NeedATool (Needlet Analysis Tool) performs data analysis based on needlets, a wavelet rendition powerful for the analysis of fields defined on a sphere. Needlets have been applied successfully to the treatment of astrophysical and cosmological observations, particularly to the analysis of cosmic microwave background (CMB) data. Wavelets have emerged as a useful tool for CMB data analysis, as they combine most of the advantages of both pixel space, where it is easier to deal with partial sky coverage and experimental noise, and the harmonic domain, in which beam treatment and comparison with theoretical predictions are more effective due in large part to their sharp localization.

[ascl:1010.051]
NEMO: A Stellar Dynamics Toolbox

NEMO is an extendible Stellar Dynamics Toolbox, following an Open-Source Software model. It has various programs to create, integrate, analyze and visualize N-body and SPH like systems, following the pipe and filter architecture. In addition there are various tools to operate on images, tables and orbits, including FITS files to export/import to/from other astronomical data reduction packages. A large growing fraction of NEMO has been contributed by a growing list of authors. The source code consist of a little over 4000 files and a little under 1,000,000 lines of code and documentation, mostly C, and some C++ and Fortran. NEMO development started in 1986 in Princeton (USA) by Barnes, Hut and Teuben. See also ZENO (ascl:1102.027) for the version that Barnes maintains.

[ascl:1307.017]
NEST: Noble Element Simulation Technique

Szydagis, M.; Barry, N.; Kazkaz, K.; Mock, J.; Stolp, D.; Sweany, M.; Tripathi, M.; Uvarov, S.; Walsh, N.; Woods, M.

NEST (Noble Element Simulation Technique) offers comprehensive, accurate, and precise simulation of the excitation, ionization, and corresponding scintillation and electroluminescence processes in liquid noble elements, useful for direct dark matter detectors, double beta decay searches, PET scans, and general radiation detection technology. Written in C++, NEST is an add-on module for the Geant4 simulation package that incorporates more detailed physics than is currently available into the simulation of scintillation. NEST is of particular use for low-energy nuclear recoils. All available liquid xenon data on nuclear recoils and electron recoils to date have been taken into consideration in arriving at the current models. NEST also handles the magnitude of the light and charge yields of nuclear recoils, including their electric field dependence, thereby shedding light on the possibility of detection or exclusion of a low-mass dark matter WIMP by liquid xenon detectors.

[ascl:1010.085]
Network Tools for Astronomical Data Retrieval

The first step in a science project is the acquisition and understanding of the relevant data. The tools range from simple data transfer methods to more complex browser-emulating scripts. When integrated with a defined sample or catalog, these scripts provide seamless techniques to retrieve and store data of varying types. These tools can be used to leapfrog from website to website to acquire multi-wavelength datasets. This project demonstrates the capability to use multiple data websites, in conjunction, to perform the type of calculations once reserved for on-site datasets.

[submitted]
NFW distribution functions

Density, distribution function, quantile function and random generation for the 3D Navarro, Frenk & White (NFW) profile. The novel aspect to this is the quantile function, which provides an analytic transform for generating random samples. Functionally identical codes are provided in R and Python.

[ascl:1502.003]
NGenIC: Cosmological structure initial conditions

NGenIC is an initial conditions code for cosmological structure formation that can be used to set-up random N-body realizations of Gaussian random fields with a prescribed power spectrum in a homogeneously sampled periodic box. The code creates cosmological initial conditions based on the Zeldovich approximation, in a format directly compatible with GADGET or AREPO.

[ascl:1508.008]
NGMIX: Gaussian mixture models for 2D images

NGMIX implements Gaussian mixture models for 2D images. Both the PSF profile and the galaxy are modeled using mixtures of Gaussians. Convolutions are thus performed analytically, resulting in fast model generation as compared to methods that perform the convolution in Fourier space. For the galaxy model, NGMIX supports exponential disks and de Vaucouleurs and Sérsic profiles; these are implemented approximately as a sum of Gaussians using the fits from Hogg & Lang (2013). Additionally, any number of Gaussians can be fit, either completely free or constrained to be cocentric and co-elliptical.

[ascl:1608.016]
NICIL: Non-Ideal magnetohydrodynamics Coefficients and Ionisation Library

NICIL (Non-Ideal magnetohydrodynamics Coefficients and Ionisation Library) calculates the ionization values and the coefficients of the non-ideal magnetohydrodynamics terms of Ohmic resistivity, the Hall effect, and ambipolar diffusion. Written as a standalone Fortran90 module that can be implemented in existing codes, NICIL is fully parameterizable, allowing the user to choose which processes to include and decide the values of the free parameters. The module includes both cosmic ray and thermal ionization; the former includes two ion species and three species of dust grains (positively charged, negatively charged and neutral), and the latter includes five elements which can be doubly ionized.

[ascl:1508.002]
NICOLE: NLTE Stokes Synthesis/Inversion Code

NICOLE, written in Fortran 90, seeks the model atmosphere that provides the best fit to the Stokes profiles (in a least-squares sense) of an arbitrary number of simultaneously-observes spectral lines from solar/stellar atmospheres. The inversion core used for the development of NICOLE is the LORIEN engine (the Lovely Reusable Inversion ENgine), which combines the SVD technique with the Levenberg-Marquardt minimization method to solve the inverse problem.

[ascl:1302.013]
NIFTY: A versatile Python library for signal inference

Selig, Marco; Bell, Michael R.; Junklewitz, Henrik; Oppermann, Niels; Reinecke, Martin; Greiner, Maksim; Pachajoa, Carlos; Ensslin, Torsten A.

