ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Browsing Codes

Results 2001-2100 of 3539 (3451 ASCL, 88 submitted)

Order
Title Date
 
Mode
Abstract Compact
Per Page
50100250All
[ascl:1109.006] MultiNest: Efficient and Robust Bayesian Inference

We present further development and the first public release of our multimodal nested sampling algorithm, called MultiNest. This Bayesian inference tool calculates the evidence, with an associated error estimate, and produces posterior samples from distributions that may contain multiple modes and pronounced (curving) degeneracies in high dimensions. The developments presented here lead to further substantial improvements in sampling efficiency and robustness, as compared to the original algorithm presented in Feroz & Hobson (2008), which itself significantly outperformed existing MCMC techniques in a wide range of astrophysical inference problems. The accuracy and economy of the MultiNest algorithm is demonstrated by application to two toy problems and to a cosmological inference problem focusing on the extension of the vanilla $Lambda$CDM model to include spatial curvature and a varying equation of state for dark energy. The MultiNest software is fully parallelized using MPI and includes an interface to CosmoMC (ascl:1106.025). It will also be released as part of the SuperBayeS package (ascl:1109.007) for the analysis of supersymmetric theories of particle physics.

[ascl:1109.008] Multipole Vectors: Decomposing Functions on a Sphere

We propose a novel representation of cosmic microwave anisotropy maps, where each multipole order l is represented by l unit vectors pointing in directions on the sky and an overall magnitude. These "multipole vectors and scalars" transform as vectors under rotations. Like the usual spherical harmonics, multipole vectors form an irreducible representation of the proper rotation group SO(3). However, they are related to the familiar spherical harmonic coefficients, alm, in a nonlinear way, and are therefore sensitive to different aspects of the CMB anisotropy. Nevertheless, it is straightforward to determine the multipole vectors for a given CMB map and we present an algorithm to compute them. Using the WMAP full-sky maps, we perform several tests of the hypothesis that the CMB anisotropy is statistically isotropic and Gaussian random. We find that the result from comparing the oriented area of planes defined by these vectors between multipole pairs 2<=l1!=l2<=8 is inconsistent with the isotropic Gaussian hypothesis at the 99.4% level for the ILC map and at 98.9% level for the cleaned map of Tegmark et al. A particular correlation is suggested between the l=3 and l=8 multipoles, as well as several other pairs. This effect is entirely different from the now familiar planarity and alignment of the quadrupole and octupole: while the aforementioned is fairly unlikely, the multipole vectors indicate correlations not expected in Gaussian random skies that make them unusually likely. The result persists after accounting for pixel noise and after assuming a residual 10% dust contamination in the cleaned WMAP map. While the definitive analysis of these results will require more work, we hope that multipole vectors will become a valuable tool for various cosmological tests, in particular those of cosmic isotropy.

[ascl:1704.014] Multipoles: Potential gain for binary lens estimation

Multipoles, written in Python, calculates the quadrupole and hexadecapole approximations of the finite-source magnification: quadrupole (Wk,rho,Gamma) and hexadecapole (Wk,rho,Gamma). The code is efficient and faster than previously available methods, and could be generalized for use on large portions of the light curves.

[ascl:1402.006] Munipack: General astronomical image processing software

Munipack provides easy-to-use tools for all astronomical astrometry and photometry, access to Virtual Observatory as well as FITS files operations and a simple user interface along with a powerful processing engine. Its many features include a FITS images viewer that allows for basic (astronomical) operations with frames, advanced image processor supporting an infinite dynamic range and advanced color management, and astrometric calibration of images. The astrometry module uses robust statistical estimators and algorithms. The photometry module provides the classical method detection of stars and implements the aperture photometry, calibrated on the basis of photon statistics, and allows for the automatic detection and aperture photometry of stars; calibration on absolute fluxes is possible. The software also provides a standard way to correct for all the bias, dark and flat-field frames, and many other features.

[ascl:2207.013] MuSCAT2_transit_pipeline: MuSCAT2 photometry and transit analysis pipelines

MuSCAT2_transit_pipeline provides photometry and transit analysis pipelines for MuSCAT2. It consists of a set of executable scripts and two Python packages: muscat2ph for photometry, and muscat2ta for transit analysis. The MuSCAT2 photometry can be carried out using the scripts only. The transit analysis can also in most cases be done using the main transit analysis script m2fit, but the muscat2ta package also offers high-level classes that can be used to carry out more customized transit analysis as a Python script (or Jupyter notebook).

[ascl:1605.007] MUSCLE: MUltiscale Spherical-ColLapse Evolution

MUSCLE (MUltiscale Spherical ColLapse Evolution) produces low-redshift approximate N-body realizations accurate to few-Megaparsec scales. It applies a spherical-collapse prescription on multiple Gaussian-smoothed scales. It achieves higher accuracy than perturbative schemes (Zel'dovich and second-order Lagrangian perturbation theory - 2LPT), and by including the void-in-cloud process (voids in large-scale collapsing regions), solves problems with a single-scale spherical-collapse scheme.

[ascl:1610.004] MUSE-DRP: MUSE Data Reduction Pipeline

The MUSE pipeline turns the complex raw data of the MUSE integral field spectrograph into a ready-to-use datacube for scientific analysis.

[ascl:2102.012] MUSE-PSFR: PSF reconstruction for MUSE WFM-AO mode

MUSE-PSFR reconstructs a PSF for the MUSE WFM-AO mode using telemetry data from SPARTA. The algorithm conducts a Fourier analysis of the laser-assisted ground layer adaptive optics (GLAO) residual phase statistics and has been test in end-to-end simulations. A sensitivity analysis was conducted to determine the required accuracy in terms of input parameters. MUSE-PSFR is capable of reconstructing the critical parameters of a PSF and can be used with MUSE 3D data by all MUSE users.

[ascl:1311.011] MUSIC: MUlti-Scale Initial Conditions

MUSIC generates multi-scale initial conditions with multiple levels of refinements for cosmological ‘zoom-in’ simulations. The code uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). MUSIC achieves rms relative errors of the order of 10−4 for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier space-induced interference ringing.

[ascl:2008.024] MUSIC2-monofonIC: 3LPT initial condition generator

The original MUSIC code (ascl:1311.011) was designed to provide initial conditions for zoom initial conditions and is limited for applications to large-scale cosmological simulations. MUSIC2-monofonIC generates high order LPT/PPT cosmological initial conditions for single resolution cosmological simulations, and can be used for rapid predictions of large-scale structure. MUSIC2-monofonIC offers support for up to 3rd order Lagrangian perturbation theory, PPT (Semiclassical PT for Eulerian grids) up to 2nd order, and for mixed CDM+baryon sims. It direct interfaces with CLASS and can use file input from CAMB; it offers multiple output modules for RAMSES (ascl:1011.007), Arepo (ascl:1909.010), Gadget-2/3 (ascl:0003.001), and HACC via plugins, and new modules/plugins can be easily added.

[ascl:2205.011] myRadex: Radex with a twist

myRadex solves essentially the same problem as RADEX (ascl:1010.075), except that it takes a different approach to solve the statistical equilibrium problem. Given an initial distribution, myRadex evolves the system towards equilibrium using an ODE solver. Frequencies in the input file are used by default, and a function for calculating critical densities of all the transitions of a molecule is included.