NIFTY (Numerical Information Field TheorY) is a versatile library enables the development of signal inference algorithms that operate regardless of the underlying spatial grid and its resolution. Its object-oriented framework is written in Python, although it accesses libraries written in Cython, C++, and C for efficiency. NIFTY offers a toolkit that abstracts discretized representations of continuous spaces, fields in these spaces, and operators acting on fields into classes. Thereby, the correct normalization of operations on fields is taken care of automatically. This allows for an abstract formulation and programming of inference algorithms, including those derived within information field theory. Thus, NIFTY permits rapid prototyping of algorithms in 1D and then the application of the developed code in higher-dimensional settings of real world problems. NIFTY operates on point sets, n-dimensional regular grids, spherical spaces, their harmonic counterparts, and product spaces constructed as combinations of those.

[ascl:1106.016]
Nightfall: Animated Views of Eclipsing Binary Stars

Nightfall is an astronomy application for fun, education, and science. It can produce animated views of eclipsing binary stars, calculate synthetic lightcurves and radial velocity curves, and eventually determine the best-fit model for a given set of observational data of an eclipsing binary star system.

Nightfall comes with a user guide, and a set of observational data for several eclipsing binary star systems.

[ascl:1501.002]
NIGO: Numerical Integrator of Galactic Orbits

NIGO (Numerical Integrator of Galactic Orbits) predicts the orbital evolution of test particles moving within a fully-analytical gravitational potential generated by a multi-component galaxy. The code can simulate the orbits of stars in elliptical and disc galaxies, including non-axisymmetric components represented by a spiral pattern and/or rotating bar(s).

[ascl:1101.006]
NIRVANA: A Numerical Tool for Astrophysical Gas Dynamics

The NIRVANA code is capable of the simulation of multi-scale self-gravitational magnetohydrodynamics problems in three space dimensions employing the technique of adaptive mesh refinement. The building blocks of NIRVANA are (i) a fully conservative, divergence-free Godunov-type central scheme for the solution of the equations of magnetohydrodynamics; (ii) a block-structured mesh refinement algorithm which automatically adds and removes elementary grid blocks whenever necessary to achieve adequate resolution and; (iii) an adaptive mesh Poisson solver based on multigrid philosophy which incorporates the so-called elliptic matching condition to keep the gradient of the gravitational potential continous at fine/coarse mesh interfaces.

[ascl:1711.024]
NOD3: Single dish reduction software

NOD3 processes and analyzes maps from single-dish observations affected by scanning effects from clouds, receiver instabilities, or radio-frequency interference. Its “basket-weaving” tool combines orthogonally scanned maps into a final map that is almost free of scanning effects. A restoration tool for dual-beam observations reduces the noise by a factor of about two compared to the NOD2 version. Combining single-dish with interferometer data in the map plane ensures the full recovery of the total flux density.

[ascl:1305.013]
Non-Gaussian Realisations

Non-Gaussian Realisations provides code based on a spectral distortion/quantile transformation that generates a realization of a field on a cubic grid that has a specified probability distribution function and a specified power spectrum.

[ascl:1011.016]
Non-LTE Models and Theoretical Spectra of Accretion Disks in Active Galactic Nuclei. III. Integrated Spectra for Hydrogen-Helium Disks

We have constructed a grid of non-LTE disk models for a wide range of black hole mass and mass accretion rate, for several values of viscosity parameter alpha, and for two extreme values of the black hole spin: the maximum-rotation Kerr black hole, and the Schwarzschild (non-rotating) black hole. Our procedure calculates self-consistently the vertical structure of all disk annuli together with the radiation field, without any approximations imposed on the optical thickness of the disk, and without any ad hoc approximations to the behavior of the radiation intensity. The total spectrum of a disk is computed by summing the spectra of the individual annuli, taking into account the general relativistic transfer function. The grid covers nine values of the black hole mass between M = 1/8 and 32 billion solar masses with a two-fold increase of mass for each subsequent value; and eleven values of the mass accretion rate, each a power of 2 times 1 solar mass/year. The highest value of the accretion rate corresponds to 0.3 Eddington. We show the vertical structure of individual annuli within the set of accretion disk models, along with their local emergent flux, and discuss the internal physical self-consistency of the models. We then present the full disk-integrated spectra, and discuss a number of observationally interesting properties of the models, such as optical/ultraviolet colors, the behavior of the hydrogen Lyman limit region, polarization, and number of ionizing photons. Our calculations are far from definitive in terms of the input physics, but generally we find that our models exhibit rather red optical/UV colors. Flux discontinuities in the region of the hydrogen Lyman limit are only present in cool, low luminosity models, while hotter models exhibit blueshifted changes in spectral slope.

[ascl:1202.003]
NOVAS: Naval Observatory Vector Astrometry Software

Kaplan, George; Bartlett, Jennifer Lynn; Monet, Alice; Bangert, John; Puatua, Wendy; Harris, William; Fredericks, Amy; Barron, Eric G.; Barrett, Paul

NOVAS is an integrated package of subroutines and functions for computing various commonly needed quantities in positional astronomy. The package can provide, in one or two subroutine or function calls, the instantaneous coordinates of any star or planet in a variety of coordinate systems. At a lower level, NOVAS also supplies astrometric utility transformations, such as those for precession, nutation, aberration, parallax, and the gravitational deflection of light. The computations are accurate to better than one milliarcsecond. The NOVAS package is an easy-to-use facility that can be incorporated into data reduction programs, telescope control systems, and simulations. The U.S. parts of The Astronomical Almanac are prepared using NOVAS. Three editions of NOVAS are available: Fortran, C, and Python.

[ascl:1705.014]
NPTFit: Non-Poissonian Template Fitting

NPTFit is a specialized Python/Cython package that implements Non-Poissonian Template Fitting (NPTF), originally developed for characterizing populations of unresolved point sources. It offers fast evaluation of likelihoods for NPTF analyses and has an easy-to-use interface for performing non-Poissonian (as well as standard Poissonian) template fits using MultiNest (ascl:1109.006) or other inference tools. It allows inclusion of an arbitrary number of point source templates, with an arbitrary number of degrees of freedom in the modeled flux distribution, and has modules for analyzing and plotting the results of an NPTF.

[ascl:1804.015]
NR-code: Nonlinear reconstruction code

NR-code applies nonlinear reconstruction to the dark matter density field in redshift space and solves for the nonlinear mapping from the initial Lagrangian positions to the final redshift space positions; this reverses the large-scale bulk flows and improves the precision measurement of the baryon acoustic oscillations (BAO) scale.

[ascl:1609.009]
NSCool: Neutron star cooling code

NSCool is a 1D (i.e., spherically symmetric) neutron star cooling code written in Fortran 77. The package also contains a series of EOSs (equation of state) to build stars, a series of pre-built stars, and a TOV (Tolman- Oppenheimer-Volkoff) integrator to build stars from an EOS. It can also handle “strange stars” that have a huge density discontinuity between the quark matter and the covering thin baryonic crust. NSCool solves the heat transport and energy balance equations in whole GR, resulting in a time sequence of temperature profiles (and, in particular, a Teff - age curve). Several heating processes are included, and more can easily be incorporated. In particular it can evolve a star undergoing accretion with the resulting deep crustal heating, under a steady or time-variable accretion rate. NSCool is robust, very fast, and highly modular, making it easy to add new subroutines for new processes.

[ascl:1602.008]
NuCraft: Oscillation probabilities for atmospheric neutrinos calculator

NuCraft calculates oscillation probabilities for atmospheric neutrinos, taking into account matter effects and the Earth's atmosphere, and supports an arbitrary number of sterile neutrino flavors with easily configurable continuous Earth models. Continuous modeling of the Earth instead of the often-used approximation of four layers with constant density and consideration of the smearing of baseline lengths due to the variable neutrino production heights in Earth's atmosphere each lead to deviations of 10% or more for conventional neutrinos between 1 and 10 GeV.

[ascl:1601.014]
Nulike: Neutrino telescope likelihood tools

Nulike is software for including full event-level information in likelihood calculations for neutrino telescope searches for dark matter annihilation. It includes both angular and spectral information about neutrino events as well as their total number, and can be used for single models without reference to the rest of a parameter space.

[ascl:1408.013]
NumCosmo: Numerical Cosmology

NumCosmo is a free software C library whose main purposes are to test cosmological models using observational data and to provide a set of tools to perform cosmological calculations. The software implements three different probes: cosmic microwave background (CMB), supernovae type Ia (SNeIa) and large scale structure (LSS) information, such as baryonic acoustic oscillations (BAO) and galaxy cluster abundance. The code supports a joint analysis of these data and the parameter space can include cosmological and phenomenological parameters. NumCosmo matter power spectrum and CMB codes were written independent of other implementations such as CMBFAST (ascl:9909.004), CAMB (ascl:1102.026), etc.

The library structure simplifies the inclusion of non-standard cosmological models. Besides the functions related to cosmological quantities, this library also implements mathematical and statistical tools. The former were developed to enable the inclusion of other probes and/or theoretical models and to optimize the codes. The statistical framework comprises algorithms which define likelihood functions, minimization, Monte Carlo, Fisher Matrix and profile likelihood methods.

[ascl:1610.015]
NuPyCEE: NuGrid Python Chemical Evolution Environment

The NuGrid Python Chemical Evolution Environment (NuPyCEE) simulates the chemical enrichment and stellar feedback of stellar populations. It contains three modules. The Stellar Yields for Galactic Modeling Applications module (SYGMA) models the enrichment and feedback of simple stellar populations which can be included in hydrodynamic simulations and semi-analytic models of galaxies. It is the basic building block of the One-zone Model for the Evolution of GAlaxies (OMEGA) module which allows the modelling of the chemical evolution of galaxies such as the Milky Way and its dwarf satellites. The STELLAB (STELLar ABundances) module provides a library of observed stellar abundances useful for comparing predictions of SYGMA and OMEGA.

[ascl:1712.006]
Nyx: Adaptive mesh, massively-parallel, cosmological simulation code

Nyx code solves equations of compressible hydrodynamics on an adaptive grid hierarchy coupled with an N-body treatment of dark matter. The gas dynamics in Nyx use a finite volume methodology on an adaptive set of 3-D Eulerian grids; dark matter is represented as discrete particles moving under the influence of gravity. Particles are evolved via a particle-mesh method, using Cloud-in-Cell deposition/interpolation scheme. Both baryonic and dark matter contribute to the gravitational field. In addition, Nyx includes physics for accurately modeling the intergalactic medium; in optically thin limits and assuming ionization equilibrium, the code calculates heating and cooling processes of the primordial-composition gas in an ionizing ultraviolet background radiation field.