[ascl:2206.006] MYRaf: Aperture photometry GUI for IRAF

MYRaf is a practicable astronomical image reduction and photometry software and interface for IRAF (ascl:9911.002). The library uses IRAF, PyRAF (ascl:1207.011), Ginga (ascl:1303.020), and other python packages with a Qt framework for automated software processing of data from robotic telescopes.

[ascl:1203.009] MYRIAD: N-body code for simulations of star clusters

MYRIAD is a C++ code for collisional N-body simulations of star clusters. The code uses the Hermite fourth-order scheme with block time steps, for advancing the particles in time, while the forces and neighboring particles are computed using the GRAPE-6 board. Special treatment is used for close encounters, binary and multiple sub-systems that either form dynamically or exist in the initial configuration. The structure of the code is modular and allows the appropriate treatment of more physical phenomena, such as stellar and binary evolution, stellar collisions and evolution of close black-hole binaries. Moreover, it can be easily modified so that the part of the code that uses GRAPE-6 could be replaced by another module that uses other accelerating-hardware like the Graphics Processing Units (GPUs). Appropriate choice of the free parameters give a good accuracy and speed for simulations of star clusters up to and beyond core collapse. The code accuracy becomes comparable and even better than the accuracy of existing codes when a number of close binary systems is dynamically created in a simulation; this is due to the high accuracy of the method that is used for close binary and multiple sub-systems. The code can be used for evolving star clusters containing equal-mass stars or star clusters with an initial mass function (IMF) containing an intermediate mass black hole (IMBH) at the center and/or a fraction of primordial binaries, which are systems of particular astrophysical interest.

[ascl:1502.003] N-GenIC: Cosmological structure initial conditions

N-GenIC is an initial conditions code for cosmological structure formation that can be used to set-up random N-body realizations of Gaussian random fields with a prescribed power spectrum in a homogeneously sampled periodic box. The code creates cosmological initial conditions based on the Zeldovich approximation, in a format directly compatible with GADGET (ascl:0003.001) or AREPO (ascl:1909.010).

[ascl:1102.001] N-MODY: A Code for Collisionless N-body Simulations in Modified Newtonian Dynamics

N-MODY is a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.

[ascl:1411.014] NAFE: Noise Adaptive Fuzzy Equalization

NAFE (Noise Adaptive Fuzzy Equalization) is an image processing method allowing for visualization of fine structures in SDO AIA high dynamic range images. It produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform.

[ascl:1409.009] Nahoon: Time-dependent gas-phase chemical model

Nahoon is a gas-phase chemical model that computes the chemical evolution in a 1D temperature and density structure. It uses chemical networks downloaded from the KInetic Database for Astrochemistry (KIDA) but the model can be adapted to any network. The program is written in Fortran 90 and uses the DLSODES (double precision) solver from the ODEPACK package (ascl:1905.021) to solve the coupled stiff differential equations. The solver computes the chemical evolution of gas-phase species at a fixed temperature and density and can be used in one dimension (1D) if a grid of temperature, density, and visual extinction is provided. Grains, both neutral and negatively charged, and electrons are considered as chemical species and their concentrations are computed at the same time as those of the other species. Nahoon contains a test to check the temperature range of the validity of the rate coefficients and avoid extrapolations outside this range. A test is also included to check for duplication of chemical reactions, defined over complementary ranges of temperature.

[ascl:2303.004] naif: Frequency analysis package

naif extracts frequencies and respective amplitudes from time-series, such as that of an orbital coordinate. Based on the Numerical Analysis of Fundamental Frequencies (NAFF) algorithm and written in Python, naif offers some improvements, particularly in computation time. It also offers functions to plot the power-spectrum before extraction of each frequency, which can be useful for debugging particular orbits.

[ascl:1708.022] Naima: Derivation of non-thermal particle distributions through MCMC spectral fitting

Naima computes non-thermal radiation from relativistic particle populations. It includes tools to perform MCMC fitting of radiative models to X-ray, GeV, and TeV spectra using emcee (ascl:1303.002), an affine-invariant ensemble sampler for Markov Chain Monte Carlo. Naima is an Astropy (ascl:1304.002) affiliated package.

[ascl:2307.048] NaMaster: Unified pseudo-Cl framework

NaMaster computes full-sky angular cross-power spectra of masked, spin-0 and spin-2 fields with an arbitrary number of known contaminants using a pseudo-Cl (aka MASTER) approach. The code also implements E/B-mode purification and offers both full-sky and flat-sky modes. NaMaster is available as a C library, Python module, and standalone program.

[ascl:1803.004] nanopipe: Calibration and data reduction pipeline for pulsar timing

nanopipe is a data reduction pipeline for calibration, RFI removal, and pulse time-of-arrival measurement from radio pulsar data. It was developed primarily for use by the NANOGrav project. nanopipe is written in Python, and depends on the PSRCHIVE (ascl:1105.014) library.

[ascl:1905.020] NAPLES: Numerical Analysis of PLanetary EncounterS

NAPLES (Numerical Analysis of PLanetary EncounterS) performs batch propagations of close encounters in the three-body problem and computes the numerical error with respect to reference trajectories computed in quadruple precision. It uses the LSODAR integrator from ODEPACK (ascl:1905.021) and the equations of motion correspond to several regularized formulations.

[ascl:2110.013] Nauyaca: N-body approach for determining planetary masses and orbital elements

Nauyaca infers planetary masses and orbits from mid-transit times fitting. The code requires transit ephemeris per planet and stellar mass and radius, and uses minimization routines and a Markov chain Monte Carlo method to find planet parameters that best reproduce the transit times based on numerical simulations. The code package provides customized plotting tools for analyzing the results.

[ascl:2307.045] NAVanalysis: Normalized Additional Velocity analysis

NAVanalysis studies the non-baryonic, or non-Newtonian, contribution to galaxy rotation curves straight from a given data sample. Conclusions on the radial profile of a given model can be drawn without individual galaxy fits to provide an efficient sample comparison. The method can be used to eliminate model parameter regions, find the most probable parameter regions, and uncover trends not easy to find from standard fits. Further, NAVanalysis can compare different approaches and models.

[ascl:1102.006] NBODY Codes: Numerical Simulations of Many-body (N-body) Gravitational Interactions

I review the development of direct N-body codes at Cambridge over nearly 40 years, highlighting the main stepping stones. The first code (NBODY1) was based on the simple concepts of a force polynomial combined with individual time steps, where numerical problems due to close encounters were avoided by a softened potential. Fortuitously, the elegant Kustaanheimo-Stiefel two-body regularization soon permitted small star clusters to be studied (NBODY3). Subsequent extensions to unperturbed three-body and four-body regularization proved beneficial in dealing with multiple interactions. Investigations of larger systems became possible with the Ahmad-Cohen neighbor scheme which was used more than 20 years ago for expanding universe models of 4000 galaxies (NBODY2). Combining the neighbor scheme with the regularization procedures enabled more realistic star clusters to be considered (NBODY5). After a period of simulations with no apparent technical progress, chain regularization replaced the treatment of compact subsystems (NBODY3, NBODY5). More recently, the Hermite integration method provided a major advance and has been implemented on the special-purpose HARP computers (NBODY4) together with an alternative version for workstations and supercomputers (NBODY6). These codes also include a variety of algorithms for stellar evolution based on fast lookup functions. The treatment of primordial binaries contains efficient procedures for chaotic two-body motion as well as tidal circularization, and special attention is paid to hierarchical systems and their stability. This family of N-body codes constitutes a powerful tool for dynamical simulations which is freely available to the astronomical community, and the massive effort owes much to collaborators.

[ascl:1502.010] nbody6tt: Tidal tensors in N-body simulations

nbody6tt, based on Aarseth's nbody6 (ascl:1102.006) code, includes the treatment of complex galactic tides in a direct N-body simulation of a star cluster through the use of tidal tensors (tt) and offers two complementary methods. The first allows consideration of any kind of galaxy and orbit, thus offering versatility; this method cannot be used to study tidal debris, as it relies on the tidal approximation (linearization of the tidal force). The second method is not limited by this and does not require a galaxy simulation; the user defines a numerical function which takes position and time as arguments, and the galactic potential is returned. The space and time derivatives of the potential are used to (i) integrate the motion of the cluster on its orbit in the galaxy (starting from user-defined initial position and velocity vector), and (ii) compute the tidal acceleration on the stars.

[ascl:2404.020] NbodyIMRI: N-body solver for intermediate-mass ratio inspirals of black holes and dark matter spikes

NbodyIMRI uses N-body simulations to study Dark Matter-dressed intermediate-mass ratio inspirals (IMRI) and extreme mass ratio inspiral (EMRI) systems. The code calculates all BH-BH forces and BH-DM forces directly while neglecting DM-DM pairwise interactions. This allows the code to scale up to very large numbers of DM particles in order to study stochastic processes like dynamical friction.

[ascl:1904.027] nbodykit: Massively parallel, large-scale structure toolkit

nbodykit provides algorithms for analyzing cosmological datasets from N-body simulations and large-scale structure surveys, and takes advantage of the abundance and availability of large-scale computing resources. The package provides a unified treatment of simulation and observational datasets by insulating algorithms from data containers, and reduces wall-clock time by scaling to thousands of cores. All algorithms are parallel and run with Message Passing Interface (MPI); the code is designed to be deployed on large super-computing facilities. nbodykit offers an interactive user interface that performs as well in a Jupyter notebook as on super-computing machines.

[ascl:1010.019] NBSymple: A Double Parallel, Symplectic N-body Code Running on Graphic Processing Units

NBSymple is a numerical code which numerically integrates the equation of motions of N 'particles' interacting via Newtonian gravitation and move in an external galactic smooth field. The force evaluation on every particle is done by mean of direct summation of the contribution of all the other system's particle, avoiding truncation error. The time integration is done with second-order and sixth-order symplectic schemes. NBSymple has been parallelized twice, by mean of the Computer Unified Device Architecture to make the all-pair force evaluation as fast as possible on high-performance Graphic Processing Units NVIDIA TESLA C 1060, while the O(N) computations are distributed on various CPUs by mean of OpenMP Application Program. The code works both in single precision floating point arithmetics or in double precision. The use of single precision allows the use at best of the GPU performances but, of course, limits the precision of simulation in some critical situations. We find a good compromise in using a software reconstruction of double precision for those variables that are most critical for the overall precision of the code.

[ascl:2303.008] nd-redshift: Number Density Redshift Evolution Code

Comparing galaxies across redshifts via cumulative number densities is a popular way to estimate the evolution of specific galaxy populations. nd-redshift uses abundance matching in the ΛCDM paradigm to estimate the median change in number density with redshift. It also provides estimates for the 1σ range of number densities corresponding to galaxy progenitors and descendants.

[ascl:2405.024] ndcube: Multi-dimensional contiguous and non-contiguous coordinate-aware arrays

ndcube manipulates, inspects, and visualizes multi-dimensional contiguous and non-contiguous coordinate-aware data arrays. A sunpy (ascl:1401.010) affiliated package, it combines data, uncertainties, units, metadata, masking, and coordinate transformations into classes with unified slicing and generic coordinate transformations and plotting and animation capabilities. ndcube handles data of any number of dimensions and axis types (e.g., spatial, temporal, and spectral) whose relationship between the array elements and the real world can be described by World Coordinate System (WCS) translations.

[ascl:1411.023] NDF: Extensible N-dimensional Data Format Library

The Extensible N-Dimensional Data Format (NDF) stores bulk data in the form of N-dimensional arrays of numbers. It is typically used for storing spectra, images and similar datasets with higher dimensionality. The NDF format is based on the Hierarchical Data System (HDS) and is extensible; not only does it provide a comprehensive set of standard ancillary items to describe the data, it can also be extended indefinitely to handle additional user-defined information of any type. The NDF library is used to read and write files in the NDF format. It is distributed with the Starlink software (ascl:1110.012).

[ascl:1101.002] NDSPMHD Smoothed Particle Magnetohydrodynamics Code

This paper presents an overview and introduction to Smoothed Particle Hydrodynamics and Magnetohydrodynamics in theory and in practice. Firstly, we give a basic grounding in the fundamentals of SPH, showing how the equations of motion and energy can be self-consistently derived from the density estimate. We then show how to interpret these equations using the basic SPH interpolation formulae and highlight the subtle difference in approach between SPH and other particle methods. In doing so, we also critique several `urban myths' regarding SPH, in particular the idea that one can simply increase the `neighbour number' more slowly than the total number of particles in order to obtain convergence. We also discuss the origin of numerical instabilities such as the pairing and tensile instabilities. Finally, we give practical advice on how to resolve three of the main issues with SPMHD: removing the tensile instability, formulating dissipative terms for MHD shocks and enforcing the divergence constraint on the particles, and we give the current status of developments in this area. Accompanying the paper is the first public release of the NDSPMHD SPH code, a 1, 2 and 3 dimensional code designed as a testbed for SPH/SPMHD algorithms that can be used to test many of the ideas and used to run all of the numerical examples contained in the paper.

[submitted] NE2001p: A Native Python Implementation of the NE2001 Galactic Electron Density Model

NE2001p is a fully Python implementation of the NE2001 Galactic electron density model. NE2001p forward models the dispersion and scattering of compact radio sources, including pulsars, fast radio bursts, AGNs, and masers, and the model predicts the distances of radio sources that lack independent distance measures.

[ascl:1411.013] NEAT: Nebular Empirical Analysis Tool

NEAT is a fully automated code which carries out a complete analysis of lists of emission lines to estimate the amount of interstellar extinction, calculate representative temperatures and densities, compute ionic abundances from both collisionally excited lines and recombination lines, and finally to estimate total elemental abundances using an ionization correction scheme. NEAT uses a Monte Carlo technique to robustly propagate uncertainties from line flux measurements through to the derived abundances.

[ascl:1809.009] NEBULA: Radiative transfer code of ionized nebulae at radio wavelengths

NEBULA performs the radiative transfer of the 3He+ hyperfine transition, radio recombination lines (RRLs), and free-free continuum emission through a model nebula. The model nebula is composed of only H and He within a three-dimension Cartesian grid with arbitrary density, temperature, and ionization structure. The 3He+ line is assumed to be in local thermodynamic equilibrium (LTE), but non-LTE effects and pressure broadening from electron impacts can be included for the RRLs. All spectra are broadened by thermal and microturbulent motions.

[ascl:1608.019] NEBULAR: Spectrum synthesis for mixed hydrogen-helium gas in ionization equilibrium

NEBULAR synthesizes the spectrum of a mixed hydrogen helium gas in collisional ionization equilibrium. It is not a spectral fitting code, but it can be used to resample a model spectrum onto the wavelength grid of a real observation. It supports a wide range of temperatures and densities. NEBULAR includes free-free, free-bound, two-photon and line emission from HI, HeI and HeII. The code will either return the composite model spectrum, or, if desired, the unrescaled atomic emission coefficients. It is written in C++ and depends on the GNU Scientific Library (GSL).