[ascl:1408.019]
O_{2}scl: Object-oriented scientific computing library

O_{2}scl is an object-oriented library for scientific computing in C++ useful for solving, minimizing, differentiating, integrating, interpolating, optimizing, approximating, analyzing, fitting, and more. Many classes operate on generic function and vector types; it includes classes based on GSL and CERNLIB. O_{2}scl also contains code for computing the basic thermodynamic integrals for fermions and bosons, for generating almost all of the most common equations of state of nuclear and neutron star matter, and for solving the TOV equations. O_{2}scl can be used on Linux, Mac and Windows (Cygwin) platforms and has extensive documentation.

[ascl:1608.012]
OBERON: OBliquity and Energy balance Run on N-body systems

OBERON (OBliquity and Energy balance Run on N-body systems) models the climate of Earthlike planets under the effects of an arbitrary number and arrangement of other bodies, such as stars, planets and moons. The code, written in C++, simultaneously computes N body motions using a 4th order Hermite integrator, simulates climates using a 1D latitudinal energy balance model, and evolves the orbital spin of bodies using the equations of Laskar (1986a,b).

[ascl:1307.008]
Obit: Radio Astronomy Data Handling

Obit is a group of software packages for handling radio astronomy data, especially interferometric and single dish OTF imaging. Obit is primarily an environment in which new data processing algorithms can be developed and tested but which can also be used for production processing of a certain range of scientific problems. The package supports both prepackaged, compiled tasks and a python interface to the major class functionality to allow rapid prototyping using python scripts; it allows access to multiple disk--resident data formats, in particular access to either AIPS disk data or FITS files. Obit applications are interoperable with Classic AIPS and the ObitTalk python interface gives access to AIPS tasks as well as Obit libraries and tasks.

[ascl:1011.017]
Occultation and Microlensing

Occultation and microlensing are different limits of the same phenomena of one body passing in front of another body. We derive a general exact analytic expression which describes both microlensing and occultation in the case of spherical bodies with a source of uniform brightness and a non-relativistic foreground body. We also compute numerically the case of a source with quadratic limb-darkening. In the limit that the gravitational deflection angle is comparable to the angular size of the foreground body, both microlensing and occultation occur as the objects align. Such events may be used to constrain the size ratio of the lens and source stars, the limb-darkening coefficients of the source star, and the surface gravity of the lens star (if the lens and source distances are known). Application of these results to microlensing during transits in binaries and giant-star microlensing are discussed. These results unify the microlensing and occultation limits and should be useful for rapid model fitting of microlensing, eclipse, and "microccultation" events.

[ascl:1010.048]
OCTGRAV: Sparse Octree Gravitational N-body Code on Graphics Processing Units

Octgrav is a very fast tree-code which runs on massively parallel Graphical Processing Units (GPU) with NVIDIA CUDA architecture. The algorithms are based on parallel-scan and sort methods. The tree-construction and calculation of multipole moments is carried out on the host CPU, while the force calculation which consists of tree walks and evaluation of interaction list is carried out on the GPU. In this way, a sustained performance of about 100GFLOP/s and data transfer rates of about 50GB/s is achieved. It takes about a second to compute forces on a million particles with an opening angle of $ heta approx 0.5$.

To test the performance and feasibility, we implemented the algorithms in CUDA in the form of a gravitational tree-code which completely runs on the GPU. The tree construction and traverse algorithms are portable to many-core devices which have support for CUDA or OpenCL programming languages. The gravitational tree-code outperforms tuned CPU code during the tree-construction and shows a performance improvement of more than a factor 20 overall, resulting in a processing rate of more than 2.8 million particles per second.

The code has a convenient user interface and is freely available for use.

[ascl:1601.004]
Odyssey: Ray tracing and radiative transfer in Kerr spacetime

Odyssey is a GPU-based General Relativistic Radiative Transfer (GRRT) code for computing images and/or spectra in Kerr metric describing the spacetime around a rotating black hole. Odyssey is implemented in CUDA C/C++. For flexibility, the namespace structure in C++ is used for different tasks; the two default tasks presented in the source code are the redshift of a Keplerian disk and the image of a Keplerian rotating shell at 340GHz. Odyssey_Edu, an educational software package for visualizing the ray trajectories in the Kerr spacetime that uses Odyssey, is also available.

[ascl:1604.001]
OpenMHD: Godunov-type code for ideal/resistive magnetohydrodynamics (MHD)

OpenMHD is a Godunov-type finite-volume code for ideal/resistive magnetohydrodynamics (MHD). It is written in Fortran 90 and is parallelized by using MPI-2 and OpenMP. The code was originally developed for studying magnetic reconnection problems and has been made publicly available in the hope that others may find it useful.

[ascl:1502.002]
OpenOrb: Open-source asteroid orbit computation software

OpenOrb (OOrb) contains tools for rigorously estimating the uncertainties resulting from the inverse problem of computing orbital elements using scarce astrometry. It uses the least-squares method and also contains both Monte-Carlo (MC) and Markov-Chain MC versions of the statistical ranging method. Ranging obtains sampled, non-Gaussian orbital-element probability-density functions and is optimized for cases where the amount of astrometry is scarce or spans a relatively short time interval.

[ascl:1509.009]
OPERA: Objective Prism Enhanced Reduction Algorithms

OPERA (Objective Prism Enhanced Reduction Algorithms) automatically analyzes astronomical images using the objective-prism (OP) technique to register thousands of low resolution spectra in large areas. It detects objects in an image, extracts one-dimensional spectra, and identifies the emission line feature. The main advantages of this method are: 1) to avoid subjectivity inherent to visual inspection used in past studies; and 2) the ability to obtain physical parameters without follow-up spectroscopy.

[ascl:1411.004]
OPERA: Open-source Pipeline for Espadons Reduction and Analysis

OPERA (Open-source Pipeline for Espadons Reduction and Analysis) is an open-source collaborative software reduction pipeline for ESPaDOnS data. ESPaDOnS is a bench-mounted high-resolution echelle spectrograph and spectro-polarimeter designed to obtain a complete optical spectrum (from 370 to 1,050 nm) in a single exposure with a mode-dependent resolving power between 68,000 and 81,000. OPERA is fully automated, calibrates on two-dimensional images and reduces data to produce one-dimensional intensity and polarimetric spectra. Spectra are extracted using an optimal extraction algorithm. Though designed for CFHT ESPaDOnS data, the pipeline is extensible to other echelle spectrographs.

[submitted]
Opik Collision Probability

The Opik method gives the mean probability of collision of a small body with a given planet. It is a statistical value valid for an orbit with given (a,e,i) and undefined argument of perihelion. In some cases, the planet can eject the small body from the solar system; in these cases, the program estimates the mean time for the ejection. The Opik method does not take into account other perturbers than the planet considered, so it only provides an idea of the timescales involved.

[ascl:1803.013]
optBINS: Optimal Binning for histograms

optBINS (optimal binning) determines the optimal number of bins in a uniform bin-width histogram by deriving the posterior probability for the number of bins in a piecewise-constant density model after assigning a multinomial likelihood and a non-informative prior. The maximum of the posterior probability occurs at a point where the prior probability and the the joint likelihood are balanced. The interplay between these opposing factors effectively implements Occam's razor by selecting the most simple model that best describes the data.

[ascl:1310.001]
ORAC-DR: Astronomy data reduction pipeline

ORAC-DR is a generic data reduction pipeline infrastructure; it includes specific data processing recipes for a number of instruments. It is used at the James Clerk Maxwell Telescope, United Kingdom Infrared Telescope, AAT, and LCOGT. This pipeline runs at the JCMT Science Archive hosted by CADC to generate near-publication quality data products; the code has been in use since 1998.

[ascl:1210.024]
ORBADV: ORBital ADVection by interpolation

ORBADV adopts a ZEUS-like scheme to solve magnetohydrodynamic equations of motion in a shearing sheet. The magnetic field is discretized on a staggered mesh, and magnetic field variables represent fluxes through zone faces. The code uses obital advection to ensure fast and accurate integration in a large shearing box.

[ascl:1702.001]
ORBE: Orbital integrator for educational purposes

ORBE performs numerical integration of an arbitrary planetary system composed by a central star and up to 100 planets and minor bodies. ORBE calculates the orbital evolution of a system of bodies by means of the computation of the time evolution of their orbital elements. It is easy to use and is suitable for educational use by undergraduate students in the classroom as a first approach to orbital integrators.

[ascl:1307.016]
orbfit: Orbit fitting software

Orbfit determines positions and orbital elements, and associated uncertainties, of outer solar system planets. The orbit-fitting procedure is greatly streamlined compared with traditional methods because acceleration can be treated as a perturbation to the inertial motion of the body. Orbfit quickly and accurately calculates orbital elements and ephemerides and their associated uncertainties for targets ≳ 10 AU from the Sun and produces positional estimates and uncertainty ellipses even in the face of the substantial degeneracies of short-arc orbit fits; the sole a priori assumption is that the orbit should be bound or nearly so.

[ascl:1106.015]
OrbFit: Software to Determine Orbits of Asteroids

OrbFit is a software system allowing one to compute the orbits of asteroids starting from the observations, to propagate these orbits, and to compute predictions on the future (and past) position on the celestial sphere. It is a tool to be used to find a well known asteroid, to recover a lost one, to attribute a small group of observations, to identify two orbits with each other, to study the future (and/or past) close approaches to Earth, thus to assess the risk of an impact, and more.

[ascl:1804.009]
orbit-estimation: Fast orbital parameters estimator

orbit-estimation tests and evaluates the Stäckel approximation method for estimating orbit parameters in galactic potentials. It relies on the approximation of the Galactic potential as a Stäckel potential, in a prolate confocal coordinate system, under which the vertical and horizontal motions decouple. By solving the Hamilton Jacobi equations at the turning points of the horizontal and vertical motions, it is possible to determine the spatial boundary of the orbit, and hence calculate the desired orbit parameters.

[ascl:1409.007]
ORBS: A reduction software for SITELLE and SpiOMM data

ORBS merges, corrects, transforms and calibrates interferometric data cubes and produces a spectral cube of the observed region for analysis. It is a fully automatic data reduction software for use with SITELLE (installed at the Canada-France-Hawaii Telescope) and SpIOMM (a prototype attached to the Observatoire du Mont Mégantic); these imaging Fourier transform spectrometers obtain a hyperspectral data cube which samples a 12 arc-minutes field of view into 4 millions of visible spectra. ORBS is highly parallelized; its core classes (ORB) have been designed to be used in a suite of softwares for data analysis (ORCS and OACS), data simulation (ORUS) and data acquisition (IRIS).

[ascl:1304.012]
ORIGAMI: Structure-finding routine in N-body simulation

ORIGAMI is a dynamical method of determining the morphology of particles in a cosmological simulation by checking for whether, and in how many dimensions, a particle has undergone shell-crossing. The code is written in C and makes use of the Delaunay tessellation calculation routines from the VOBOZ package (which relies on the Qhull package).