[ascl:1010.004] Needatool: A Needlet Analysis Tool for Cosmological Data Processing

NeedATool (Needlet Analysis Tool) performs data analysis based on needlets, a wavelet rendition powerful for the analysis of fields defined on a sphere. Needlets have been applied successfully to the treatment of astrophysical and cosmological observations, particularly to the analysis of cosmic microwave background (CMB) data. Wavelets have emerged as a useful tool for CMB data analysis, as they combine most of the advantages of both pixel space, where it is easier to deal with partial sky coverage and experimental noise, and the harmonic domain, in which beam treatment and comparison with theoretical predictions are more effective due in large part to their sharp localization.

[ascl:2210.009] NEMESIS: Non-linear optimal estimator for multivariate spectral analysis

NEMESIS (Non-linear optimal Estimator for MultivariatE spectral analySIS) is the general purpose correlated-k/LBL retrieval code developed from the RADTRAN project (ascl:2210.008). Originally based on the correlated-k approximation, NEMESIS also works in line-by-line (LBL) mode. It has been designed to be generally applicable to any planet and with any observing mode and so is suitable for both solar-system studies and also exoplanetary studies.

[ascl:2311.015] nemiss: Neutrino emission from hydrocode data

nemiss calculates neutrino emission from an astrophysical jet. nemiss works as part of the PLUTO-nemiss-rlos pipeline. PLUTO (ascl:1010.045) produces a hydrodynamical jet. Then, nemiss calculates beamed neutrino emission at each eligible cell along a given direction in space. Finally, rlos (ascl:1811.009) produces a synthetic neutrino image of the jet along the given direction, taking into consideration the finite nature of the speed of light.

[ascl:1010.051] NEMO: A Stellar Dynamics Toolbox

NEMO is an extendible Stellar Dynamics Toolbox, following an Open-Source Software model. It has various programs to create, integrate, analyze and visualize N-body and SPH like systems, following the pipe and filter architecture. In addition there are various tools to operate on images, tables and orbits, including FITS files to export/import to/from other astronomical data reduction packages. A large growing fraction of NEMO has been contributed by a growing list of authors. The source code consist of a little over 4000 files and a little under 1,000,000 lines of code and documentation, mostly C, and some C++ and Fortran. NEMO development started in 1986 in Princeton (USA) by Barnes, Hut and Teuben. See also ZENO (ascl:1102.027) for the version that Barnes maintains.

[ascl:2308.006] Nemo: Millimeter-wave map filtering and Sunyaev-Zel'dovich galaxy cluster and source detection

Nemo detects millimeter-wave Sunyaev-Zel'dovich galaxy clusters and compact sources. Originally developed for the Atacama Cosmology Telescope project, the code is capable of analyzing the next generation of deep, wide multifrequency millimeter-wave maps that will be produced by experiments such as the Simons Observatory. Nemo provides several modules for analyzing ACT/SO data in addition to the command-line programs provided in the package.

[ascl:2311.005] NEOexchange: Target and Observation Manager for the Solar System

The NEOexchange web portal and Target and Observation Manager ingests solar system objects, including Near-Earth Object (NEO) candidates from the Minor Planet Center, schedules observations on the Las Cumbres Observatory global telescope network and reduces, displays, and analyzes the resulting data. NEOexchange produces calibrated photometry from the imaging data and uses Source Extractor (ascl:1010.064) and SCAMP (ascl:1010.063) to perform object detection and astrometric fitting and calviacat (ascl:2207.015) to perform photometric calibration against photometric catalogs. It also has the ability to perform image registration and subtraction using SWARP (ascl:1010.068) and HOTPANTS (ascl:1504.004) and image stacking, alignment, and faint feature detection using gnuastro (ascl:1801.009).

[ascl:2405.002] nessai: Nested sampling with artificial intelligence

nessai performs nested sampling for Bayesian Inference and incorporates normalizing flows. It is designed for applications where the Bayesian likelihood is computationally expensive. nessai uses PyTorch and also supports the use of bilby (ascl:1901.011).

[ascl:1307.017] NEST: Noble Element Simulation Technique

NEST (Noble Element Simulation Technique) offers comprehensive, accurate, and precise simulation of the excitation, ionization, and corresponding scintillation and electroluminescence processes in liquid noble elements, useful for direct dark matter detectors, double beta decay searches, PET scans, and general radiation detection technology. Written in C++, NEST is an add-on module for the Geant4 simulation package that incorporates more detailed physics than is currently available into the simulation of scintillation. NEST is of particular use for low-energy nuclear recoils. All available liquid xenon data on nuclear recoils and electron recoils to date have been taken into consideration in arriving at the current models. NEST also handles the magnitude of the light and charge yields of nuclear recoils, including their electric field dependence, thereby shedding light on the possibility of detection or exclusion of a low-mass dark matter WIMP by liquid xenon detectors.

[ascl:1809.012] nestcheck: Nested sampling calculations analysis

Nestcheck analyzes nested sampling runs and estimates numerical uncertainties on calculations using them. The package can load results from a number of nested sampling software packages, including MultiNest (ascl:1109.006), PolyChord (ascl:1502.011), dynesty (ascl:1809.013) and perfectns (ascl:1809.005), and offers the flexibility to add input functions for other nested sampling software packages. Nestcheck utilities include error analysis, diagnostic tests, and plots for nested sampling calculations.

[ascl:2103.022] nestle: Nested sampling algorithms for evaluating Bayesian evidence

nestle is a pure Python implementation of nested sampling algorithms for evaluating Bayesian evidence. Nested sampling integrates posterior probability in order to compare models in Bayesian statistics. It is similar to Markov Chain Monte Carlo (MCMC) in that it generates samples that can be used to estimate the posterior probability distribution. Unlike MCMC, the nature of the sampling also allows one to calculate the integral of the distribution. It is also a pretty good method for robustly finding global maxima.

[submitted] Network Flux Transport Demonstration

We have developed a method to efficiently simulate the dynamics of the magnetic flux in the solar network. We call this method Network Flux Transport (NFT). Implemented using a Spherical Centroidal Voronoi Tessellation (SCVT) based network model, magnetic flux is advected by photospheric plasma velocity fields according to the geometry of the SCVT model. We test NFT by simulating the magnetism of the Solar poles. The poles of the sun above 55 deg latitude are free from flux emergence from active regions or ephemeral regions. As such, they are ideal targets for a simplified simulation that relies on the strengths of the NFT model. This simulation method reproduces the magnetic and spatial distributions for the solar poles over two full solar cycles.

[ascl:1010.085] Network Tools for Astronomical Data Retrieval

The first step in a science project is the acquisition and understanding of the relevant data. The tools range from simple data transfer methods to more complex browser-emulating scripts. When integrated with a defined sample or catalog, these scripts provide seamless techniques to retrieve and store data of varying types. These tools can be used to leapfrog from website to website to acquire multi-wavelength datasets. This project demonstrates the capability to use multiple data websites, in conjunction, to perform the type of calculations once reserved for on-site datasets.