[ascl:1204.013]
ORSA: Orbit Reconstruction, Simulation and Analysis

ORSA is an interactive tool for scientific grade Celestial Mechanics computations. Asteroids, comets, artificial satellites, solar and extra-solar planetary systems can be accurately reproduced, simulated, and analyzed. The software uses JPL ephemeris files for accurate planets positions and has a Qt-based graphical user interface. It offers an advanced 2D plotting tool and 3D OpenGL viewer and the standalone numerical library liborsa and can import asteroids and comets from all the known databases (MPC, JPL, Lowell, AstDyS, and NEODyS). In addition, it has an integrated download tool to update databases.

[ascl:1710.021]
OSIRIS Toolbox: OH-Suppressing InfraRed Imaging Spectrograph pipeline

Lyke, Jim; Do, Tuan; Boehle, Anna; Campbell, Randy; Chappell, Sam; Fitzgerald, Mike; Gasawy, Tom; Iserlohe, Christof; Krabbe, Alfred; Larkin, James; Lockhard, Kelly; Lu, Jessica; Mieda, Etsuko; McElwain, Mike; Perrin, Marshall; Rudy, Alex; Sitarski, Breann; Vayner, Andrey; Walth, Greg; Weiss, Jason; Wizanski, Tommer; Wright, Shelley

OSIRIS Toolbox reduces data for the Keck OSIRIS instrument, an integral field spectrograph that works with the Keck Adaptive Optics System. It offers real-time reduction of raw frames into cubes for display and basic analysis. In this real-time mode, it takes about one minute for a preliminary data cube to appear in the “quicklook” display package. The reduction system also includes a growing set of final reduction steps including correction of telluric absorption and mosaicing of multiple cubes.

[ascl:1805.014]
OSS: OSSOS Survey Simulator

Comparing properties of discovered trans-Neptunian Objects (TNOs) with dynamical models is impossible due to the observational biases that exist in surveys. The OSSOS Survey Simulator takes an intrinsic orbital model (from, for example, the output of a dynamical Kuiper belt emplacement simulation) and applies the survey biases, so the biased simulated objects can be directly compared with real discoveries.

[ascl:1611.011]
OXAF: Ionizing spectra of Seyfert galaxies for photoionization modeling

Thomas, Adam D.; Groves, Brent A.; Sutherland, Ralph S.; Dopita, Michael A.; Jin, Chichuan; Kewley, Lisa J.

OXAF provides a simplified model of Seyfert Active Galactic Nucleus (AGN) continuum emission designed for photoionization modeling. It removes degeneracies in the effects of AGN parameters on model spectral shapes and reproduces the diversity of spectral shapes that arise in physically-based models. OXAF accepts three parameters which directly describe the shape of the output ionizing spectrum: the energy of the peak of the accretion disk emission *E _{peak}*, the photon power-law index of the non-thermal X-ray emission Γ, and the proportion of the total flux which is emitted in the non-thermal component

[ascl:1806.011]
P2DFFT: Parallelized technique for measuring galactic spiral arm pitch angles

P2DFFT is a parallelized version of 2DFFT (ascl:1608.015). It isolates and measures the spiral arm pitch angle of galaxies. The code allows direct input of FITS images, offers the option to output inverse Fourier transform FITS images, and generates idealized logarithmic spiral test images of a specified size that have 1 to 6 arms with pitch angles of -75 degrees to 75 degrees. Further, it can output Fourier amplitude versus inner radius and pitch angle versus inner radius for each Fourier component (m = 0 to m = 6), and calculates the Fourier amplitude weighted mean pitch angle across m = 1 to m = 6 versus inner radius.

[ascl:1402.030]
P2SAD: Particle Phase Space Average Density

P2SAD computes the Particle Phase Space Average Density (P2SAD) in galactic haloes. The model for the calculation is based on the stable clustering hypothesis in phase space, the spherical collapse model, and tidal disruption of substructures. The multiscale prediction for P2SAD computed by this IDL code can be used to estimate signals sensitive to the small scale structure of dark matter distributions (e.g. dark matter annihilation). The code computes P2SAD averaged over the whole virialized region of a Milky-Way-size halo at redshift zero.

[ascl:1205.002]
p3d: General data-reduction tool for fiber-fed integral-field spectrographs

p3d is semi-automatic data-reduction tool designed to be used with fiber-fed integral-field spectrographs. p3d is a highly general and freely available tool based on IDL but can be used with full functionality without an IDL license. It is easily extended to include improved algorithms, new visualization tools, and support for additional instruments. It uses a novel algorithm for automatic finding and tracing of spectra on the detector, and includes two methods of optimal spectrum extraction in addition to standard aperture extraction. p3d also provides tools to combine several images, perform wavelength calibration and flat field data.

[ascl:1105.002]
PACCE: Perl Algorithm to Compute Continuum and Equivalent Widths

PACCE (Perl Algorithm to Compute continuum and Equivalent Widths) computes continuum and equivalent widths. PACCE is able to determine mean continuum and continuum at line center values, which are helpful in stellar population studies, and is also able to compute the uncertainties in the equivalent widths using photon statistics.

[ascl:1110.011]
Pacerman: Polarisation Angle CorrEcting Rotation Measure ANalysis

Pacerman, written in IDL, is a new method to calculate Faraday rotation measure maps from multi-frequency polarisation angle data. In order to solve the so called n-pi-ambiguity problem which arises from the observationally ambiguity of the polarisation angle which is only determined up to additions of n times pi, where n is an integer, we suggest using a global scheme. Instead of solving the n-pi-ambiguity for each data point independently, our algorithm, which we chose to call Pacerman solves the n-pi-ambiguity for a high signal-to-noise region "democratically" and uses this information to assist computations in adjacent low signal-to-noise areas.