[ascl:2112.007] NeutrinoFog: Neutrino fog and floor for direct dark matter searches

NeutrinoFog calculates the neutrino floor based on the derivative of a hypothetical experimental discovery limit as a function of exposure, and leads to a neutrino floor that is only influenced by the systematic uncertainties on the neutrino flux normalizations.

[ascl:2305.024] Nextflow: DSL for data-driven computational pipelines

Nextflow enables scalable and reproducible scientific workflows using software containers. It allows the adaptation of pipelines written in the most common scripting languages. Its fluent DSL simplifies the implementation and the deployment of complex parallel and reactive workflows on clouds and clusters. Nextflow supports deploying workflows on a variety of execution platforms including local, HPC schedulers, AWS Batch, Google Cloud Life Sciences, and Kubernetes. Additionally, it provides support for workflow dependencies through built-in support for, for example, Conda, Spack, Docker, Podman, Singularity, and Modules.

[ascl:1807.011] nfield: Stochastic tool for QFT on inflationary backgrounds

nfield uses a stochastic formalism to compute the IR correlation functions of quantum fields during cosmic inflation in n-field dimensions. This is a necessary 1-loop resummation of the correlation functions to render them finite. The code supports the implementation of n-numbers of coupled test fields (energetically sub-dominant) as well as non-test fields.

[submitted] nFITSview: A simple and user-friendly FITS image viewer

nFITSview is a simple, user-friendly and open-source FITS image viewer available for Linux and Windows. One of the main concepts of nFITSview is to provide an intuitive user interface which may be helpful both for scientists and for amateur astronomers. nFITSview has different color mapping and manipulation schemes, supports different formats of FITS data files as well as exporting them to different popular image formats. It also supports command-line exporting (with some restrictions) of FITS files to other image formats.
The application is written in C++/Qt for achieving better performance, and with every next version the performance aspect is taken into account.
nFITSview uses its own libnfits library (can be used separately as well) for parsing the FITS files.

[ascl:1903.013] NFWdist: Density, distribution function, quantile function and random generation for the 3D NFW profile

Available in R and Python, the simple analytic scheme NFWdist performs highly efficient and exact sampling of the Navarro, Frenk & White (NFW) profile as a true probability distribution function, with the only variable being the concentration.

[ascl:1508.008] NGMIX: Gaussian mixture models for 2D images

NGMIX implements Gaussian mixture models for 2D images. Both the PSF profile and the galaxy are modeled using mixtures of Gaussians. Convolutions are thus performed analytically, resulting in fast model generation as compared to methods that perform the convolution in Fourier space. For the galaxy model, NGMIX supports exponential disks and de Vaucouleurs and Sérsic profiles; these are implemented approximately as a sum of Gaussians using the fits from Hogg & Lang (2013). Additionally, any number of Gaussians can be fit, either completely free or constrained to be cocentric and co-elliptical.

[ascl:2302.001] nicaea: NumerIcal Cosmology And lEnsing cAlculations

nicaea calculates cosmology and weak-lensing quantities and functions from theoretical models of the large-scale structure. Written in C, it can compute the Hubble parameter, distances, and geometry for background cosmology, and linear perturbations, including growth factor, transfer function, cluster mass function, and linear 3D power spectra. It also calculates fitting formulae for non-linear power spectra, emulators, and halo model for Non-linear evolution, and the HOD model for galaxy clustering. In addition, nicaea can compute quantities for cosmic shear such as the convergence power spectrum, second-order correlation functions and derived second-order quantities, and third-order aperture mass moment; it can also calculate CMB anisotropies via CAMB (ascl:1102.026).

[ascl:1608.016] NICIL: Non-Ideal magnetohydrodynamics Coefficients and Ionisation Library

NICIL (Non-Ideal magnetohydrodynamics Coefficients and Ionisation Library) calculates the ionization values and the coefficients of the non-ideal magnetohydrodynamics terms of Ohmic resistivity, the Hall effect, and ambipolar diffusion. Written as a standalone Fortran90 module that can be implemented in existing codes, NICIL is fully parameterizable, allowing the user to choose which processes to include and decide the values of the free parameters. The module includes both cosmic ray and thermal ionization; the former includes two ion species and three species of dust grains (positively charged, negatively charged and neutral), and the latter includes five elements which can be doubly ionized.

[ascl:1508.002] NICOLE: NLTE Stokes Synthesis/Inversion Code

NICOLE, written in Fortran 90, seeks the model atmosphere that provides the best fit to the Stokes profiles (in a least-squares sense) of an arbitrary number of simultaneously-observed spectral lines from solar/stellar atmospheres. The inversion core used for the development of NICOLE is the LORIEN engine (the Lovely Reusable Inversion ENgine), which combines the SVD technique with the Levenberg-Marquardt minimization method to solve the inverse problem.

[ascl:1302.013] NIFTY: A versatile Python library for signal inference

NIFTY (Numerical Information Field TheorY) is a versatile library enables the development of signal inference algorithms that operate regardless of the underlying spatial grid and its resolution. Its object-oriented framework is written in Python, although it accesses libraries written in Cython, C++, and C for efficiency. NIFTY offers a toolkit that abstracts discretized representations of continuous spaces, fields in these spaces, and operators acting on fields into classes. Thereby, the correct normalization of operations on fields is taken care of automatically. This allows for an abstract formulation and programming of inference algorithms, including those derived within information field theory. Thus, NIFTY permits rapid prototyping of algorithms in 1D and then the application of the developed code in higher-dimensional settings of real world problems. NIFTY operates on point sets, n-dimensional regular grids, spherical spaces, their harmonic counterparts, and product spaces constructed as combinations of those.

[ascl:1903.008] NIFTy5: Numerical Information Field Theory v5

NIFTy (Numerical Information Field Theory) facilitates the construction of Bayesian field reconstruction algorithms for fields being defined over multidimensional domains. A NIFTy algorithm can be developed for 1D field inference and then be used in 2D or 3D, on the sphere, or on product spaces thereof. NIFTy5 is a complete redesign of the previous framework (ascl:1302.013), and requires only the specification of a probabilistic generative model for all involved fields and the data in order to be able to recover the former from the latter. This is achieved via Metric Gaussian Variational Inference, which also provides posterior samples for all unknown quantities jointly.

[ascl:1106.016] Nightfall: Animated Views of Eclipsing Binary Stars

Nightfall is an astronomy application for fun, education, and science. It can produce animated views of eclipsing binary stars, calculate synthetic lightcurves and radial velocity curves, and eventually determine the best-fit model for a given set of observational data of an eclipsing binary star system.

Nightfall comes with a user guide and a set of observational data for several eclipsing binary star systems.

[ascl:1501.002] NIGO: Numerical Integrator of Galactic Orbits

NIGO (Numerical Integrator of Galactic Orbits) predicts the orbital evolution of test particles moving within a fully-analytical gravitational potential generated by a multi-component galaxy. The code can simulate the orbits of stars in elliptical and disc galaxies, including non-axisymmetric components represented by a spiral pattern and/or rotating bar(s).

[ascl:2101.011] Nigraha: Find and evaluate planet candidates from TESS light curves

Nigraha identifies and evaluates planet candidates from TESS light curves. Using a combination of high signal to noise ratio (SNR) shallow transits, supervised machine learning, and detailed vetting, the neural network-based pipeline identifies planet candidates missed by prior searches. The pipeline runs in four stages. It first performs period finding using the Transit Least Squares (TLS) package and runs sector by sector to build a per-sector catalog. It then transforms the flux values in .fits lightcurve files to global/local views and write out the output in .tfRecords files, builds a model on training data, and saves a checkpoint. Finally, it loads a previously saved model to generate predictions for new sectors. Nigraha provides helper scripts to generate candidates in new sectors, thus allowing others to perform their own analyses.

[ascl:2111.010] Nii: Multidimensional posterior distributions framework

Nii implements an automatic parallel tempering Markov chain Monte Carlo (APT-MCMC) framework for sampling multidimensional posterior distributions and provides an observation simulation platform for the differential astrometric measurement of exoplanets. Although this code specifically focuses on the orbital parameter retrieval problem of differential astrometry, Nii can be applied to other scientific problems with different posterior distributions and offers many control parameters in the APT part to facilitate the adjustment of the MCMC sampling strategy; these include the number of parallel chains, the β values of different chains, the dynamic range of the sampling step sizes, and frequency of adjusting the step sizes.

[ascl:2203.003] NIMBLE: Non-parametrIc jeans Modeling with B-spLinEs

NIMBLE (Non-parametrIc jeans Modeling with B-spLinEs) inferrs the cumulative mass distribution of a gravitating system from full 6D phase space coordinates of its tracers via spherical Jeans modeling. It models the Milky Way's dark matter halo using Gaia and Dark Energy Spectroscopic Instrument Milky Way Survey (DESI MWS) data. NIMBLE includes a basic inverse modeling Jeans routine that assumes perfect and complete data is available and a more complex forward modeling Jeans routine that deconvolves observational effects (uncertainties and limited survey volume) characteristic of Gaia and the DESI-MWS. It also includes tools for generating simple equilibrium model galaxies using Agama (ascl:1805.008) and imposing mock Gaia+DESI errors on 6D phase space input data.

[ascl:2107.008] nimbus: A Bayesian inference framework to constrain kilonova models

nimbus is a hierarchical Bayesian framework to infer the intrinsic luminosity parameters of kilonovae (KNe) associated with gravitational-wave (GW) events, based purely on non-detections. This framework makes use of GW 3-D distance information and electromagnetic upper limits from a given survey for multiple events, and self-consistently accounts for finite sky-coverage and probability of astrophysical origin.

[ascl:2210.003] NIRDust: Near Infrared Dust finder for Type2 AGN K-band spectra

NIRDust uses K-band (2.2 micrometers) spectra to measure the temperature of the dust heated by an Active Galactic Nuclei (AGN) accretion disk. The package provides several functionalities to pre-process spectra and fit the hot dust component of a AGN K-band spectrum with a blackbody function. NIRDust needs a minimum of two spectra to run: a target spectrum, where the dust temperature will be estimated, and a reference spectrum, where the emission is considered to be purely stellar. The reference spectrum will be used by NIRDust to model the stellar emission from the target spectrum.

[ascl:1101.006] NIRVANA: A Numerical Tool for Astrophysical Gas Dynamics

The NIRVANA code is capable of the simulation of multi-scale self-gravitational magnetohydrodynamics problems in three space dimensions employing the technique of adaptive mesh refinement. The building blocks of NIRVANA are (i) a fully conservative, divergence-free Godunov-type central scheme for the solution of the equations of magnetohydrodynamics; (ii) a block-structured mesh refinement algorithm which automatically adds and removes elementary grid blocks whenever necessary to achieve adequate resolution and; (iii) an adaptive mesh Poisson solver based on multigrid philosophy which incorporates the so-called elliptic matching condition to keep the gradient of the gravitational potential continous at fine/coarse mesh interfaces.

[ascl:2111.004] NLopt: Nonlinear optimization library

The library NLopt performs nonlinear local and global optimization for functions with and without gradient information. It provides a simple, unified interface and wraps many algorithms for global and local, constrained or unconstrained, optimization, and provides interfaces for many other languages, including C++, Fortran, Python, Matlab or GNU Octave, OCaml, GNU Guile, GNU R, Lua, Rust, and Julia.

[ascl:2402.001] NMMA: Nuclear Multi Messenger Astronomy framework

NMMA probes nuclear physics and cosmology with multimessenger analysis. This fully featured, Bayesian multi-messenger pipeline targets joint analyses of gravitational-wave and electromagnetic data (focusing on the optical). Using bilby (ascl:1901.011) as the back-end, the software uses a variety of samplers to sampling these data sets. NMMA uses chiral effective field theory based neutron star equation of states when performing inference, and is also capable of estimating the Hubble Constant.

[ascl:2005.010] NNKCDE: Nearest Neighbor Kernel Conditional Density Estimation

NNKCDE is a simple and easily interpretable Conditional Density Estimation (CDE) method. It computes a kernel density estimate of y using the k nearest neighbors of the evaluation point x. The model has only two tuning parameters: the number of nearest neighbors k and the bandwidth h of the smoothing kernel in y-space. Both tuning parameters are chosen in a principled way by minimizing the CDE loss on validation data.

[ascl:1711.024] NOD3: Single dish reduction software

NOD3 processes and analyzes maps from single-dish observations affected by scanning effects from clouds, receiver instabilities, or radio-frequency interference. Its “basket-weaving” tool combines orthogonally scanned maps into a final map that is almost free of scanning effects. A restoration tool for dual-beam observations reduces the noise by a factor of about two compared to the NOD2 version. Combining single-dish with interferometer data in the map plane ensures the full recovery of the total flux density.

[ascl:1305.013] Non-Gaussian Realisations

Non-Gaussian Realisations provides code based on a spectral distortion/quantile transformation that generates a realization of a field on a cubic grid that has a specified probability distribution function and a specified power spectrum.

[ascl:1011.016] Non-LTE Models and Theoretical Spectra of Accretion Disks in Active Galactic Nuclei. III. Integrated Spectra for Hydrogen-Helium Disks

We have constructed a grid of non-LTE disk models for a wide range of black hole mass and mass accretion rate, for several values of viscosity parameter alpha, and for two extreme values of the black hole spin: the maximum-rotation Kerr black hole, and the Schwarzschild (non-rotating) black hole. Our procedure calculates self-consistently the vertical structure of all disk annuli together with the radiation field, without any approximations imposed on the optical thickness of the disk, and without any ad hoc approximations to the behavior of the radiation intensity. The total spectrum of a disk is computed by summing the spectra of the individual annuli, taking into account the general relativistic transfer function. The grid covers nine values of the black hole mass between M = 1/8 and 32 billion solar masses with a two-fold increase of mass for each subsequent value; and eleven values of the mass accretion rate, each a power of 2 times 1 solar mass/year. The highest value of the accretion rate corresponds to 0.3 Eddington. We show the vertical structure of individual annuli within the set of accretion disk models, along with their local emergent flux, and discuss the internal physical self-consistency of the models. We then present the full disk-integrated spectra, and discuss a number of observationally interesting properties of the models, such as optical/ultraviolet colors, the behavior of the hydrogen Lyman limit region, polarization, and number of ionizing photons. Our calculations are far from definitive in terms of the input physics, but generally we find that our models exhibit rather red optical/UV colors. Flux discontinuities in the region of the hydrogen Lyman limit are only present in cool, low luminosity models, while hotter models exhibit blueshifted changes in spectral slope.