[ascl:1708.014]
PACSman: IDL Suite for Herschel/PACS spectrometer data

PACSman provides an alternative for several reduction and analysis steps performed in HIPE (ascl:1111.001) on PACS spectroscopic data; it is written in IDL. Among the operations possible with it are transient correction, line fitting, map projection, and map analysis, and unchopped scan, chop/nod, and the decommissioned wavelength switching observation modes are supported.

[ascl:1210.009]
PAHFIT: Properties of PAH Emission

PAHFIT is an IDL tool for decomposing Spitzer IRS spectra of PAH emission sources, with a special emphasis on the careful recovery of ambiguous silicate absorption, and weak, blended dust emission features. PAHFIT is primarily designed for use with full 5-35 micron Spitzer low-resolution IRS spectra. PAHFIT is a flexible tool for fitting spectra, and you can add or disable features, compute combined flux bands, change fitting limits, etc., without changing the code.

PAHFIT uses a simple, physically-motivated model, consisting of starlight, thermal dust continuum in a small number of fixed temperature bins, resolved dust features and feature blends, prominent emission lines (which themselves can be blended with dust features), as well as simple fully-mixed or screen dust extinction, dominated by the silicate absorption bands at 9.7 and 18 microns. Most model components are held fixed or are tightly constrained. PAHFIT uses Drude profiles to recover the full strength of dust emission features and blends, including the significant power in the wings of the broad emission profiles. This means the resulting feature strengths are larger (by factors of 2-4) than are recovered by methods which estimate the underlying continuum using line segments or spline curves fit through fiducial wavelength anchors.

[ascl:1606.002]
PAL: Positional Astronomy Library

The PAL library is a partial re-implementation of Pat Wallace's popular SLALIB library written in C using a Gnu GPL license and layered on top of the IAU's SOFA library (or the BSD-licensed ERFA) where appropriate. PAL attempts to stick to the SLA C API where possible.

[ascl:1406.002]
PAMELA: Optimal extraction code for long-slit CCD spectroscopy

PAMELA is an implementation of the optimal extraction algorithm for long-slit CCD spectroscopy and is well suited for time-series spectroscopy. It properly implements the optimal extraction algorithm for curved spectra, including on-the-fly cosmic ray rejection as well as proper calculation and propagation of the errors. The software is distributed as part of the Starlink software collection (ascl:1110.012).

[ascl:1805.021]
PampelMuse: Crowded-field 3D spectroscopy

PampelMuse analyzes integral-field spectroscopic observations of crowded stellar fields and provides several subroutines to perform the individual steps of the data analysis. All analysis steps assume that the IFS data has been properly reduced and that all the instrumental artifacts have been removed. PampelMuse is designed to correctly handle IFS data regardless of which instrument was used to observe the data. In addition to the actual data, the software also requires an estimate of the variances for the analysis; optionally, it can use a bad pixel mask. The analysis relies on the presence of a reference catalogue, containing coordinates and magnitudes of the stars in and around the observed field.

[ascl:1511.009]
Pangloss: Reconstructing lensing mass

Pangloss reconstructs all the mass within a light cone through the Universe. Understanding complex mass distributions like this is important for accurate time delay lens cosmography, and also for accurate lens magnification estimation. It aspires to use all available data in an attempt to make the best of all mass maps.

[ascl:1103.008]
Parallel HOP: A Scalable Halo Finder for Massive Cosmological Data Sets

Modern N-body cosmological simulations contain billions ($10^9$) of dark matter particles. These simulations require hundreds to thousands of gigabytes of memory, and employ hundreds to tens of thousands of processing cores on many compute nodes. In order to study the distribution of dark matter in a cosmological simulation, the dark matter halos must be identified using a halo finder, which establishes the halo membership of every particle in the simulation. The resources required for halo finding are similar to the requirements for the simulation itself. In particular, simulations have become too extensive to use commonly-employed halo finders, such that the computational requirements to identify halos must now be spread across multiple nodes and cores. Here we present a scalable-parallel halo finding method called Parallel HOP for large-scale cosmological simulation data. Based on the halo finder HOP, it utilizes MPI and domain decomposition to distribute the halo finding workload across multiple compute nodes, enabling analysis of much larger datasets than is possible with the strictly serial or previous parallel implementations of HOP. We provide a reference implementation of this method as a part of the toolkit yt, an analysis toolkit for Adaptive Mesh Refinement (AMR) data that includes complementary analysis modules. Additionally, we discuss a suite of benchmarks that demonstrate that this method scales well up to several hundred tasks and datasets in excess of $2000^3$ particles. The Parallel HOP method and our implementation can be readily applied to any kind of N-body simulation data and is therefore widely applicable. Parallel HOP is part of yt.

[ascl:1106.009]
PARAMESH V4.1: Parallel Adaptive Mesh Refinement

PARAMESH is a package of Fortran 90 subroutines designed to provide an application developer with an easy route to extend an existing serial code which uses a logically cartesian structured mesh into a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, it can operate as a domain decomposition tool for users who want to parallelize their serial codes, but who do not wish to use adaptivity.

The package builds a hierarchy of sub-grids to cover the computational domain, with spatial resolution varying to satisfy the demands of the application. These sub-grid blocks form the nodes of a tree data-structure (quad-tree in 2D or oct-tree in 3D). Each grid block has a logically cartesian mesh. The package supports 1, 2 and 3D models. PARAMESH is released under the NASA-wide Open-Source software license.