[ascl:2206.005] NonnegMFPy: Nonnegative Matrix Factorization with heteroscedastic uncertainties and missing data

NonnegMFPy solves nonnegative matrix factorization (NMF) given a dataset with heteroscedastic uncertainties and missing data with a vectorized multiplicative update rule; this can be used create a mask and iterate the process to exclude certain new data by updating the mask. The code can work on multi-dimensional data, such as images, if the data are first flattened to 1D.

[ascl:1202.003] NOVAS: Naval Observatory Vector Astrometry Software

NOVAS is an integrated package of subroutines and functions for computing various commonly needed quantities in positional astronomy. The package can provide, in one or two subroutine or function calls, the instantaneous coordinates of any star or planet in a variety of coordinate systems. At a lower level, NOVAS also supplies astrometric utility transformations, such as those for precession, nutation, aberration, parallax, and the gravitational deflection of light. The computations are accurate to better than one milliarcsecond. The NOVAS package is an easy-to-use facility that can be incorporated into data reduction programs, telescope control systems, and simulations. The U.S. parts of The Astronomical Almanac are prepared using NOVAS. Three editions of NOVAS are available: Fortran, C, and Python.

[ascl:2201.014] nProFit: n-Profile Fitting tool

nProFit analyzes surface brightness profiles. It obtains the best-fit structural, scale, and shape parameters of star clusters in Hubble Space Telescope images of nearby galaxies. The code fits dynamical models and can derive physically-relevant parameters. Among these are central volume and luminosity densities, total masses and luminosities, central velocity dispersions, core radius, half-light radius, tidal radius, and binding energy.

[ascl:1705.014] NPTFit: Non-Poissonian Template Fitting

NPTFit is a specialized Python/Cython package that implements Non-Poissonian Template Fitting (NPTF), originally developed for characterizing populations of unresolved point sources. It offers fast evaluation of likelihoods for NPTF analyses and has an easy-to-use interface for performing non-Poissonian (as well as standard Poissonian) template fits using MultiNest (ascl:1109.006) or other inference tools. It allows inclusion of an arbitrary number of point source templates, with an arbitrary number of degrees of freedom in the modeled flux distribution, and has modules for analyzing and plotting the results of an NPTF.

[ascl:1804.015] NR-code: Nonlinear reconstruction code

NR-code applies nonlinear reconstruction to the dark matter density field in redshift space and solves for the nonlinear mapping from the initial Lagrangian positions to the final redshift space positions; this reverses the large-scale bulk flows and improves the precision measurement of the baryon acoustic oscillations (BAO) scale.

[ascl:2108.012] NRDD_constraints: Dark Matter interaction with the Standard Model exclusion plot calculator

The NRDD_constraints tool provides simple interpolating functions written in Python that return the most constraining limit on the dark matter-nucleon scattering cross section for a list of non-relativistic effective operators. The package contains four files: the main code, NRDD_constraints.py; a simple driver, NRDD_constraints-example.py; and two data files, NRDD_data1.npy and NRDD_data2.npy

[ascl:1807.025] NRPy+: Code generator for Numerical Relativity

NRPy+ (Python-based Code generation for Numerical Relativity and Beyond) generates highly-optimized C code from complex tensorial expressions input in Einstein-like notation. NRPy+ uses SymPy as its computer algebra system backend. It is part of the NRPy+/SENR numerical relativity code package for solving Einstein's equations of general relativity to model compact objects at about 1/100 the cost in memory of more traditional, AMR-based numerical relativity codes, thus allowing desktop computers to be used for gravitational wave astrophysics.

[ascl:2012.002] NSCG: NOIRLab Source Catalog Generator

The NOIRLab Source Catalog Generator generates the NOIRLab Source Catalog (NSC), a catalog of all publicly available imagining data in the NOIRLab Astro Data Archive. The second data release (DR2) of the archive contains over 3.9 billion unique objects, 68 billion individual source measurements, covers 35,000 square degrees of the sky, has depths of 23rd magnitude in most broadband filters with 1-2% photometric precision, and astrometric accuracy of 7 mas. NSCG is written in Python and IDL. Three main steps generate the NSC: (1) Source Extractor (ascl:1010.064) is used to detect and measure sources in individual images; (2) astrometrics are calibrated with Gaia DR2 and photometric calibration using large public photometric catalogs such as Pan-STARRS1 and ATLAS-Refcat2; and, (3) measurements are clustered into unique objects, averaging photometric and morphological properties, and calculating proper motions and photometric variability indices.

[ascl:1609.009] NSCool: Neutron star cooling code

NSCool is a 1D (i.e., spherically symmetric) neutron star cooling code written in Fortran 77. The package also contains a series of EOSs (equation of state) to build stars, a series of pre-built stars, and a TOV (Tolman- Oppenheimer-Volkoff) integrator to build stars from an EOS. It can also handle “strange stars” that have a huge density discontinuity between the quark matter and the covering thin baryonic crust. NSCool solves the heat transport and energy balance equations in whole GR, resulting in a time sequence of temperature profiles (and, in particular, a Teff - age curve). Several heating processes are included, and more can easily be incorporated. In particular it can evolve a star undergoing accretion with the resulting deep crustal heating, under a steady or time-variable accretion rate. NSCool is robust, very fast, and highly modular, making it easy to add new subroutines for new processes.

[ascl:1602.008] NuCraft: Oscillation probabilities for atmospheric neutrinos calculator

NuCraft calculates oscillation probabilities for atmospheric neutrinos, taking into account matter effects and the Earth's atmosphere, and supports an arbitrary number of sterile neutrino flavors with easily configurable continuous Earth models. Continuous modeling of the Earth instead of the often-used approximation of four layers with constant density and consideration of the smearing of baseline lengths due to the variable neutrino production heights in Earth's atmosphere each lead to deviations of 10% or more for conventional neutrinos between 1 and 10 GeV.

[ascl:1904.030] nudec_BSM: Neutrino Decoupling Beyond the Standard Model

nudec_BSM uses a simplified approach to solve for the neutrino decoupling, allowing one to capture the time dependence of the process while accounting for all possible interactions that can alter it.

[ascl:1601.014] Nulike: Neutrino telescope likelihood tools

Nulike is software for including full event-level information in likelihood calculations for neutrino telescope searches for dark matter annihilation. It includes both angular and spectral information about neutrino events as well as their total number, and can be used for single models without reference to the rest of a parameter space.

[ascl:1408.013] NumCosmo: Numerical Cosmology

NumCosmo is a free software C library whose main purposes are to test cosmological models using observational data and to provide a set of tools to perform cosmological calculations. The software implements three different probes: cosmic microwave background (CMB), supernovae type Ia (SNeIa) and large scale structure (LSS) information, such as baryonic acoustic oscillations (BAO) and galaxy cluster abundance. The code supports a joint analysis of these data and the parameter space can include cosmological and phenomenological parameters. NumCosmo matter power spectrum and CMB codes were written independent of other implementations such as CMBFAST (ascl:9909.004), CAMB (ascl:1102.026), etc.

The library structure simplifies the inclusion of non-standard cosmological models. Besides the functions related to cosmological quantities, this library also implements mathematical and statistical tools. The former were developed to enable the inclusion of other probes and/or theoretical models and to optimize the codes. The statistical framework comprises algorithms which define likelihood functions, minimization, Monte Carlo, Fisher Matrix and profile likelihood methods.

[ascl:1610.015] NuPyCEE: NuGrid Python Chemical Evolution Environment

The NuGrid Python Chemical Evolution Environment (NuPyCEE) simulates the chemical enrichment and stellar feedback of stellar populations. It contains three modules. The Stellar Yields for Galactic Modeling Applications module (SYGMA) models the enrichment and feedback of simple stellar populations which can be included in hydrodynamic simulations and semi-analytic models of galaxies. It is the basic building block of the One-zone Model for the Evolution of GAlaxies (OMEGA, ascl:1806.018) module which models the chemical evolution of galaxies such as the Milky Way and its dwarf satellites. The STELLAB (STELLar ABundances) module provides a library of observed stellar abundances useful for comparing predictions of SYGMA and OMEGA.

[ascl:2306.045] nuPyProp: Propagate neutrinos through the earth

nuPyProp simulates tau neutrino and muon neutrino interactions in the Earth and predicts the spectrum of the τ-leptons and muons that emerge. The code produces tables of charged lepton exit probabilities and energies that can be used directly or as inputs to nuSpaceSim (ascl:2306.043), which is designed to simulate optical and radio signals from extensive air showers induced by the emerging charged leptons.

[ascl:1908.011] NuRadioMC: Monte Carlo simulation package for radio neutrino detectors

NuRadioMC simulates ultra-high energy neutrino detectors that rely on the radio detection method, which exploits the radio emission generated in the electromagnetic component of a particle shower following a neutrino interaction. The code simulates the neutrino interaction in a medium, subsequent Askaryan radio emission, propagation of the radio signal to the detector and the detector response. NuRadioMC is a Monte Carlo framework that combines flexibility in detector design with user-friendliness. It includes an event generator, improved modeling of the radio emission, a revisited approach to signal propagation, and increased flexibility and precision in the detector simulation.

[ascl:2306.044] nuSpaceSim: Cosmic neutrino simulation

nuSpaceSim simulates upward-going extensive air showers caused by neutrino interactions with the atmosphere. It is an end-to-end, neutrino flux to space-based signal detection, modeling tool for the design of sub-orbital and space-based neutrino detection experiments. This comprehensive suite of modeling packages accepts an experimental design input and then models the experiment's sensitivity to both the diffuse, cosmogenic neutrino flux as well as astrophysical neutrino transient events, such as that postulated from binary neutron star (BNS) mergers. nuSpaceSim calculates the tau neutrino acceptance for the Optical Cherenkov technique; tau propagation is interpolated using included data tables from nupyprop (ascl:2306.044). The simulation is parameterized by an input XML configuration file, with settings for detector characteristics and global parameters; nuSpaceSim also provides a python API for programmatic access.

[ascl:2102.014] nway: Bayesian cross-matching of astronomical catalogs

nway is a source cross-matching tool for arbitrarily many astronomical catalogs. It features Bayesian match probabilities based on astronomical sky coordinates (RA, DEC), works with arbitrarily many catalogs, and can handle varying errors. nway can also incorporate additional prior information, such as the magnitude or color distributions of the sources to match, and works accurately and fast in small areas and all-sky catalogs.

[ascl:2202.002] NWelch: Spectral analysis of time series with nonuniform observing cadence

NWelch uses Welch's method to estimate the power spectra, complex cross-spectrum, magnitude-squared coherence, and phase spectrum of bivariate time series with nonuniform observing cadence. For univariate time series, users can apply the Welch's power spectrum estimator or compute a nonuniform fast Fourier transform-based periodogram. Options include tapering in the time domain and computing bootstrap false alarm levels. Users may choose standard 50%-overlapping Welch's segments or apply a custom-made segmentation scheme. NWelch was designed for Doppler planet searches but may be applied to any type of time series.

[ascl:1712.006] Nyx: Adaptive mesh, massively-parallel, cosmological simulation code

Nyx code solves equations of compressible hydrodynamics on an adaptive grid hierarchy coupled with an N-body treatment of dark matter. The gas dynamics in Nyx use a finite volume methodology on an adaptive set of 3-D Eulerian grids; dark matter is represented as discrete particles moving under the influence of gravity. Particles are evolved via a particle-mesh method, using Cloud-in-Cell deposition/interpolation scheme. Both baryonic and dark matter contribute to the gravitational field. In addition, Nyx includes physics for accurately modeling the intergalactic medium; in optically thin limits and assuming ionization equilibrium, the code calculates heating and cooling processes of the primordial-composition gas in an ionizing ultraviolet background radiation field.

[ascl:2112.019] O'TRAIN: Optical TRAnsient Identification NEtwork

The O'TRAIN package identifies transients in astronomical images based on a Convolutional Neural Network (CNN). It works on images from different telescopes and, through the use of Docker, can be deployed on different operating systems. O'TRAIN uses image cutouts containing real and false transients provided by the user to train a CNN algorithm implemented with Keras. Built-in diagnostics help to characterize the accuracy of the training, and a trained model is used to classify any new cutouts.

[ascl:1408.019] O2scl: Object-oriented scientific computing library

O2scl is an object-oriented library for scientific computing in C++ useful for solving, minimizing, differentiating, integrating, interpolating, optimizing, approximating, analyzing, fitting, and more. Many classes operate on generic function and vector types; it includes classes based on GSL and CERNLIB. O2scl also contains code for computing the basic thermodynamic integrals for fermions and bosons, for generating almost all of the most common equations of state of nuclear and neutron star matter, and for solving the TOV equations. O2scl can be used on Linux, Mac and Windows (Cygwin) platforms and has extensive documentation.

[ascl:1608.012] OBERON: OBliquity and Energy balance Run on N-body systems

OBERON (OBliquity and Energy balance Run on N-body systems) models the climate of Earthlike planets under the effects of an arbitrary number and arrangement of other bodies, such as stars, planets and moons. The code, written in C++, simultaneously computes N body motions using a 4th order Hermite integrator, simulates climates using a 1D latitudinal energy balance model, and evolves the orbital spin of bodies using the equations of Laskar (1986a,b).

[ascl:1307.008] Obit: Radio Astronomy Data Handling

Obit is a group of software packages for handling radio astronomy data, especially interferometric and single dish OTF imaging. Obit is primarily an environment in which new data processing algorithms can be developed and tested but which can also be used for production processing of a certain range of scientific problems. The package supports both prepackaged, compiled tasks and a python interface to the major class functionality to allow rapid prototyping using python scripts; it allows access to multiple disk--resident data formats, in particular access to either AIPS disk data or FITS files. Obit applications are interoperable with Classic AIPS and the ObitTalk python interface gives access to AIPS tasks as well as Obit libraries and tasks.

[submitted] ObsPlanner

Simple program for planning and managing astronomical observations as observational diary or logs.

[submitted] obsplanning - a set of python utilities to aid in planning astronomical observations

Obsplanning is a suite of tools to help plan astronomical observations from ground-based observatories, for traditional single-site as well as multi-station (VLBI) observing. Conveniently determine observability of objects in the sky from your observatory, and produce plots to help you prepare for your observations over the course of a session. Celestial source coordinates (including solar system objects) can be queried or created, and transformed. Calibrator or reference sources can be selected by proximity, and slew order can be optimized to save valuable telescope time. Plots and visualizations can be easily made to chart source elevation and transits, source proximity to the Sun and Moon, concurrent 'up time' of sources at multiple sites (for VLBI or tandem observations), 'dark time' at a telescope site for a given year, finder plots made from real images (with options to query online databases), and more.

Would you like to view a random code?