[ascl:1010.039]
Parameter Estimation from Time-Series Data with Correlated Errors: A Wavelet-Based Method and its Application to Transit Light Curves

We consider the problem of fitting a parametric model to time-series data that are afflicted by correlated noise. The noise is represented by a sum of two stationary Gaussian processes: one that is uncorrelated in time, and another that has a power spectral density varying as $1/f^gamma$. We present an accurate and fast [O(N)] algorithm for parameter estimation based on computing the likelihood in a wavelet basis. The method is illustrated and tested using simulated time-series photometry of exoplanetary transits, with particular attention to estimating the midtransit time. We compare our method to two other methods that have been used in the literature, the time-averaging method and the residual-permutation method. For noise processes that obey our assumptions, the algorithm presented here gives more accurate results for midtransit times and truer estimates of their uncertainties.

[ascl:1103.014]
ParaView: Data Analysis and Visualization Application

ParaView is an open-source, multi-platform data analysis and visualization application. ParaView users can quickly build visualizations to analyze their data using qualitative and quantitative techniques. The data exploration can be done interactively in 3D or programmatically using ParaView's batch processing capabilities.

ParaView was developed to analyze extremely large datasets using distributed memory computing resources. It can be run on supercomputers to analyze datasets of terascale as well as on laptops for smaller data.

[ascl:1601.010]
PARAVT: Parallel Voronoi Tessellation

PARAVT offers massive parallel computation of Voronoi tessellations (VT hereafter) in large data sets. The code is focused for astrophysical purposes where VT densities and neighbors are widely used. There are several serial Voronoi tessellation codes, however no open source and parallel implementations are available to handle the large number of particles/galaxies in current N-body simulations and sky surveys. Parallelization is implemented under MPI and VT using Qhull library. Domain decomposition take into account consistent boundary computation between tasks, and support periodic conditions. In addition, the code compute neighbors lists, Voronoi density and Voronoi cell volumes for each particle, and can compute density on a regular grid.

[ascl:1502.005]
PARSEC: PARametrized Simulation Engine for Cosmic rays

PARSEC (PARametrized Simulation Engine for Cosmic rays) is a simulation engine for fast generation of ultra-high energy cosmic ray data based on parameterizations of common assumptions of UHECR origin and propagation. Implemented are deflections in unstructured turbulent extragalactic fields, energy losses for protons due to photo-pion production and electron-pair production, as well as effects from the expansion of the universe. Additionally, a simple model to estimate propagation effects from iron nuclei is included. Deflections in the Galactic magnetic field are included using a matrix approach with precalculated lenses generated from backtracked cosmic rays. The PARSEC program is based on object oriented programming paradigms enabling users to extend the implemented models and is steerable with a graphical user interface.

[ascl:1208.020]
ParselTongue: AIPS Python Interface

ParselTongue is a Python interface to classic AIPS, Obit and possibly other task-based data reduction packages. It serves as the software infrastructure for some of the ALBUS implementation. It allows you to run AIPS tasks, and access AIPS headers and extension tables from Python. There is also support for running Obit tasks and accessing data in FITS files. Full access to the visibilities in AIPS UV data is also available.

[ascl:1010.005]
Particle module of Piernik MHD code

Piernik is a multi-fluid grid magnetohydrodynamic (MHD) code based on the Relaxing Total Variation Diminishing (RTVD) conservative scheme. The original code has been extended by addition of dust described within the particle approximation. The dust is now described as a system of interacting particles. The particles can interact with gas, which is described as a fluid. The comparison between the test problem results and the results coming from fluid simulations made with Piernik code shows the most important differences between fluid and particle approximations used to describe dynamical evolution of dust under astrophysical conditions.

[ascl:1010.073]
partiview: Immersive 4D Interactive Visualization of Large-Scale Simulations

In dense clusters a bewildering variety of interactions between stars can be observed, ranging from simple encounters to collisions and other mass-transfer encounters. With faster and special-purpose computers like GRAPE, the amount of data per simulation is now exceeding 1TB. Visualization of such data has now become a complex 4D data-mining problem, combining space and time, and finding interesting events in these large datasets. We have recently starting using the virtual reality simulator, installed in the Hayden Planetarium in the American Museum for Natural History, to tackle some of these problem. partiview is a program that enables you to visualize and animate particle data. partiview runs on relatively simple desktops and laptops, but is mostly compatible with its big brother VirDir.

[ascl:1102.002]
PBL: Particle-Based Lensing for Gravitational Lensing Mass Reconstructions of Galaxy Clusters

We present Particle-Based Lensing (PBL), a new technique for gravitational lensing mass reconstructions of galaxy clusters. Traditionally, most methods have employed either a finite inversion or gridding to turn observational lensed galaxy ellipticities into an estimate of the surface mass density of a galaxy cluster. We approach the problem from a different perspective, motivated by the success of multi-scale analysis in smoothed particle hydrodynamics. In PBL, we treat each of the lensed galaxies as a particle and then reconstruct the potential by smoothing over a local kernel with variable smoothing scale. In this way, we can tune a reconstruction to produce constant signal-noise throughout, and maximally exploit regions of high information density.

PBL is designed to include all lensing observables, including multiple image positions and fluxes from strong lensing, as well as weak lensing signals including shear and flexion. In this paper, however, we describe a shear-only reconstruction, and apply the method to several test cases, including simulated lensing clusters, as well as the well-studied ``Bullet Cluster'' (1E0657-56). In the former cases, we show that PBL is better able to identify cusps and substructures than are grid-based reconstructions, and in the latter case, we show that PBL is able to identify substructure in the Bullet Cluster without even exploiting strong lensing measurements.

Would you like to view a random code?